code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase_( lowerCamelCase_ ) -> list[int]: if length <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
21
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): def __init__( self : str , *snake_case_ : List[str] , **snake_case_ : int ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
22
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: List[str] = {"vocab_file": "sentencepiece.model"} UpperCamelCase__: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase__: Optional[int] = { "google/rembert": 256, } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int]=False , __snake_case : Tuple=True , __snake_case : int=True , __snake_case : str="[CLS]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[UNK]" , __snake_case : Optional[Any]="[SEP]" , __snake_case : Union[str, Any]="[PAD]" , __snake_case : Dict="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : List[Any] , ) -> int: super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : Dict = remove_space UpperCAmelCase : Any = keep_accents UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def A ( self : Union[str, Any] ) -> Optional[int]: return len(self.sp_model ) def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : Any , __snake_case : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = d UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def A ( self : Tuple , __snake_case : Any , __snake_case : Union[str, Any]=False ) -> Union[str, Any]: UpperCAmelCase : int = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def A ( self : str , __snake_case : Union[str, Any] ) -> int: return self.sp_model.PieceToId(__snake_case ) def A ( self : str , __snake_case : str ) -> List[Any]: return self.sp_model.IdToPiece(__snake_case ) def A ( self : int , __snake_case : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = self.sp_model.decode_pieces(__snake_case ) return out_string def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
23
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
import re def lowerCamelCase__ ( snake_case_ : str ) -> list: return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def lowerCamelCase__ ( snake_case_ : str ) -> str: __snake_case = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : bool , snake_case_ : str ) -> str: try: __snake_case = split_input(snake_case_ ) if upper: __snake_case = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __snake_case = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCamelCase__ ( snake_case_ : str ) -> str: return to_simple_case(snake_case_ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: try: __snake_case = to_simple_case(snake_case_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCamelCase__ ( snake_case_ : str , snake_case_ : bool ) -> str: return to_complex_case(snake_case_ , snake_case_ , '''_''' ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : bool ) -> str: return to_complex_case(snake_case_ , snake_case_ , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
24
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
0
"""simple docstring""" import requests UpperCAmelCase__ : Any = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowercase_ ( _snake_case ): # fetching a list of articles in json format SCREAMING_SNAKE_CASE__ : List[Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] ,1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
25
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _A : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case_ ) ) return round(snake_case_,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase : Dict = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main __a : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
27
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger("transformers.models.encodec") _lowerCamelCase : int = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } _lowerCamelCase : Optional[int] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } _lowerCamelCase : Optional[Any] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } _lowerCamelCase : int = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } _lowerCamelCase : Union[str, Any] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } _lowerCamelCase : Optional[int] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCamelCase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Union[str, Any] = [] def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase = getattr(A__ , A__ ) if weight_type is not None: UpperCamelCase = getattr(A__ , A__ ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "weight_ih_l0": UpperCamelCase = value elif weight_type == "weight_hh_l0": UpperCamelCase = value elif weight_type == "bias_ih_l0": UpperCamelCase = value elif weight_type == "bias_hh_l0": UpperCamelCase = value elif weight_type == "weight_ih_l1": UpperCamelCase = value elif weight_type == "weight_hh_l1": UpperCamelCase = value elif weight_type == "bias_ih_l1": UpperCamelCase = value elif weight_type == "bias_hh_l1": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowerCamelCase ( A__ , A__ ) -> List[Any]: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase , UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(A__ , A__ ): logger.info(F"""{name} was ignored""" ) continue UpperCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase , UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: UpperCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A__ )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , A__ ) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "weight_ih_l0" in name: UpperCamelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCamelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCamelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCamelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCamelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCamelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCamelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCamelCase = 'bias_hh_l1' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__=None , A__=None , ) -> Optional[int]: """simple docstring""" if config_path is not None: UpperCamelCase = EncodecConfig.from_pretrained(A__ ) else: UpperCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase = [8, 5, 4, 4] UpperCamelCase = [2.2] UpperCamelCase = 64 UpperCamelCase = 32_000 UpperCamelCase = 2_048 UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False elif model_name == "encodec_48khz": UpperCamelCase = [8, 5, 4, 2] UpperCamelCase = [3.0, 6.0, 12.0, 24.0] UpperCamelCase = 48_000 UpperCamelCase = 2 UpperCamelCase = False UpperCamelCase = 'time_group_norm' UpperCamelCase = True UpperCamelCase = 1.0 UpperCamelCase = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCamelCase = EncodecModel(A__ ) UpperCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A__ ) UpperCamelCase = torch.load(A__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase = original_checkpoint['best_state'] recursively_load_weights(A__ , A__ , A__ ) model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _lowerCamelCase : Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE : Optional[int] = list[list[int]] # assigning initial values to the grid __SCREAMING_SNAKE_CASE : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __SCREAMING_SNAKE_CASE : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase_ ( _UpperCAmelCase : Matrix , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase_ ( _UpperCAmelCase : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase_ ( _UpperCAmelCase : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(_UpperCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase : Dict = digit if sudoku(_UpperCAmelCase ) is not None: return grid _UpperCAmelCase : Tuple = 0 return None def UpperCamelCase_ ( _UpperCAmelCase : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(_UpperCAmelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __SCREAMING_SNAKE_CASE : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
31
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } UpperCAmelCase_ : Tuple = { 'openbmb/cpm-ant-10b': 1024, } def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = collections.OrderedDict() with open(__A , 'r' , encoding='utf-8' ) as reader: a_ : int = reader.readlines() for index, token in enumerate(__A ): a_ : Union[str, Any] = token.rstrip('\n' ) a_ : Union[str, Any] = index return vocab class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_0 ) -> List[str]: a_ : List[Any] = vocab a_ : Tuple = unk_token a_ : Tuple = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : Any = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.max_input_chars_per_word: return [self.unk_token] a_ : Tuple = 0 a_ : Union[str, Any] = [] while start < len(SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = None while start < end: a_ : Dict = ''.join(chars[start:end] ) if substr in self.vocab: a_ : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = end return sub_tokens class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str = ['''input_ids''', '''attention_mask'''] snake_case__ : Union[str, Any] = False def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict="<d>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</d>" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : str="</n>" , SCREAMING_SNAKE_CASE__ : Any="</_>" , SCREAMING_SNAKE_CASE__ : Tuple="left" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Union[str, Any]: requires_backends(self , ['jieba'] ) super().__init__( bod_token=SCREAMING_SNAKE_CASE__ , eod_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , line_token=SCREAMING_SNAKE_CASE__ , space_token=SCREAMING_SNAKE_CASE__ , padding_side=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = bod_token a_ : str = eod_token a_ : Optional[int] = load_vocab(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.encoder[space_token] a_ : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a_ : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} a_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: a_ : Union[str, Any] = [] for x in jieba.cut(SCREAMING_SNAKE_CASE__ , cut_all=SCREAMING_SNAKE_CASE__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: a_ : Optional[Any] = [i for i in token_ids if i >= 0] a_ : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return "".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(SCREAMING_SNAKE_CASE__ ): a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: a_ : str = (filename_prefix + '-' if filename_prefix else '') + save_directory a_ : int = 0 if " " in self.encoder: a_ : List[str] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: a_ : Union[str, Any] = self.encoder['\n'] del self.encoder["\n"] a_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a_ : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
32
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None def lowercase ( __snake_case : Union[str, Any] , __snake_case : List[str]=0.999 , __snake_case : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case : Dict ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowercase_ : Optional[Any] = [] for i in range(__snake_case ): lowercase_ : int = i / num_diffusion_timesteps lowercase_ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class _UpperCAmelCase ( _A , _A ): SCREAMING_SNAKE_CASE_ : Any = 1 @register_to_config def __init__( self : Any , A : int = 10_00 , A : float = 0.0001 , A : float = 0.02 , A : str = "linear" , A : Optional[Union[np.ndarray, List[float]]] = None , A : bool = True , A : bool = True , A : int = 0 , A : str = "epsilon" , A : float = 1.0 , **A : Union[str, Any] , ) -> Any: if kwargs.get('''set_alpha_to_one''' , A ) is not None: lowercase_ : List[Any] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , A , standard_warn=A ) lowercase_ : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: lowercase_ : List[str] = torch.tensor(A , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase_ : Any = torch.linspace(A , A , A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(A ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowercase_ : List[Any] = 1.0 - self.betas lowercase_ : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase_ : Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase_ : Optional[int] = 1.0 # setable values lowercase_ : Optional[int] = None lowercase_ : Tuple = torch.from_numpy(np.arange(0 , A ).copy().astype(np.intaa ) ) def A ( self : Any , A : torch.FloatTensor , A : Optional[int] = None ) -> torch.FloatTensor: return sample def A ( self : int , A : int , A : Union[str, torch.device] = None ) -> Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) lowercase_ : Optional[int] = num_inference_steps lowercase_ : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ : Dict = (np.arange(0 , A ) * step_ratio).round().copy().astype(np.intaa ) lowercase_ : str = torch.from_numpy(A ).to(A ) self.timesteps += self.config.steps_offset def A ( self : Union[str, Any] , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : float = 0.0 , A : bool = False , A : Optional[torch.FloatTensor] = None , A : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) lowercase_ : Optional[int] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase_ : List[str] = self.alphas_cumprod[timestep] lowercase_ : Tuple = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase_ : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase_ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase_ : List[Any] = model_output elif self.config.prediction_type == "sample": lowercase_ : Tuple = model_output lowercase_ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase_ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase_ : Union[str, Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase_ : Union[str, Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=A , pred_original_sample=A ) def __len__( self : str ) -> Tuple: return self.config.num_train_timesteps
33
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _a ( __a ): def __init__( self : str , lowercase : Union[str, Any] , lowercase : Tuple=None , lowercase : Any=True , lowercase : Dict=None , **lowercase : int ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = config_class UpperCAmelCase = has_text_modality UpperCAmelCase = kwargs UpperCAmelCase = common_properties def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase , lowercase ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase ): try: setattr(lowercase , lowercase , lowercase ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase ): try: UpperCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase , '''config.json''' ) config_first.to_json_file(lowercase ) UpperCAmelCase = self.config_class.from_json_file(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase ) UpperCAmelCase = self.config_class.from_pretrained(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) UpperCAmelCase = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase , lowercase ) config_first.save_pretrained(lowercase ) UpperCAmelCase = self.config_class.from_pretrained(lowercase , subfolder=lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) UpperCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def A ( self : Union[str, Any] ): '''simple docstring''' if self.config_class.is_composition: return UpperCAmelCase = self.config_class() self.parent.assertIsNotNone(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(lowercase ) UpperCAmelCase = self.config_class(**lowercase ) UpperCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowercase , lowercase ) != value: wrong_values.append((key, getattr(lowercase , lowercase ), value) ) if len(lowercase ) > 0: UpperCAmelCase = '''\n'''.join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def A ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
34
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def __snake_case( _lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") _lowerCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") _lowerCAmelCase : Any = "xvjiarui/stable-diffusion-2-inpainting" _lowerCAmelCase , _lowerCAmelCase : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(__a, safety_checker=__a) _lowerCAmelCase : List[Any] = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCAmelCase : List[Any] = jax.random.PRNGKey(0) _lowerCAmelCase : int = 50 _lowerCAmelCase : Optional[Any] = jax.device_count() _lowerCAmelCase : Dict = num_samples * [prompt] _lowerCAmelCase : Dict = num_samples * [init_image] _lowerCAmelCase : Any = num_samples * [mask_image] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = pipeline.prepare_inputs(__a, __a, __a) # shard inputs and rng _lowerCAmelCase : Any = replicate(__a) _lowerCAmelCase : List[Any] = jax.random.split(__a, jax.device_count()) _lowerCAmelCase : Optional[int] = shard(__a) _lowerCAmelCase : List[str] = shard(__a) _lowerCAmelCase : Optional[int] = shard(__a) _lowerCAmelCase : int = pipeline( __a, __a, __a, __a, __a, __a, jit=__a) _lowerCAmelCase : Dict = output.images.reshape(__a, 512, 512, 3) _lowerCAmelCase : Optional[Any] = images[0, 253:256, 253:256, -1] _lowerCAmelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCAmelCase : Dict = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084]) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1E-2
36
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
'''simple docstring''' _lowerCAmelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
37
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
0
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=_a ): snake_case__ : Dict = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Union[str, Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _A ( cls : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ): requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _A ( cls : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ): requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
38
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ort.SessionOptions() _UpperCAmelCase = False return options def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'A red cat sitting on a park bench' _UpperCAmelCase = np.random.RandomState(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) _UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'A red cat sitting on a park bench' _UpperCAmelCase = np.random.RandomState(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
39
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
0
"""simple docstring""" import os import string import sys __lowercase = 1 << 8 __lowercase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowercase = KEYMAP["""up"""] __lowercase = KEYMAP["""left"""] if sys.platform == "win32": __lowercase = [] __lowercase = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowercase = ord(str(i)) def lowercase ( )-> List[str]: '''simple docstring''' if os.name == "nt": import msvcrt a : Tuple = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A_ ) == 0: # Read the keystroke a : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a : Union[str, Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(A_ ) if ord(A_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) a : Dict = chr(KEYMAP["esc"] ) except KeyError: a : Dict = cha[1] else: a : Any = ch.decode(A_ ) else: a : List[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a : str = sys.stdin.fileno() a : Tuple = termios.tcgetattr(A_ ) try: tty.setraw(A_ ) a : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(A_ , termios.TCSADRAIN , A_ ) return ch def lowercase ( )-> Any: '''simple docstring''' a : Dict = get_raw_chars() if ord(A_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A_ ) == KEYMAP["esc"]: a : Optional[Any] = get_raw_chars() if ord(A_ ) == KEYMAP["mod_int"]: a : Any = get_raw_chars() if ord(A_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
40
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list: if len(UpperCamelCase ) <= 1: return [tuple(UpperCamelCase )] lowerCamelCase__ : Union[str, Any] = [] def generate(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : List[str] = [0] * n res.append(tuple(UpperCamelCase ) ) lowerCamelCase__ : str = 0 while i < n: if c[i] < i: if i % 2 == 0: lowerCamelCase__ , lowerCamelCase__ : Dict = arr[i], arr[0] else: lowerCamelCase__ , lowerCamelCase__ : Dict = arr[i], arr[c[i]] res.append(tuple(UpperCamelCase ) ) c[i] += 1 lowerCamelCase__ : Optional[int] = 0 else: lowerCamelCase__ : Dict = 0 i += 1 generate(len(UpperCamelCase ) , UpperCamelCase ) return res if __name__ == "__main__": _A : str =input('''Enter numbers separated by a comma:\n''').strip() _A : Optional[int] =[int(item) for item in user_input.split(''',''')] print(heaps(arr))
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> float: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__A , __A ) or not isinstance(__A , __A ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case = float(factorial(__A ) ) coefficient /= factorial(__A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
42
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): __UpperCamelCase :str = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __UpperCamelCase :Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase :str = value elif weight_type == "weight_g": __UpperCamelCase :List[str] = value elif weight_type == "weight_v": __UpperCamelCase :str = value elif weight_type == "bias": __UpperCamelCase :Union[str, Any] = value else: __UpperCamelCase :str = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = [] __UpperCamelCase :int = fairseq_model.state_dict() __UpperCamelCase :List[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase :List[Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCamelCase :List[str] = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase :Dict = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __UpperCamelCase :Optional[Any] = True if "*" in mapped_key: __UpperCamelCase :List[str] = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __UpperCamelCase :Optional[int] = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCamelCase :int = '''weight_g''' elif "weight_v" in name: __UpperCamelCase :List[Any] = '''weight_v''' elif "weight" in name: __UpperCamelCase :Dict = '''weight''' elif "bias" in name: __UpperCamelCase :Dict = '''bias''' else: __UpperCamelCase :Dict = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = full_name.split('''conv_layers.''' )[-1] __UpperCamelCase :Optional[int] = name.split('''.''' ) __UpperCamelCase :str = int(items[0] ) __UpperCamelCase :List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase :Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCamelCase :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: __UpperCamelCase :Tuple = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Optional[int] = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase :Optional[int] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase :Optional[int] = target_dict.pad_index __UpperCamelCase :Dict = target_dict.bos_index __UpperCamelCase :str = target_dict.eos_index __UpperCamelCase :Dict = len(target_dict.symbols ) __UpperCamelCase :List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False __UpperCamelCase :Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Any = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :str = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase :Dict = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowercase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
43
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A : @staticmethod def __A ( *a__ , **a__ ): pass def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ) -> str: _lowerCAmelCase : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ) -> Dict: _lowerCAmelCase : Dict = np.array(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A ( unittest.TestCase ): _UpperCamelCase : Optional[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __A ( self , a__ , a__ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def __A ( self ): pass @slow @require_torch def __A ( self ): _lowerCAmelCase : Dict = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) _lowerCAmelCase : Optional[int] = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9_9_6_7}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.9_9_3}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9_9_0_9}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9_8_7_9}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9_8_3_4}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9_7_1_6}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9_6_1_2}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9_5_9_9}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9_5_5_2}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9_5_3_2}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9_5_1_6}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9_4_9_9}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9_4_8_3}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9_4_6_4}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.9_4_3}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9_4_0_8}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9_3_3_5}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9_3_2_6}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9_2_6_2}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8_9_9_9}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8_9_8_6}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8_9_8_4}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8_8_7_3}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __A ( self ): _lowerCAmelCase : Optional[int] = """facebook/sam-vit-huge""" _lowerCAmelCase : Any = pipeline("""mask-generation""" , model=a__ ) _lowerCAmelCase : Optional[int] = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : Tuple = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_4_4_4}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_2_1_0}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_1_6_7}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_1_3_2}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_0_5_3}, ] , )
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : List[str] __UpperCAmelCase : Optional[str] = None # Automatically constructed __UpperCAmelCase : ClassVar[str] = "dict" __UpperCAmelCase : ClassVar[Any] = None __UpperCAmelCase : str = field(default='Translation' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __UpperCAmelCase ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[List] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[str] = None # Automatically constructed __UpperCAmelCase : ClassVar[str] = "dict" __UpperCAmelCase : ClassVar[Any] = None __UpperCAmelCase : str = field(default='TranslationVariableLanguages' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self ): __a = sorted(set(self.languages ) ) if self.languages else None __a = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __UpperCAmelCase ( self , _a ): __a = set(self.languages ) if self.languages and set(_a ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(_a ) - lang_set ) )}) are not in valid set ({', '.join(_a )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __a = [] for lang, text in translation_dict.items(): if isinstance(_a , _a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __a , __a = zip(*sorted(_a ) ) return {"language": languages, "translation": translations} def __UpperCAmelCase ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
45
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser lowerCAmelCase = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to lowerCAmelCase = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = get_config_parser() lowerCAmelCase = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
46
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =set(range(3 , _UpperCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCamelCase , _UpperCamelCase ) ) ) _SCREAMING_SNAKE_CASE =[float(_UpperCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCamelCase , limit + 1 , _UpperCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
47
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : List[str] = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _A : UpperCamelCase__ : Dict = BlenderbotSmallConfig UpperCamelCase__ : Tuple = {} UpperCamelCase__ : str = '''gelu''' def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Dict=99 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=20 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __a = tf.concat([input_ids, eos_tensor] , axis=1) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return config, inputs_dict def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE).get_decoder() __a = inputs_dict['''input_ids'''] __a = input_ids[:1, :] __a = inputs_dict['''attention_mask'''][:1, :] __a = inputs_dict['''head_mask'''] __a = 1 # first forward pass __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1) __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1])) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-3) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Union[str, Any] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) UpperCamelCase__ : Union[str, Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ : str = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = False UpperCamelCase__ : str = False def _lowerCamelCase ( self : int): '''simple docstring''' __a = TFBlenderbotSmallModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE) @require_tokenizers @require_tf class _A ( unittest.TestCase ): UpperCamelCase__ : Union[str, Any] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] UpperCamelCase__ : str = '''facebook/blenderbot_small-90M''' @cached_property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''') @cached_property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.tokenizer(self.src_text , return_tensors='''tf''') __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , ) __a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
49
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="shi-labs/oneformer_demo" ) -> List[Any]: with open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) as f: lowerCamelCase__ : str = json.load(_UpperCAmelCase ) lowerCamelCase__ : Tuple = {} lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : str = [] for key, info in class_info.items(): lowerCamelCase__ : Union[str, Any] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = thing_ids lowerCamelCase__ : Union[str, Any] = class_names return metadata class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : int=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Any=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=255 , UpperCAmelCase : Any="shi-labs/oneformer_demo" , UpperCAmelCase : Any="ade20k_panoptic.json" , UpperCAmelCase : List[Any]=10 , ) -> Union[str, Any]: lowerCamelCase__ : Tuple = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : int = max_resolution lowerCamelCase__ : Dict = do_resize lowerCamelCase__ : Optional[int] = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size lowerCamelCase__ : Dict = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : List[str] = image_std lowerCamelCase__ : Any = class_info_file lowerCamelCase__ : Any = prepare_metadata(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = num_text lowerCamelCase__ : List[str] = repo_path # for the post_process_functions lowerCamelCase__ : Any = 2 lowerCamelCase__ : str = 10 lowerCamelCase__ : str = 10 lowerCamelCase__ : Any = 3 lowerCamelCase__ : Union[str, Any] = 4 lowerCamelCase__ : Any = num_labels lowerCamelCase__ : str = do_reduce_labels lowerCamelCase__ : str = ignore_index def A_ ( self : Union[str, Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A_ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=False ) -> int: if not batched: lowerCamelCase__ : List[str] = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Tuple = image.size else: lowerCamelCase__ , lowerCamelCase__ : Dict = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : Dict = int(self.size['shortest_edge'] * h / w ) lowerCamelCase__ : List[Any] = self.size['shortest_edge'] elif w > h: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : str = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase__ : str = self.size['shortest_edge'] lowerCamelCase__ : Union[str, Any] = self.size['shortest_edge'] else: lowerCamelCase__ : Any = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Optional[Any] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowerCamelCase__ : str = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width def A_ ( self : Tuple ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCAmelCase__ = image_processing_class def A_ ( self : Any ) -> int: lowerCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def A_ ( self : str ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_reduce_labels' ) ) def A_ ( self : str ) -> List[Any]: pass def A_ ( self : Tuple ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Tuple ) -> str: # Initialize image_processor lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : str = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processing_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : int = self.image_processing_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowerCamelCase__ : int = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : int , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Union[str, Any]="np" ) -> str: lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowerCamelCase__ : Dict = self.image_processing_tester.num_labels lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase ) if with_segmentation_maps: lowerCamelCase__ : Tuple = num_labels if is_instance_map: lowerCamelCase__ : Dict = list(range(UpperCAmelCase ) ) * 2 lowerCamelCase__ : Optional[int] = dict(enumerate(UpperCAmelCase ) ) lowerCamelCase__ : int = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowerCamelCase__ : Optional[int] = [Image.fromarray(UpperCAmelCase ) for annotation in annotations] lowerCamelCase__ : List[str] = image_processor( UpperCAmelCase , ['semantic'] * len(UpperCAmelCase ) , UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCAmelCase , pad_and_return_pixel_mask=UpperCAmelCase , ) return inputs def A_ ( self : str ) -> Any: pass def A_ ( self : Tuple ) -> List[Any]: def common(UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[Any]=None ): lowerCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase , is_instance_map=UpperCAmelCase , segmentation_type=UpperCAmelCase ) lowerCamelCase__ : Tuple = inputs['mask_labels'] lowerCamelCase__ : Union[str, Any] = inputs['class_labels'] lowerCamelCase__ : Optional[Any] = inputs['pixel_values'] lowerCamelCase__ : List[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) common(is_instance_map=UpperCAmelCase , segmentation_type='pil' ) def A_ ( self : Optional[int] ) -> Any: lowerCamelCase__ : Dict = np.zeros((20, 50) ) lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Union[str, Any] = binary_mask_to_rle(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A_ ( self : Union[str, Any] ) -> str: lowerCamelCase__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : Any = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowerCamelCase__ : Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowerCamelCase__ : Dict = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase , target_sizes=UpperCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A_ ( self : List[str] ) -> List[str]: lowerCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : str = image_processor.post_process_instance_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowerCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(UpperCAmelCase , threshold=0 ) self.assertTrue(len(UpperCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __snake_case ( a ): def lowerCamelCase ( self : Tuple): """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2''']) for i, r in enumerate(_snake_case): self.assertDictEqual(_snake_case , example_records[i]) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) UpperCAmelCase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def lowerCamelCase ( self : Optional[Any]): # checks what happens with missing columns """simple docstring""" UpperCAmelCase_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertDictEqual(dset[0] , {'''col_1''': 1}) self.assertDictEqual(dset[1] , {'''col_1''': None}) # NB: first record is used for columns def lowerCamelCase ( self : Any): # checks if the type can be inferred from the second record """simple docstring""" UpperCAmelCase_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64'''))) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = Dataset.from_list([]) self.assertEqual(len(_snake_case) , 0) self.assertListEqual(dset.column_names , [])
51
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
from typing import TYPE_CHECKING from ....utils import _LazyModule __lowerCamelCase : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
52
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : List[str] ={'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
"""simple docstring""" from collections.abc import Callable import numpy as np def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE = ya __SCREAMING_SNAKE_CASE = xa for k in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(lowerCAmelCase_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
54
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = BlipImageProcessor() lowerCamelCase_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCamelCase_ = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) lowerCamelCase_ = InstructBlipProcessor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).tokenizer def snake_case ( self , **UpperCamelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def snake_case ( self , **UpperCamelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).qformer_tokenizer def snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) lowerCamelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=UpperCamelCase , image_processor=UpperCamelCase , qformer_tokenizer=UpperCamelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCamelCase , return_tensors="np" ) lowerCamelCase_ = processor(images=UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=UpperCamelCase , image_processor=UpperCamelCase , qformer_tokenizer=UpperCamelCase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = processor(text=UpperCamelCase ) lowerCamelCase_ = tokenizer(UpperCamelCase , return_token_type_ids=UpperCamelCase ) lowerCamelCase_ = qformer_tokenizer(UpperCamelCase , return_token_type_ids=UpperCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=UpperCamelCase , image_processor=UpperCamelCase , qformer_tokenizer=UpperCamelCase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=UpperCamelCase , image_processor=UpperCamelCase , qformer_tokenizer=UpperCamelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCamelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=UpperCamelCase , image_processor=UpperCamelCase , qformer_tokenizer=UpperCamelCase ) lowerCamelCase_ = "lower newer" lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
55
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a : List[str] = logging.get_logger(__name__) class a ( _lowerCamelCase ): snake_case_ = ["pixel_values"] def __init__( self : Optional[Any] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ): super().__init__(**lowercase_ ) snake_case_ = size if size is not None else {'''shortest_edge''': 224} snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_flip_channel_order def A_ ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PIL.Image.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case_ = get_resize_output_image_size(lowercase_ , size=size['''shortest_edge'''] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def A_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ): snake_case_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(lowercase_ , data_format=lowercase_ ) def A_ ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Dict , ): snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowercase_ , param_name='''crop_size''' ) snake_case_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case_ = [self.flip_channel_order(image=lowercase_ ) for image in images] snake_case_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] snake_case_ = {'''pixel_values''': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Tuple] = None ): snake_case_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase_ ): snake_case_ = target_sizes.numpy() snake_case_ = [] for idx in range(len(lowercase_ ) ): snake_case_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase_ ) snake_case_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: snake_case_ = logits.argmax(dim=1 ) snake_case_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
56
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) A : Optional[int] = parser.parse_args() A : Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A : List[Any] = CLIPImageProcessor() A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") A : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
57
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' import random def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) ->Optional[int]: _SCREAMING_SNAKE_CASE = a[left_index] _SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , __lowerCamelCase ): if a[j] < pivot: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) ->str: if left < right: _SCREAMING_SNAKE_CASE = random.randint(__lowerCamelCase , right - 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound _SCREAMING_SNAKE_CASE = partition(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) quick_sort_random( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowerCamelCase , pivot_index + 1 , __lowerCamelCase ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ) ->Tuple: _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""" ).strip() _SCREAMING_SNAKE_CASE = [int(__lowerCamelCase ) for item in user_input.split(""",""" )] quick_sort_random(__lowerCamelCase , 0 , len(__lowerCamelCase ) ) print(__lowerCamelCase ) if __name__ == "__main__": main()
58
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
59
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
0
"""simple docstring""" def _snake_case ( _snake_case : int = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
60
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=64 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Dict = model(lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MobileBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = MobileBertForNextSentencePrediction(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForPreTraining(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : List[str] = MobileBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Tuple = MobileBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_choices UpperCAmelCase_ : Dict = MobileBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = True def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : str = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = MobileBertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) def __a ( __lowerCamelCase ): return torch.tensor( __lowerCamelCase, dtype=torch.long, device=__lowerCamelCase, ) _a = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowercase_ ) UpperCAmelCase_ : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] UpperCAmelCase_ : int = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : List[str] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=lowercase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
61
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A = logging.get_logger(__name__) _A = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "bart" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=50265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ) -> Optional[int]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =classifier_dropout __UpperCamelCase =use_cache __UpperCamelCase =encoder_layers __UpperCamelCase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): __UpperCamelCase =self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' ) class UpperCAmelCase__ ( A_ ): """simple docstring""" @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __UpperCamelCase ={0: 'batch'} __UpperCamelCase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'decoder_sequence'} __UpperCamelCase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __UpperCamelCase , __UpperCamelCase =self.num_layers for i in range(A_ ): __UpperCamelCase ={0: 'batch', 2: 'past_sequence + sequence'} __UpperCamelCase ={0: 'batch', 2: 'past_sequence + sequence'} else: __UpperCamelCase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase =super().outputs else: __UpperCamelCase =super(A_ , self ).outputs if self.use_past: __UpperCamelCase , __UpperCamelCase =self.num_layers for i in range(A_ ): __UpperCamelCase ={0: 'batch', 2: 'past_sequence + sequence'} __UpperCamelCase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: __UpperCamelCase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs __UpperCamelCase =seq_length if not self.use_past else 1 __UpperCamelCase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) __UpperCamelCase ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase =dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __UpperCamelCase , __UpperCamelCase =common_inputs['input_ids'].shape __UpperCamelCase =common_inputs['decoder_input_ids'].shape[1] __UpperCamelCase , __UpperCamelCase =self.num_attention_heads __UpperCamelCase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase =decoder_seq_length + 3 __UpperCamelCase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(A_ , A_ )] , dim=1 ) __UpperCamelCase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase , __UpperCamelCase =self.num_layers __UpperCamelCase =min(A_ , A_ ) __UpperCamelCase =max(A_ , A_ ) - min_num_layers __UpperCamelCase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. __UpperCamelCase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: __UpperCamelCase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __UpperCamelCase , __UpperCamelCase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCamelCase =seqlen + 2 __UpperCamelCase , __UpperCamelCase =self.num_layers __UpperCamelCase , __UpperCamelCase =self.num_attention_heads __UpperCamelCase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase =common_inputs['attention_mask'].dtype __UpperCamelCase =torch.cat( [common_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) __UpperCamelCase =[ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCamelCase =compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase =tokenizer.num_special_tokens_to_add(A_ ) __UpperCamelCase =compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase =[' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCamelCase =dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": __UpperCamelCase =self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: __UpperCamelCase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def _a ( self , A_ , A_ , A_ , A_ ) -> str: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase =super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: __UpperCamelCase =super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
62
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
'''simple docstring''' def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : int = 0 , lowercase : int = 0 ) -> int: _a = right or len(lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase , lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Optional[Any]=False ): """simple docstring""" _snake_case : Any = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): _snake_case : List[str] = """segformer.encoder.""" + key if key.startswith("""backbone""" ): _snake_case : int = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _snake_case : Optional[int] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _snake_case : Dict = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(snake_case__ )-1}" ) if "norm" in key: _snake_case : Union[str, Any] = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _snake_case : str = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] _snake_case : int = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(snake_case__ )-1}" ) if "layer_norm1" in key: _snake_case : List[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _snake_case : int = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _snake_case : str = key[key.find("""block""" ) + len("""block""" )] _snake_case : str = key.replace(F"block{idx}" , F"block.{int(snake_case__ )-1}" ) if "attn.q" in key: _snake_case : Any = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _snake_case : int = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _snake_case : int = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _snake_case : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _snake_case : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _snake_case : Optional[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _snake_case : Union[str, Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _snake_case : List[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _snake_case : int = key[key.find("""linear_c""" ) + len("""linear_c""" )] _snake_case : Optional[Any] = key.replace(F"linear_c{idx}" , F"linear_c.{int(snake_case__ )-1}" ) if key.startswith("""head""" ): _snake_case : Optional[int] = key.replace("""head""" , """classifier""" ) _snake_case : Optional[Any] = value return new_state_dict def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _snake_case : Tuple = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) _snake_case : Tuple = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict _snake_case : List[Any] = kv_weight[ : config.hidden_sizes[i], : ] _snake_case : List[str] = kv_bias[: config.hidden_sizes[i]] _snake_case : Any = kv_weight[ config.hidden_sizes[i] :, : ] _snake_case : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : str = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str] ): """simple docstring""" _snake_case : Tuple = SegformerConfig() _snake_case : Optional[Any] = False # set attributes based on model_name _snake_case : Optional[Any] = """huggingface/label-files""" if "segformer" in model_name: _snake_case : Tuple = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: _snake_case : Optional[Any] = 1_50 _snake_case : Tuple = """ade20k-id2label.json""" _snake_case : List[Any] = (1, 1_50, 1_28, 1_28) elif "city" in model_name: _snake_case : Optional[int] = 19 _snake_case : Dict = """cityscapes-id2label.json""" _snake_case : str = (1, 19, 1_28, 1_28) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: _snake_case : Union[str, Any] = True _snake_case : List[str] = model_name[4:6] _snake_case : Dict = 10_00 _snake_case : Optional[int] = """imagenet-1k-id2label.json""" _snake_case : Tuple = (1, 10_00) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes _snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Any = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : int = idalabel _snake_case : Optional[int] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _snake_case : Optional[int] = [64, 1_28, 3_20, 5_12] _snake_case : Optional[int] = 2_56 elif size == "b2": _snake_case : Any = [64, 1_28, 3_20, 5_12] _snake_case : List[str] = 7_68 _snake_case : List[str] = [3, 4, 6, 3] elif size == "b3": _snake_case : List[Any] = [64, 1_28, 3_20, 5_12] _snake_case : str = 7_68 _snake_case : List[Any] = [3, 4, 18, 3] elif size == "b4": _snake_case : Any = [64, 1_28, 3_20, 5_12] _snake_case : Any = 7_68 _snake_case : Dict = [3, 8, 27, 3] elif size == "b5": _snake_case : int = [64, 1_28, 3_20, 5_12] _snake_case : str = 7_68 _snake_case : List[str] = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) _snake_case : Optional[int] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) # prepare image _snake_case : Dict = prepare_img() _snake_case : List[Any] = image_processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: _snake_case : Dict = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) ) else: _snake_case : str = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys _snake_case : int = rename_keys(snake_case__ , encoder_only=snake_case__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict if encoder_only: _snake_case : List[Any] = False _snake_case : Optional[Any] = SegformerForImageClassification(snake_case__ ) else: _snake_case : List[str] = SegformerForSemanticSegmentation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass _snake_case : List[Any] = model(snake_case__ ) _snake_case : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _snake_case : Tuple = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _snake_case : Union[str, Any] = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _snake_case : List[Any] = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _snake_case : Union[str, Any] = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _snake_case : Union[str, Any] = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _snake_case : List[Any] = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _snake_case : Optional[Any] = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _snake_case : Optional[Any] = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _snake_case : str = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _snake_case : Any = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _snake_case : Tuple = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _snake_case : List[Any] = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _snake_case : int = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _snake_case : Tuple = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _snake_case : List[Any] = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _snake_case : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
64
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' def run_func(__A ): @wraps(__A ) def run_in_eager_mode(*__A, **__A ): return func(*__A, **__A ) @wraps(__A ) @tf.function(experimental_compile=__A ) def run_in_graph_mode(*__A, **__A ): return func(*__A, **__A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCAmelCase_ ( __A, __A, __A ) -> ["tf.Tensor"]: '''simple docstring''' UpperCAmelCase__ = random.Random() UpperCAmelCase__ = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__A, shape=(batch_size, sequence_length), dtype=tf.intaa ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : TensorFlowBenchmarkArguments __UpperCAmelCase : PretrainedConfig __UpperCAmelCase : str = "TensorFlow" @property def lowercase_ (self : Any ) -> str: """simple docstring""" return tf.__version__ def lowercase_ (self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> float: """simple docstring""" UpperCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ = self._prepare_inference_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return self._measure_speed(_inference ) def lowercase_ (self : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> float: """simple docstring""" UpperCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ = self._prepare_train_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return self._measure_speed(_train ) def lowercase_ (self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCAmelCase ) UpperCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ = self._prepare_inference_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return self._measure_memory(_inference ) def lowercase_ (self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCAmelCase ) UpperCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ = self._prepare_train_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return self._measure_memory(_train ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Callable[[], None]: """simple docstring""" UpperCAmelCase__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ = ( hasattr(__UpperCAmelCase , "architectures" ) and isinstance(config.architectures , __UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ = getattr(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = model_cls(__UpperCAmelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ = TF_MODEL_MAPPING[config.__class__](__UpperCAmelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ = config.vocab_size if hasattr(__UpperCAmelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ = random_input_ids(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , training=__UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCAmelCase , training=__UpperCAmelCase ) UpperCAmelCase__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Callable[[], None]: """simple docstring""" UpperCAmelCase__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ = ( hasattr(__UpperCAmelCase , "architectures" ) and isinstance(config.architectures , __UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ = getattr(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = model_cls(__UpperCAmelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCAmelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ = config.vocab_size if hasattr(__UpperCAmelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ = random_input_ids(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )[0] UpperCAmelCase__ = tf.gradients(__UpperCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )[0] UpperCAmelCase__ = tf.gradients(__UpperCAmelCase , model.trainable_variables ) return gradients UpperCAmelCase__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowercase_ (self : Tuple , __UpperCAmelCase : Dict ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ = timeit.repeat( __UpperCAmelCase , repeat=self.args.repeat , number=1_0 , ) return min(__UpperCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Callable[[], None] ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ = nvml.nvmlDeviceGetMemoryInfo(__UpperCAmelCase ) UpperCAmelCase__ = meminfo.used UpperCAmelCase__ = Memory(__UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ = None else: UpperCAmelCase__ = measure_peak_memory_cpu(__UpperCAmelCase ) UpperCAmelCase__ = Memory(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ = stop_memory_tracing(__UpperCAmelCase ) if memory is None: UpperCAmelCase__ = summary.total else: UpperCAmelCase__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
65
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :Optional[int] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ :List[Any] = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) snake_case_ :Dict = """The dog is cute and lives in the garden house""" snake_case_ :Dict = jnp.array([tokenizer.encode(snake_case )] ) snake_case_ :Optional[Any] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim snake_case_ :Optional[Any] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) snake_case_ :List[Any] = model(snake_case )["""last_hidden_state"""] self.assertEqual(output.shape , snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case , atol=1E-3 ) )
66
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={} class a__ ( UpperCAmelCase__ ): lowerCamelCase : Any ="llama" lowerCamelCase : Optional[int] =["past_key_values"] def __init__( self : Union[str, Any] , a : List[Any]=3_20_00 , a : Any=40_96 , a : Optional[Any]=1_10_08 , a : List[Any]=32 , a : Union[str, Any]=32 , a : Tuple=None , a : Any="silu" , a : Optional[Any]=20_48 , a : str=0.02 , a : Any=1e-6 , a : List[str]=True , a : int=0 , a : Union[str, Any]=1 , a : List[str]=2 , a : Tuple=1 , a : Union[str, Any]=False , a : Union[str, Any]=None , **a : str , ): """simple docstring""" __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __lowerCamelCase = num_attention_heads __lowerCamelCase = num_key_value_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = pretraining_tp __lowerCamelCase = use_cache __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __lowerCamelCase = self.rope_scaling.get('''type''' , a ) __lowerCamelCase = self.rope_scaling.get('''factor''' , a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(a , a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
67
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["pixel_values"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = PILImageResampling.BICUBIC, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = 1 / 255, lowerCAmelCase__ = None, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = size if size is not None else {'height': 224, 'width': 224} snake_case_ = get_size_dict(lowerCAmelCase__) snake_case_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ = get_size_dict(lowerCAmelCase__, default_to_square=lowerCAmelCase__, param_name='crop_size') snake_case_ = do_resize snake_case_ = do_rescale snake_case_ = do_normalize snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = size snake_case_ = resample snake_case_ = rescale_factor snake_case_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = PILImageResampling.BILINEAR, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__) if "shortest_edge" in size: snake_case_ = get_resize_output_image_size(lowerCAmelCase__, size=size['shortest_edge'], default_to_square=lowerCAmelCase__) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: snake_case_ = (size['height'], size['width']) else: raise ValueError(f'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}') return resize(lowerCAmelCase__, size=lowerCAmelCase__, resample=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(lowerCAmelCase__, size=(size['height'], size['width']), data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: return rescale(lowerCAmelCase__, scale=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> BatchFeature: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowerCAmelCase__, param_name='crop_size', default_to_square=lowerCAmelCase__) snake_case_ = resample if resample is not None else self.resample snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowerCAmelCase__) if not is_batched(lowerCAmelCase__): snake_case_ = [images] if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: snake_case_ = [self.resize(image=lowerCAmelCase__, size=lowerCAmelCase__, resample=lowerCAmelCase__) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=lowerCAmelCase__, size=lowerCAmelCase__) for image in images] if do_rescale: snake_case_ = [self.rescale(image=lowerCAmelCase__, scale=lowerCAmelCase__) for image in images] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__) for image in images] snake_case_ = [to_channel_dimension_format(lowerCAmelCase__, lowerCAmelCase__) for image in images] snake_case_ = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase__, tensor_type=lowerCAmelCase__)
69
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with open(lowerCAmelCase ) as metadata_file: _lowerCAmelCase = json.load(lowerCAmelCase ) _lowerCAmelCase = LukeConfig(use_entity_aware_attention=lowerCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file _lowerCAmelCase = load_original_entity_vocab(lowerCAmelCase ) # add an entry for [MASK2] _lowerCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase = AddedToken("""<ent>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) _lowerCAmelCase = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """r""" ) as f: _lowerCAmelCase = json.load(lowerCAmelCase ) _lowerCAmelCase = """MLukeTokenizer""" with open(os.path.join(lowerCAmelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase ) # Initialize the embeddings of the special tokens _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""@"""] )[0] _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""#"""] )[0] _lowerCAmelCase = state_dict["""embeddings.word_embeddings.weight"""] _lowerCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCAmelCase = state_dict[bias_name] _lowerCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase = f"encoder.layer.{layer_index}.attention.self." _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] _lowerCAmelCase = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCAmelCase = state_dict["""entity_predictions.bias"""] _lowerCAmelCase = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCAmelCase = LukeForMaskedLM(config=lowerCAmelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): _lowerCAmelCase = state_dict[key] else: _lowerCAmelCase = state_dict[key] _lowerCAmelCase , _lowerCAmelCase = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if set(lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase , task="""entity_classification""" ) _lowerCAmelCase = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" _lowerCAmelCase = (0, 9) _lowerCAmelCase = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowerCAmelCase = model(**lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 33, 7_68) ) _lowerCAmelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 1, 7_68) ) _lowerCAmelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _lowerCAmelCase = MLukeTokenizer.from_pretrained(lowerCAmelCase ) _lowerCAmelCase = """Tokyo is the capital of <mask>.""" _lowerCAmelCase = (24, 30) _lowerCAmelCase = tokenizer(lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowerCAmelCase = model(**lowerCAmelCase ) _lowerCAmelCase = encoding["""input_ids"""][0].tolist() _lowerCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) _lowerCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase ) _lowerCAmelCase = outputs.entity_logits[0][0].argmax().item() _lowerCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase ) ) model.save_pretrained(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ["""[MASK]""", """[PAD]""", """[UNK]"""] _lowerCAmelCase = [json.loads(lowerCAmelCase ) for line in open(lowerCAmelCase )] _lowerCAmelCase = {} for entry in data: _lowerCAmelCase = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCAmelCase = entity_id break _lowerCAmelCase = f"{language}:{entity_name}" _lowerCAmelCase = entity_id return new_mapping if __name__ == "__main__": A__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) A__ : Union[str, Any] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
70
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
0
def A ( a_ ) -> int: if not isinstance(a_ ,a_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) __UpperCamelCase : Any =0 __UpperCamelCase : List[str] =str(a_ ) while len(a_ ) != 1: __UpperCamelCase : Optional[int] =[int(a_ ) for i in num_string] __UpperCamelCase : List[Any] =1 for i in range(0 ,len(a_ ) ): total *= numbers[i] __UpperCamelCase : List[str] =str(a_ ) steps += 1 return steps def A ( a_ ) -> int: if not isinstance(a_ ,a_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) __UpperCamelCase : Union[str, Any] =0 __UpperCamelCase : str =str(a_ ) while len(a_ ) != 1: __UpperCamelCase : Any =[int(a_ ) for i in num_string] __UpperCamelCase : List[Any] =0 for i in range(0 ,len(a_ ) ): total += numbers[i] __UpperCamelCase : Any =str(a_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class __snake_case : def __init__( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=1_3 , __lowerCAmelCase : List[Any]=6_4 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : int="swish" , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : int=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=1_0 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=0.25 , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : List[str]=0.0 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Union[str, Any] = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Dict = conv_kernel_size _lowerCamelCase : List[Any] = output_stride _lowerCamelCase : Any = classifier_dropout_prob _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = scope _lowerCamelCase : Any = width_multiplier _lowerCamelCase : int = ffn_dropout _lowerCamelCase : Union[str, Any] = attn_dropout def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCamelCase : int = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : Optional[Any] = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : List[str] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ : int = False snake_case__ : List[str] = False snake_case__ : Tuple = False snake_case__ : int = False def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = MobileViTVaModelTester(self ) _lowerCamelCase : Union[str, Any] = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ): _lowerCamelCase : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : List[Any] = outputs.hidden_states _lowerCamelCase : List[str] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCamelCase : Union[str, Any] = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Any = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Any = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCamelCase : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _lowerCamelCase : Any = model.to(__lowerCAmelCase ) _lowerCamelCase : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Union[str, Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs.logits # verify the logits _lowerCamelCase : Dict = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _lowerCamelCase : Tuple = model.to(__lowerCAmelCase ) _lowerCamelCase : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ) _lowerCamelCase : List[str] = outputs.logits.detach().cpu() _lowerCamelCase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(5_0, 6_0)] ) _lowerCamelCase : Dict = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) _lowerCamelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) _lowerCamelCase : str = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
72
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a =logging.getLogger(__name__) @dataclass class A_ : _UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A_ : _UpperCAmelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input training data file (a text file).'''} ) _UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : str): if self.train_file is not None: __lowerCamelCase : str = self.train_file.split('.')[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __lowerCamelCase : List[str] = self.validation_file.split('.')[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A_ : _UpperCAmelCase : PreTrainedTokenizerBase _UpperCAmelCase : Union[bool, str, PaddingStrategy] = True _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Union[str, Any] = 'label' if 'label' in features[0].keys() else 'labels' __lowerCamelCase : Any = [feature.pop(SCREAMING_SNAKE_CASE__) for feature in features] __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = len(features[0]['input_ids']) __lowerCamelCase : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(SCREAMING_SNAKE_CASE__)] for feature in features ] __lowerCamelCase : List[Any] = list(chain(*SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[str] = self.tokenizer.pad( SCREAMING_SNAKE_CASE__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten __lowerCamelCase : Optional[int] = {k: v.view(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,-1) for k, v in batch.items()} # Add back labels __lowerCamelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.intaa) return batch def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase : int = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowerCamelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __lowerCamelCase : Union[str, Any] = {} if data_args.train_file is not None: __lowerCamelCase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: __lowerCamelCase : List[str] = data_args.validation_file __lowerCamelCase : Optional[Any] = data_args.train_file.split('.' )[-1] __lowerCamelCase : Optional[Any] = load_dataset( lowerCamelCase__ , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __lowerCamelCase : Optional[Any] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __lowerCamelCase : Optional[Any] = [F"ending{i}" for i in range(4 )] __lowerCamelCase : int = 'sent1' __lowerCamelCase : Optional[Any] = 'sent2' if data_args.max_seq_length is None: __lowerCamelCase : List[Any] = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __lowerCamelCase : Union[str, Any] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __lowerCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ ): __lowerCamelCase : Any = [[context] * 4 for context in examples[context_name]] __lowerCamelCase : Dict = examples[question_header_name] __lowerCamelCase : List[str] = [ [F"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out __lowerCamelCase : Any = list(chain(*lowerCamelCase__ ) ) __lowerCamelCase : List[str] = list(chain(*lowerCamelCase__ ) ) # Tokenize __lowerCamelCase : List[Any] = tokenizer( lowerCamelCase__ , lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __lowerCamelCase : Any = raw_datasets['train'] if data_args.max_train_samples is not None: __lowerCamelCase : Optional[Any] = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) __lowerCamelCase : Any = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __lowerCamelCase : Union[str, Any] = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __lowerCamelCase : Tuple = raw_datasets['validation'] if data_args.max_eval_samples is not None: __lowerCamelCase : Optional[int] = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) __lowerCamelCase : Optional[int] = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __lowerCamelCase : Dict = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __lowerCamelCase : Dict = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ ): __lowerCamelCase , __lowerCamelCase : List[str] = eval_predictions __lowerCamelCase : Union[str, Any] = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __lowerCamelCase : List[str] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: __lowerCamelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase : int = last_checkpoint __lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCamelCase : int = train_result.metrics __lowerCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) __lowerCamelCase : Tuple = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('train' , lowerCamelCase__ ) trainer.save_metrics('train' , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase : Tuple = trainer.evaluate() __lowerCamelCase : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics('eval' , lowerCamelCase__ ) trainer.save_metrics('eval' , lowerCamelCase__ ) __lowerCamelCase : Any = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
74
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def a_ ( __snake_case : Dict=None ) -> Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser('''test''' ) else: lowerCamelCase_ =argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=__snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def a_ ( __snake_case : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCamelCase_ =script_name else: lowerCamelCase_ =F'''--config_file={args.config_file} {script_name}''' lowerCamelCase_ =['''accelerate-launch'''] + test_args.split() lowerCamelCase_ =execute_subprocess_async(__snake_case , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def a_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase_ =test_command_parser() lowerCamelCase_ =parser.parse_args() test_command(__snake_case ) if __name__ == "__main__": main()
75
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='speech_to_text' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , a : Optional[int]=1_0000 , a : Any=12 , a : List[Any]=2048 , a : Any=4 , a : str=6 , a : List[str]=2048 , a : str=4 , a : Tuple=0.0 , a : Dict=0.0 , a : Union[str, Any]=True , a : Any=True , a : Tuple="relu" , a : int=256 , a : Dict=0.1 , a : int=0.0 , a : List[str]=0.0 , a : Dict=0.02 , a : Tuple=2 , a : Tuple=True , a : Optional[Any]=1 , a : int=0 , a : Tuple=2 , a : str=6000 , a : List[Any]=1024 , a : int=2 , a : Optional[Any]=(5, 5) , a : Dict=1024 , a : int=80 , a : Optional[int]=1 , **a : str , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : int = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Any = decoder_layers SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Any = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : int = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : str = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Union[str, Any] = max_source_positions SCREAMING_SNAKE_CASE : str = max_target_positions SCREAMING_SNAKE_CASE : Optional[int] = num_conv_layers SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Optional[int] = conv_channels SCREAMING_SNAKE_CASE : Dict = input_feat_per_channel SCREAMING_SNAKE_CASE : Optional[Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , **a , )
76
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase : Callable[[int | float], int | float] , _lowerCAmelCase : int | float , _lowerCAmelCase : int | float , _lowerCAmelCase : int = 100 , ): '''simple docstring''' lowercase__ : Dict = x_start lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) lowercase__ : Optional[Any] = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ : Union[str, Any] = (x_end - x_start) / steps + xa lowercase__ : Union[str, Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ : Union[str, Any] = xa lowercase__ : int = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _UpperCamelCase : str = 10 while i <= 10_00_00: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
77
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {} class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """llama""" __UpperCamelCase = ["""past_key_values"""] def __init__( self :Tuple , lowercase_ :Any=3_20_00 , lowercase_ :Tuple=40_96 , lowercase_ :Any=1_10_08 , lowercase_ :int=32 , lowercase_ :str=32 , lowercase_ :Optional[Any]=None , lowercase_ :Dict="silu" , lowercase_ :Any=20_48 , lowercase_ :Tuple=0.02 , lowercase_ :Tuple=1E-6 , lowercase_ :str=True , lowercase_ :Dict=0 , lowercase_ :Optional[Any]=1 , lowercase_ :List[str]=2 , lowercase_ :Union[str, Any]=1 , lowercase_ :List[Any]=False , lowercase_ :Union[str, Any]=None , **lowercase_ :int , ) -> int: UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase = num_attention_heads UpperCAmelCase = num_key_value_heads UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = rms_norm_eps UpperCAmelCase = pretraining_tp UpperCAmelCase = use_cache UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCAmelCase__ ( self :List[str] ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) UpperCAmelCase = self.rope_scaling.get('type' , lowercase_ ) UpperCAmelCase = self.rope_scaling.get('factor' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
78
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Any = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def _A ( lowercase ): """simple docstring""" a ={} a =job['''started_at'''] a =job['''completed_at'''] a =date_parser.parse(lowercase ) a =date_parser.parse(lowercase ) a =round((end_datetime - start_datetime).total_seconds() / 60.0 ) a =start a =end a =duration_in_min return job_info def _A ( lowercase , lowercase=None ): """simple docstring""" a =None if token is not None: a ={'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'''Bearer {token}'''} a =f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' a =requests.get(lowercase , headers=lowercase ).json() a ={} try: job_time.update({job['''name''']: extract_time_from_single_job(lowercase ) for job in result['''jobs''']} ) a =math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(lowercase ): a =requests.get(url + f'''&page={i + 2}''' , headers=lowercase ).json() job_time.update({job['''name''']: extract_time_from_single_job(lowercase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") lowerCamelCase_ : Any = parser.parse_args() lowerCamelCase_ : Dict = get_job_time(args.workflow_run_id) lowerCamelCase_ : Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'{k}: {v["duration"]}')
81
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
0
import math def _UpperCAmelCase ( snake_case ): """simple docstring""" assert isinstance(snake_case , snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCAmelCase = range(3 , int(math.sqrt(snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCAmelCase ( snake_case , snake_case=1 , **snake_case ): """simple docstring""" _lowerCAmelCase = factor * value _lowerCAmelCase = value while not is_prime(snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **snake_case ) return value
82
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase__ : def __init__( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : Dict=10 ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : List[Any]=2 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Union[str, Any]=32 ,lowerCamelCase__ : Dict=5 ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : Tuple=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Union[str, Any]=10 ,lowerCamelCase__ : Any=0.0_2 ,lowerCamelCase__ : int=0.9 ,lowerCamelCase__ : Optional[int]=None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Any = patch_size _UpperCamelCase : str = tubelet_size _UpperCamelCase : Dict = num_frames _UpperCamelCase : str = is_training _UpperCamelCase : str = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Any = type_sequence_label_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[str] = mask_ratio _UpperCamelCase : Any = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCamelCase : int = (image_size // patch_size) ** 2 _UpperCamelCase : int = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCamelCase : List[Any] = int(mask_ratio * self.seq_length ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : List[str] = VideoMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = VideoMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : Union[str, Any] = torch.ones((self.num_masks,) ) _UpperCamelCase : Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCamelCase : Optional[int] = mask.expand(self.batch_size ,-1 ).bool() _UpperCamelCase : List[str] = model(lowerCamelCase__ ,lowerCamelCase__ ) # model only returns predictions for masked patches _UpperCamelCase : Optional[int] = mask.sum().item() _UpperCamelCase : List[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = config_and_inputs _UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Tuple = VideoMAEModelTester(self ) _UpperCamelCase : str = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Union[str, Any]=False ): '''simple docstring''' _UpperCamelCase : List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : List[Any] = torch.ones((self.model_tester.num_masks,) ) _UpperCamelCase : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCamelCase : List[Any] = mask.expand(self.model_tester.batch_size ,-1 ).bool() _UpperCamelCase : int = bool_masked_pos.to(lowerCamelCase__ ) if return_labels: if model_class in [ *get_values(lowerCamelCase__ ), ]: _UpperCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) _UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = VideoMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = True for model_class in self.all_model_classes: _UpperCamelCase : int = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = False _UpperCamelCase : Tuple = True _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Any = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) _UpperCamelCase : int = len(lowerCamelCase__ ) # Check attention is always last and order is fine _UpperCamelCase : Tuple = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + 1 ,len(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ): _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Dict = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = outputs.hidden_states _UpperCamelCase : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) _UpperCamelCase : Tuple = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[Any] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def A__ ( ): _UpperCamelCase : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _UpperCamelCase : Any = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : int = prepare_video() _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCamelCase__ ) _UpperCamelCase : List[str] = self.default_image_processor _UpperCamelCase : str = prepare_video() _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # add boolean mask, indicating which patches to mask _UpperCamelCase : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) _UpperCamelCase : Optional[Any] = torch.load(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Tuple = torch.Size([1, 1408, 1536] ) _UpperCamelCase : Optional[int] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowerCamelCase__ ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCamelCase : List[Any] = torch.tensor([0.5_1_4_2] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCamelCase : Optional[Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=lowerCamelCase__ ).to( lowerCamelCase__ ) with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1E-4 ) )
83
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
0
"""simple docstring""" from math import isclose, sqrt def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> tuple[float, float, float]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = point_y / 4 / point_x lowerCAmelCase_ :Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase_ :Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase_ :str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase_ :Tuple = outgoing_gradient**2 + 4 lowerCAmelCase_ :Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase_ :str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 lowerCAmelCase_ :Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase_ :Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase_ :List[Any] = x_minus if isclose(lowercase__ , lowercase__ ) else x_plus lowerCAmelCase_ :List[str] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _snake_case ( lowercase__ : float = 1.4 , lowercase__ : float = -9.6 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = 0 lowerCAmelCase_ :float = first_x_coord lowerCAmelCase_ :float = first_y_coord lowerCAmelCase_ :float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = next_point(lowercase__ , lowercase__ , lowercase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
84
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
'''simple docstring''' import string def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = "" for i in sequence: snake_case_ = ord(snake_case ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = string.ascii_letters snake_case_ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case )] if c in letters else c for c in sequence ) def UpperCamelCase_( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) snake_case_ = "from string import printable ; from __main__ import atbash, atbash_slow" print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=snake_case )} seconds' ) print(f'> atbash(): {timeit("atbash(printable)" , setup=snake_case )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'decord' ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowerCAmelCase : Union[str, Any] = {} if frame_sampling_rate is not None: __lowerCAmelCase : Optional[int] = frame_sampling_rate if num_frames is not None: __lowerCAmelCase : int = num_frames __lowerCAmelCase : Any = {} if top_k is not None: __lowerCAmelCase : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ): if num_frames is None: __lowerCAmelCase : Union[str, Any] = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): __lowerCAmelCase : Tuple = BytesIO(requests.get(_SCREAMING_SNAKE_CASE ).content ) __lowerCAmelCase : str = VideoReader(_SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : str = num_frames * frame_sampling_rate - 1 __lowerCAmelCase : Union[str, Any] = np.linspace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num=_SCREAMING_SNAKE_CASE , dtype=np.intaa ) __lowerCAmelCase : int = videoreader.get_batch(_SCREAMING_SNAKE_CASE ).asnumpy() __lowerCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): if top_k > self.model.config.num_labels: __lowerCAmelCase : List[str] = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase , __lowerCAmelCase : Any = probs.topk(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowerCAmelCase : Any = scores.tolist() __lowerCAmelCase : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
86
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
0
import math def lowercase_ ( _lowerCamelCase : int): return math.sqrt(_lowerCamelCase) * math.sqrt(_lowerCamelCase) == num def lowercase_ ( _lowerCamelCase : int): lowercase__ : List[Any] = 0 lowercase__ : Tuple = n while left <= right: lowercase__ : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ : Any = mid - 1 else: lowercase__ : Union[str, Any] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
87
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __lowerCAmelCase = {'''allegro/herbert-base-cased''': 514} __lowerCAmelCase = {} class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = HerbertTokenizer def __init__( self : Dict ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : int=None ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : Optional[int]="<s>" ,_UpperCAmelCase : str="<unk>" ,_UpperCAmelCase : Dict="<pad>" ,_UpperCAmelCase : List[Any]="<mask>" ,_UpperCAmelCase : Optional[int]="</s>" ,**_UpperCAmelCase : Union[str, Any] ,): super().__init__( _UpperCAmelCase ,_UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,**_UpperCAmelCase ,) def __lowercase ( self : str ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : List[Any] = [self.cls_token_id] _a : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self : Optional[int] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def __lowercase ( self : int ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Tuple = [self.sep_token_id] _a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : List[str] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): _a : Union[str, Any] = self._tokenizer.model.save(_UpperCAmelCase ,name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
89
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 20 __lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase__ ) # tweak scores to not be uniform anymore __lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCamelCase = jax.nn.softmax(lowerCamelCase__ , axis=-1 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create ramp distribution __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() __lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCamelCase = 5 __lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, length) ).copy() __lowerCamelCase = top_k_warp_safety_check(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) __lowerCamelCase = np.exp(top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCamelCase = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCamelCase = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) # check that min length is applied at length 5 __lowerCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCamelCase = 5 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = 15 __lowerCamelCase = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the bos_token_id score __lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCamelCase = 1 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = 5 __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCamelCase = 4 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # with processor list __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = 10 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) __lowerCamelCase = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jax.jit(lowerCamelCase__ ) __lowerCamelCase = jitted_run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = jitted_run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
90
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : List[Any]): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = {} if prompt is not None: SCREAMING_SNAKE_CASE_ : Tuple = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE_ : int = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''') SCREAMING_SNAKE_CASE_ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Any): '''simple docstring''' return super().__call__(lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str]=None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = load_image(lowercase_) if prompt is not None: if not isinstance(lowercase_ , lowercase_): raise ValueError( F'Received an invalid text input, got - {type(lowercase_)} - but expected a single string. ' '''Note also that one single text can be provided for conditional image to text generation.''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_).input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(lowercase_).unsqueeze(0) model_inputs.update({'''input_ids''': input_ids}) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE_ : str = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE_ : int = self.image_processor(images=lowercase_ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , return_tensors=self.framework) model_inputs.update(lowercase_) else: raise ValueError(F'Model type {model_type} does not support conditional text generation') else: SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE_ : List[str] = None return model_inputs def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int]=None): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , lowercase_) and all(x is None for x in model_inputs['''input_ids''']) ): SCREAMING_SNAKE_CASE_ : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE_ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE_ : int = model_inputs.pop(self.model.main_input_name) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.generate(lowercase_ , **lowercase_ , **lowercase_) return model_outputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''generated_text''': self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_) return records
91
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _a : int = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a : Optional[Any] = False _a : Tuple = False _a : Tuple = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_A ), *get_values(_A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_A ) as warning_list: __lowerCAmelCase = model(**_A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _A ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(_A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(_A )
92
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowercase : Any = (7_2_0, 1_2_8_0) # Height, Width _lowercase : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowercase : str = 1 / 1_0_0 _lowercase : Any = "" _lowercase : Union[str, Any] = "" _lowercase : Optional[int] = "" _lowercase : List[Any] = 2_5_0 def snake_case_ ( ): """simple docstring""" lowercase_ , lowercase_ : Any = get_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for index in range(__SCREAMING_SNAKE_CASE ): lowercase_ : str = random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 4 ) lowercase_ , lowercase_ , lowercase_ : Any = update_image_and_anno( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , filter_scale=__SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ : int = random_chars(32 ) lowercase_ : str = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase_ : int = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase_ : List[Any] = [] for anno in new_annos: lowercase_ : List[Any] = anno[3] - anno[1] lowercase_ : List[str] = anno[4] - anno[2] lowercase_ : Dict = anno[1] + width / 2 lowercase_ : Dict = anno[2] + height / 2 lowercase_ : int = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__SCREAMING_SNAKE_CASE ) with open(F'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Optional[Any] = [] lowercase_ : Optional[Any] = [] for label_file in glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '''*.txt''' ) ): lowercase_ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__SCREAMING_SNAKE_CASE ) as in_file: lowercase_ : List[str] = in_file.readlines() lowercase_ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , F'''{label_name}.jpg''' ) lowercase_ : Optional[int] = [] for obj_list in obj_lists: lowercase_ : List[str] = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase_ : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2 lowercase_ : Any = float(obj[2] ) - float(obj[4] ) / 2 lowercase_ : str = float(obj[1] ) + float(obj[3] ) / 2 lowercase_ : List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) return img_paths, labels def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : tuple[int, int] , __SCREAMING_SNAKE_CASE : tuple[float, float] , __SCREAMING_SNAKE_CASE : float = 0.0 , ): """simple docstring""" lowercase_ : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase_ : Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ : Optional[int] = int(scale_x * output_size[1] ) lowercase_ : Dict = int(scale_y * output_size[0] ) lowercase_ : Union[str, Any] = [] lowercase_ : List[Any] = [] for i, index in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = all_img_list[index] path_list.append(__SCREAMING_SNAKE_CASE ) lowercase_ : int = all_annos[index] lowercase_ : Dict = cva.imread(__SCREAMING_SNAKE_CASE ) if i == 0: # top-left lowercase_ : Optional[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) lowercase_ : Tuple = img for bbox in img_annos: lowercase_ : Optional[int] = bbox[1] * scale_x lowercase_ : Optional[Any] = bbox[2] * scale_y lowercase_ : str = bbox[3] * scale_x lowercase_ : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase_ : Dict = cva.resize(__SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) lowercase_ : Dict = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Dict = bbox[2] * scale_y lowercase_ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase_ : List[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : Any = bbox[1] * scale_x lowercase_ : Optional[int] = scale_y + bbox[2] * (1 - scale_y) lowercase_ : str = bbox[3] * scale_x lowercase_ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase_ : int = cva.resize( __SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase_ : List[str] = img for bbox in img_annos: lowercase_ : int = scale_x + bbox[1] * (1 - scale_x) lowercase_ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase_ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) lowercase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase_ : Optional[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowercase_ : Any = ascii_lowercase + digits return "".join(random.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("DONE ✅")
93
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
0
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :Tuple = F'''Expected string as input, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :List[Any] = F'''Expected boolean as use_pascal parameter, found {type(UpperCAmelCase_ )}''' raise ValueError(UpperCAmelCase_ ) a :int = input_str.split('''_''' ) a :Any = 0 if use_pascal else 1 a :int = words[start_index:] a :Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize] a :Optional[int] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
94
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__): _lowercase : Dict = """pixel_values""" _lowercase : List[Any] = False _lowercase : int = TimmBackboneConfig def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(lowerCAmelCase__ ) a__ : Optional[Any] =config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(lowerCAmelCase__ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) a__ : List[Any] =getattr(lowerCAmelCase__ , "use_pretrained_backbone" , lowerCAmelCase__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. a__ : Dict =config.out_indices if getattr(lowerCAmelCase__ , "out_indices" , lowerCAmelCase__ ) is not None else (-1,) a__ : List[Any] =timm.create_model( config.backbone , pretrained=lowerCAmelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase__ , **lowerCAmelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a__ : Optional[int] =self._backbone.return_layers a__ : Union[str, Any] ={layer["module"]: str(lowerCAmelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase__ ) @classmethod def _lowercase ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig a__ : Any =kwargs.pop("config" , TimmBackboneConfig() ) a__ : List[Any] =kwargs.pop("use_timm_backbone" , lowerCAmelCase__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) a__ : Optional[Any] =kwargs.pop("num_channels" , config.num_channels ) a__ : List[Any] =kwargs.pop("features_only" , config.features_only ) a__ : List[Any] =kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) a__ : Any =kwargs.pop("out_indices" , config.out_indices ) a__ : List[Any] =TimmBackboneConfig( backbone=lowerCAmelCase__ , num_channels=lowerCAmelCase__ , features_only=lowerCAmelCase__ , use_pretrained_backbone=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , ) return super()._from_config(lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' pass def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a__ : int =return_dict if return_dict is not None else self.config.use_return_dict a__ : List[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : Any =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone a__ : List[str] =self._all_layers a__ : Optional[Any] =self._backbone(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Union[str, Any] =self._return_layers a__ : str =tuple(hidden_states[i] for i in self.out_indices ) else: a__ : Union[str, Any] =self._backbone(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : List[str] =None a__ : Optional[Any] =tuple(lowerCAmelCase__ ) a__ : int =tuple(lowerCAmelCase__ ) if hidden_states is not None else None if not return_dict: a__ : str =(feature_maps,) if output_hidden_states: a__ : Union[str, Any] =output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , attentions=lowerCAmelCase__ )
95
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : Dict = RemBertConfig.from_json_file(lowercase__ ) print('Building PyTorch model from configuration: {}'.format(str(lowercase__ ) ) ) _lowerCamelCase : Any = RemBertModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowercase__ ) ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
96
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[Any] = state_dict.pop(__a ) UpperCamelCase__ :int = val def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase__ :Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCamelCase__ :List[str] = value else: UpperCamelCase__ :Dict = value return new_state_dict def a ( __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase__ :Optional[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase__ :str = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :Any = in_proj_weight[:256, :] UpperCamelCase__ :Tuple = in_proj_bias[:256] UpperCamelCase__ :Optional[int] = in_proj_weight[256:512, :] UpperCamelCase__ :Optional[Any] = in_proj_bias[256:512] UpperCamelCase__ :Tuple = in_proj_weight[-256:, :] UpperCamelCase__ :Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase__ :List[str] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCamelCase__ :Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :Any = in_proj_weight[:256, :] UpperCamelCase__ :Optional[int] = in_proj_bias[:256] UpperCamelCase__ :Tuple = in_proj_weight[256:512, :] UpperCamelCase__ :Dict = in_proj_bias[256:512] UpperCamelCase__ :Any = in_proj_weight[-256:, :] UpperCamelCase__ :Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase__ :List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCamelCase__ :Any = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase__ :Optional[Any] = in_proj_weight_cross_attn[:256, :] UpperCamelCase__ :Any = in_proj_bias_cross_attn[:256] UpperCamelCase__ :Any = in_proj_weight_cross_attn[256:512, :] UpperCamelCase__ :Dict = in_proj_bias_cross_attn[256:512] UpperCamelCase__ :str = in_proj_weight_cross_attn[-256:, :] UpperCamelCase__ :Tuple = in_proj_bias_cross_attn[-256:] def a ( __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :str = image.size UpperCamelCase__ :Optional[Any] = max(__a , __a ) UpperCamelCase__ :List[Any] = 800 if '''detection''' in checkpoint_url else 1000 UpperCamelCase__ :Dict = target_max_size / current_max_size UpperCamelCase__ :Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Any = F.to_tensor(__a ) UpperCamelCase__ :int = F.normalize(__a , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def a ( __a , __a , __a ) -> Dict: '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ :Optional[Any] = torch.hub.load_state_dict_from_url(__a , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__a , __a , __a ) UpperCamelCase__ :Any = rename_backbone_keys(__a ) # query, key and value matrices need special treatment read_in_q_k_v(__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase__ :Dict = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase__ :Optional[Any] = state_dict.pop(__a ) UpperCamelCase__ :int = val # create HuggingFace model and load state dict UpperCamelCase__ :str = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase__ :List[str] = 15 UpperCamelCase__ :int = 2 UpperCamelCase__ :Tuple = {0: '''table''', 1: '''table rotated'''} UpperCamelCase__ :int = idalabel UpperCamelCase__ :Dict = {v: k for k, v in idalabel.items()} else: UpperCamelCase__ :int = 125 UpperCamelCase__ :List[str] = 6 UpperCamelCase__ :Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCamelCase__ :Dict = idalabel UpperCamelCase__ :Optional[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ :List[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCamelCase__ :int = TableTransformerForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() # verify our conversion UpperCamelCase__ :Dict = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCamelCase__ :Optional[Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__a ) UpperCamelCase__ :Tuple = Image.open(__a ).convert('''RGB''' ) UpperCamelCase__ :int = normalize(resize(__a , __a ) ).unsqueeze(0 ) UpperCamelCase__ :Optional[int] = model(__a ) if "detection" in checkpoint_url: UpperCamelCase__ :Dict = (1, 15, 3) UpperCamelCase__ :List[Any] = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) UpperCamelCase__ :Tuple = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: UpperCamelCase__ :Optional[Any] = (1, 125, 7) UpperCamelCase__ :Dict = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) UpperCamelCase__ :List[Any] = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCamelCase__ :Union[str, Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(__a ) image_processor.push_to_hub(__a ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
97
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
"""simple docstring""" from itertools import product def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = sides_number UpperCAmelCase__ = max_face_number * dice_number UpperCAmelCase__ = [0] * (max_total + 1) UpperCAmelCase__ = 1 UpperCAmelCase__ = range(lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(lowerCamelCase , repeat=lowerCamelCase ): UpperCAmelCase__ = sum(lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ): UpperCAmelCase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 9 UpperCAmelCase__ = 4 * 9 UpperCAmelCase__ = 6 for peter_total in range(lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase__ = (4**9) * (6**6) UpperCAmelCase__ = peter_wins_count / total_games_number UpperCAmelCase__ = round(lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
98
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __magic_name__ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __magic_name__ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" __magic_name__ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def snake_case_ ( self): if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ): __SCREAMING_SNAKE_CASE = len(references[0]) if any(len(lowerCAmelCase__) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") __SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(lowerCAmelCase__)] __SCREAMING_SNAKE_CASE = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
100
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase__ :Optional[Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowercase__ :List[Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowercase__ :int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowercase__ :List[str] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowercase__ :List[str] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowercase__ :str = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowercase__ :Tuple = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def UpperCamelCase ( ): '''simple docstring''' lowercase , lowercase = randrange(len(lowerCAmelCase__ ) ), randrange(len(lowerCAmelCase__ ) ) lowercase = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase , lowercase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase ( lowerCAmelCase__ = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowerCAmelCase__ )) @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = PokerHand(lowerCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected def UpperCamelCase ( ): '''simple docstring''' lowercase = [PokerHand(lowerCAmelCase__ ) for hand in SORTED_HANDS] lowercase = poker_hands.copy() shuffle(lowerCAmelCase__ ) lowercase = chain(sorted(lowerCAmelCase__ ) ) for index, hand in enumerate(lowerCAmelCase__ ): assert hand == poker_hands[index] def UpperCamelCase ( ): '''simple docstring''' # Test that five high straights are compared correctly. lowercase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowerCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase ( ): '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase = PokerHand('''2C 4S AS 3D 5C''' ) lowercase = True lowercase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase ( ): '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase = 0 lowercase = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowercase = os.path.join(lowerCAmelCase__ , '''poker_hands.txt''' ) with open(lowerCAmelCase__ ) as file_hand: for line in file_hand: lowercase = line[:14].strip() lowercase = line[15:].strip() lowercase , lowercase = PokerHand(lowerCAmelCase__ ), PokerHand(lowerCAmelCase__ ) lowercase = player.compare_with(lowerCAmelCase__ ) if output == "Win": answer += 1 assert answer == 376
101
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : Dict = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) SCREAMING_SNAKE_CASE : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__snake_case )}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Whether ot not to use whole word mask.'} ) lowerCamelCase__ =field( default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase__ =field( default=1 / 6, metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) }, ) lowerCamelCase__ =field( default=5, metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) lowerCamelCase__ =field( default=-1, metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase ( _snake_case : DataTrainingArguments , _snake_case : PreTrainedTokenizer , _snake_case : bool = False , _snake_case : Optional[str] = None , ) ->Any: """simple docstring""" def _dataset(_snake_case : List[Any] , _snake_case : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , ref_path=_snake_case , ) return LineByLineTextDataset(tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __snake_case : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __snake_case : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __snake_case : int = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __snake_case : List[Any] = AutoModelWithLMHead.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __snake_case : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: __snake_case : Optional[int] = min(data_args.block_size , tokenizer.max_len ) # Get datasets __snake_case : Optional[Any] = ( get_dataset(_snake_case , tokenizer=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __snake_case : Any = ( get_dataset(_snake_case , tokenizer=_snake_case , evaluate=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __snake_case : List[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=_snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __snake_case : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_snake_case , mlm_probability=data_args.mlm_probability ) else: __snake_case : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=_snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case : Optional[int] = Trainer( model=_snake_case , args=_snake_case , data_collator=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , prediction_loss_only=_snake_case , ) # Training if training_args.do_train: __snake_case : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case : Dict = trainer.evaluate() __snake_case : Dict = math.exp(eval_output['''eval_loss'''] ) __snake_case : List[Any] = {'''perplexity''': perplexity} __snake_case : str = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _snake_case , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(_snake_case ) return results def lowercase ( _snake_case : Optional[int] ) ->Tuple: """simple docstring""" main() if __name__ == "__main__": main()
102
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A_ , '''tf_padding''')) self.parent.assertTrue(hasattr(A_ , '''depth_multiplier''')) class __snake_case : def __init__( self : List[str] , A_ : Any , A_ : Tuple=1_3 , A_ : Tuple=3 , A_ : Tuple=3_2 , A_ : List[str]=0.25 , A_ : Dict=8 , A_ : Optional[Any]=8 , A_ : int=6 , A_ : Tuple=3_2 , A_ : Union[str, Any]=True , A_ : Optional[int]=True , A_ : Optional[Any]=True , A_ : Tuple="relu6" , A_ : Union[str, Any]=1_2_8_0 , A_ : List[str]=0.1 , A_ : List[Any]=0.02 , A_ : Optional[int]=True , A_ : Union[str, Any]=True , A_ : List[Any]=1_0 , A_ : Tuple=None , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : Union[str, Any] = depth_multiplier lowerCAmelCase_ : List[str] = depth_divisible_by lowerCAmelCase_ : List[Any] = min_depth lowerCAmelCase_ : str = expand_ratio lowerCAmelCase_ : str = tf_padding lowerCAmelCase_ : str = output_stride lowerCAmelCase_ : Optional[int] = first_layer_is_expansion lowerCAmelCase_ : Optional[Any] = finegrained_output lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : List[str] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) lowerCAmelCase_ : Any = classifier_dropout_prob lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = scope def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_labels) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : Dict): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any , A_ : Any , A_ : List[Any] , A_ : List[str] , A_ : Tuple): lowerCAmelCase_ : int = MobileNetVaModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : str = model(A_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any]): lowerCAmelCase_ : Any = self.num_labels lowerCAmelCase_ : List[str] = MobileNetVaForImageClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : int , A_ : Tuple , A_ : Optional[int]): lowerCAmelCase_ : Any = self.num_labels lowerCAmelCase_ : Optional[int] = MobileNetVaForSemanticSegmentation(A_) model.to(A_) model.eval() lowerCAmelCase_ : str = model(A_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase_ : Union[str, Any] = model(A_ , labels=A_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = config_and_inputs lowerCAmelCase_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : List[Any] = MobileNetVaModelTester(self) lowerCAmelCase_ : int = MobileNetVaConfigTester(self , config_class=A_ , has_text_modality=A_) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''') def UpperCAmelCase__ ( self : List[Any]): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''') def UpperCAmelCase__ ( self : int): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''') def UpperCAmelCase__ ( self : List[str]): pass def UpperCAmelCase__ ( self : int): lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(A_) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) def UpperCAmelCase__ ( self : int): def check_hidden_states_output(A_ : List[str] , A_ : int , A_ : Any): lowerCAmelCase_ : Tuple = model_class(A_) model.to(A_) model.eval() with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(A_ , A_)) lowerCAmelCase_ : str = outputs.hidden_states lowerCAmelCase_ : List[Any] = 1_6 self.assertEqual(len(A_) , A_) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = True check_hidden_states_output(A_ , A_ , A_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : int = True check_hidden_states_output(A_ , A_ , A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_) @slow def UpperCAmelCase__ ( self : List[str]): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = MobileNetVaModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any]): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''') if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''').to(A_) lowerCAmelCase_ : List[str] = self.default_image_processor lowerCAmelCase_ : List[str] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : int = model(**A_) # verify the logits lowerCAmelCase_ : Tuple = torch.Size((1, 1_0_0_1)) self.assertEqual(outputs.logits.shape , A_) lowerCAmelCase_ : str = torch.tensor([0.2445, -1.1993, 0.1905]).to(A_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4)) @slow def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : str = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''') lowerCAmelCase_ : int = model.to(A_) lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''') lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = image_processor(images=A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**A_) lowerCAmelCase_ : Optional[int] = outputs.logits # verify the logits lowerCAmelCase_ : Dict = torch.Size((1, 2_1, 6_5, 6_5)) self.assertEqual(logits.shape , A_) lowerCAmelCase_ : Optional[Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4))
103
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __lowercase = str(A__ ) __lowercase = ''''''.join(sorted(A__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( A__ = 99 ): """simple docstring""" if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(A__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
104
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : Optional[Any] = logging.get_logger(__name__) a : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Dict ) ->Optional[Any]: '''simple docstring''' for attribute in key.split("." ): a : Dict = getattr(_lowercase , _lowercase ) if weight_type is not None: a : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: a : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": a : List[str] = value elif weight_type == "weight_g": a : int = value elif weight_type == "weight_v": a : int = value elif weight_type == "bias": a : Tuple = value else: a : Union[str, Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : List[str] , _lowercase : int ) ->Any: '''simple docstring''' a : Dict = [] a : int = fairseq_model.state_dict() a : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a : int = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == "group" , ) a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): a : Optional[Any] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): a : List[str] = True if "*" in mapped_key: a : Union[str, Any] = name.split(_lowercase )[0].split("." )[-2] a : str = mapped_key.replace("*" , _lowercase ) if "weight_g" in name: a : Optional[int] = "weight_g" elif "weight_v" in name: a : Optional[Any] = "weight_v" elif "weight" in name: a : Tuple = "weight" elif "bias" in name: a : Tuple = "bias" else: a : Union[str, Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[Any] ) ->List[Any]: '''simple docstring''' a : List[Any] = full_name.split("conv_layers." )[-1] a : Any = name.split("." ) a : List[str] = int(items[0] ) a : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowercase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Tuple , _lowercase : List[str]=None , _lowercase : Dict=None , _lowercase : int=True ) ->List[Any]: '''simple docstring''' if config_path is not None: a : Tuple = HubertConfig.from_pretrained(_lowercase ) else: a : Any = HubertConfig() if is_finetuned: if dict_path: a : str = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a : int = target_dict.pad_index a : Optional[int] = target_dict.bos_index a : Dict = target_dict.eos_index a : Optional[int] = len(target_dict.symbols ) a : List[str] = os.path.join(_lowercase , "vocab.json" ) if not os.path.isdir(_lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) with open(_lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowercase ) a : Optional[int] = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowercase , ) a : int = True if config.feat_extract_norm == "layer" else False a : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) a : str = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) a : int = HubertForCTC(_lowercase ) else: a : str = HubertModel(_lowercase ) if is_finetuned: a, a, a : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a, a, a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a : Optional[int] = model[0].eval() recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
105
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : list[list[str]] = [[] for _ in range(A_ )] lowerCAmelCase__ : Union[str, Any] = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(A_ ) <= key: return input_string for position, character in enumerate(A_ ): lowerCAmelCase__ : Union[str, Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[int] = min(A_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(A_ ) lowerCAmelCase__ : str = [''''''.join(A_ ) for row in temp_grid] lowerCAmelCase__ : int = ''''''.join(A_ ) return output_string def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : int = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string lowerCAmelCase__ : list[list[str]] = [[] for _ in range(A_ )] # generates template for position in range(len(A_ ) ): lowerCAmelCase__ : int = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Dict = min(A_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) lowerCAmelCase__ : Dict = 0 for row in temp_grid: # fills in the characters lowerCAmelCase__ : List[Any] = input_string[counter : counter + len(A_ )] grid.append(list(A_ ) ) counter += len(A_ ) lowerCAmelCase__ : Tuple = '''''' # reads as zigzag for position in range(len(A_ ) ): lowerCAmelCase__ : Tuple = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[int] = min(A_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = {} for key_guess in range(1 , len(A_ ) ): # tries every key lowerCAmelCase__ : List[str] = decrypt(A_ , A_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ (unittest.TestCase ): """simple docstring""" def __init__( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=3 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : str=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : str=[10, 20, 30, 40] , __lowerCamelCase : Tuple=[1, 1, 2, 1] , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=None , ) -> Any: a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Dict: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = self.get_config() return config, pixel_values def __UpperCAmelCase ( self : int ) -> Tuple: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> Dict: a = FlaxRegNetModel(config=__lowerCamelCase ) a = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Optional[int]: a = self.num_labels a = FlaxRegNetForImageClassification(config=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : int ) -> List[Any]: a = self.prepare_config_and_inputs() a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False def __UpperCAmelCase ( self : Any ) -> None: a = FlaxRegNetModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : str ) -> Optional[Any]: return def __UpperCAmelCase ( self : Tuple ) -> List[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __UpperCAmelCase ( self : Tuple ) -> Dict: pass def __UpperCAmelCase ( self : Dict ) -> Optional[int]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Tuple: def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): a = model_class(__lowerCamelCase ) a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> str: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) a = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("JIT Enabled" ): a = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Any ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : List[Any] ) -> List[str]: a = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="np" ) a = model(**__lowerCamelCase ) # verify the logits a = (1, 10_00) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[Any] =LongformerTokenizer a : str =True a : Any =LongformerTokenizerFast a : Optional[int] =True def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : Dict = {"unk_token": "<unk>"} lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = "lower newer" lowerCAmelCase : List[str] = "lower newer" return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : Optional[Any] = "lower newer" lowerCAmelCase : str = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase : Optional[Any] = tokenizer.tokenize(snake_case__ ) # , add_prefix_space=True) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=snake_case__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=snake_case__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) lowerCAmelCase : int = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) lowerCAmelCase : str = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) lowerCAmelCase : Any = tokenizer.encode( "sequence builders" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : int = "Encode this sequence." lowerCAmelCase : Optional[Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowerCAmelCase : Optional[Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(snake_case__ , snake_case__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowerCAmelCase : Dict = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(snake_case__ , snake_case__ ) # Testing spaces after special tokens lowerCAmelCase : Optional[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ )} ) # mask token has a left space lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase : Union[str, Any] = "Encode <mask> sequence" lowerCAmelCase : Union[str, Any] = "Encode <mask>sequence" lowerCAmelCase : str = tokenizer.encode(snake_case__ ) lowerCAmelCase : Any = encoded.index(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.encode(snake_case__ ) lowerCAmelCase : Tuple = encoded.index(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = "A, <mask> AllenNLP sentence." lowerCAmelCase : List[Any] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) lowerCAmelCase : Dict = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowerCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowercase__ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , snake_case__ ) self.assertEqual(post_processor_state["add_prefix_space"] , snake_case__ ) self.assertEqual(post_processor_state["trim_offsets"] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase : Optional[int] = f"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : List[Any] = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Any = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ), len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ), len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : List[Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Any = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ), 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ), 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , )
108
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = 'xmod' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=("en_XX",) , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : List[Any] = position_embedding_type UpperCAmelCase : Tuple = use_cache UpperCAmelCase : int = classifier_dropout UpperCAmelCase : Any = pre_norm UpperCAmelCase : Tuple = adapter_reduction_factor UpperCAmelCase : str = adapter_layer_norm UpperCAmelCase : Any = adapter_reuse_layer_norm UpperCAmelCase : List[str] = ln_before_adapter UpperCAmelCase : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = default_language class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
109
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
def UpperCamelCase( __UpperCamelCase : Dict ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) lowerCAmelCase_ : Optional[Any] = [True] * (num + 1) lowerCAmelCase_ : Tuple = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,a_ ): lowerCAmelCase_ : Optional[Any] = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A__ : List[str] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
103
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline __UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCAmelCase ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=8 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) SCREAMING_SNAKE_CASE =CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Tuple ,snake_case : str=0 ): SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 32, 32) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE =image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ) if str(_lowerCamelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE =torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.get_dummy_components() SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE =np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.get_dummy_components() SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE ="""french fries""" SCREAMING_SNAKE_CASE =sd_pipe(**_lowerCamelCase ,negative_prompt=_lowerCamelCase ) SCREAMING_SNAKE_CASE =output.images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE =np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.get_dummy_components() SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE =[inputs["""prompt"""]] * 2 SCREAMING_SNAKE_CASE =np.array(inputs['image'] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE =torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE =image / 2 + 0.5 SCREAMING_SNAKE_CASE =image.permute(0 ,3 ,1 ,2 ) SCREAMING_SNAKE_CASE =image.repeat(2 ,1 ,1 ,1 ) SCREAMING_SNAKE_CASE =sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE =np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.get_dummy_components() SCREAMING_SNAKE_CASE =EulerAncestralDiscreteScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE =sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE =[round(_lowerCamelCase ,4 ) for x in image_slice.flatten().tolist()] print(','.join([str(_lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE =np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.get_dummy_components() SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =VaeImageProcessor(do_resize=_lowerCamelCase ,do_normalize=_lowerCamelCase ) SCREAMING_SNAKE_CASE =pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs_by_type(_lowerCamelCase ,input_image_type='pt' ) )[0] SCREAMING_SNAKE_CASE =components["""vae"""] SCREAMING_SNAKE_CASE =self.get_dummy_inputs_by_type(_lowerCamelCase ,input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE =vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase )[0] SCREAMING_SNAKE_CASE =np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCamelCase ,1e-4 ,'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple=0 ): SCREAMING_SNAKE_CASE =torch.manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) SCREAMING_SNAKE_CASE ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE =self.get_inputs() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE =self.get_inputs() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE =self.get_inputs() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =0 def callback_fn(snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : str ) -> None: SCREAMING_SNAKE_CASE =True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE =np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE =np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=_lowerCamelCase ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE =pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE =self.get_inputs() pipe(**_lowerCamelCase ,callback=_lowerCamelCase ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowerCAmelCase ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=_lowerCamelCase ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE =pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE =self.get_inputs() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE =inputs["""image"""].resize((504, 504) ) SCREAMING_SNAKE_CASE ="""timbrooks/instruct-pix2pix""" SCREAMING_SNAKE_CASE =StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCamelCase ,safety_checker=_lowerCamelCase ,) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE =pipe(**_lowerCamelCase ) SCREAMING_SNAKE_CASE =output.images[0] SCREAMING_SNAKE_CASE =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE =np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
334
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
from __future__ import annotations import requests lowerCAmelCase = set( '''approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'''.split() ) def _lowerCamelCase( lowercase__ , lowercase__ = 1 , lowercase__ = "new" , lowercase__ = None ) -> dict: '''simple docstring''' __lowercase= wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a_ ) - valid_terms ) ): __lowercase= F'Invalid search term: {invalid_search_terms}' raise ValueError(a_ ) __lowercase= requests.get( F'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={'User-agent': 'A random string'} , ) if response.status_code == 4_2_9: raise requests.HTTPError __lowercase= response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a_ )} __lowercase= {} for id_ in range(a_ ): __lowercase= { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
295
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase : List[str] = imread(R'digital_image_processing/image_data/lena_small.jpg') lowercase : str = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[str] = cn.convert_to_negative(a_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ): '''simple docstring''' A : int = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() A : Optional[Any] = canny.canny(a_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert gg.gaussian_filter(a_ , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A : int = conv.img_convolve(a_ , a_ ).astype(a_ ) assert res.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert med.median_filter(a_ , 3 ).any() def lowerCAmelCase_ ( ): '''simple docstring''' A : List[str] = sob.sobel_filter(a_ ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = sp.make_sepia(a_ , 20 ) assert sepia.all() def lowerCAmelCase_ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' A : Union[str, Any] = bs.Burkes(imread(a_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' A : str = rs.NearestNeighbour(imread(a_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A : Dict = imread(a_ , 0 ) # Test for get_neighbors_pixel function() return not None A : Union[str, Any] = 0 A : List[str] = 0 A : Optional[int] = image[x_coordinate][y_coordinate] A : Union[str, Any] = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A : int = lbp.local_binary_value(a_ , a_ , a_ ) assert lbp_image.any()
3
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCamelCase : Union[str, Any] = random.Random() def __A ( __lowerCamelCase , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=None ) -> str: if rng is None: a = global_rng a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Tuple , __magic_name__ :Dict , __magic_name__ :Tuple=7 , __magic_name__ :Union[str, Any]=400 , __magic_name__ :Optional[Any]=2000 , __magic_name__ :Union[str, Any]=24 , __magic_name__ :str=24 , __magic_name__ :str=0.0 , __magic_name__ :int=1_6000 , __magic_name__ :Optional[int]=True , __magic_name__ :str=True , ): '''simple docstring''' a = parent a = batch_size a = min_seq_length a = max_seq_length a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a = feature_size a = num_mel_bins a = padding_value a = sampling_rate a = return_attention_mask a = do_normalize def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int=False , __magic_name__ :Union[str, Any]=False ): '''simple docstring''' def _flatten(__magic_name__ :int ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __A , unittest.TestCase ): UpperCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = SpeechaTextFeatureExtractionTester(self ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test feature size a = feature_extractor(_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input a = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features a = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) # Test batched a = feature_extractor(_lowerCamelCase , return_tensors="""np""" ).input_features a = feature_extractor(_lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a = [floats_list((1, x) )[0] for x in (800, 800, 800)] a = np.asarray(_lowerCamelCase ) a = feature_extractor(_lowerCamelCase , return_tensors="""np""" ).input_features a = feature_extractor(_lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = ["""longest""", """max_length""", """do_not_pad"""] a = [None, 16, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a = feature_extractor( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_attention_mask=_lowerCamelCase ) a = inputs.input_features a = inputs.attention_mask a = [np.sum(_lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = ["""longest""", """max_length""", """do_not_pad"""] a = [None, 16, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a = feature_extractor( _lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""np""" , return_attention_mask=_lowerCamelCase ) a = inputs.input_features a = inputs.attention_mask a = [np.sum(_lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = feature_extractor( _lowerCamelCase , padding="""max_length""" , max_length=4 , truncation=_lowerCamelCase , return_tensors="""np""" , return_attention_mask=_lowerCamelCase , ) a = inputs.input_features a = inputs.attention_mask a = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = feature_extractor( _lowerCamelCase , padding="""longest""" , max_length=4 , truncation=_lowerCamelCase , return_tensors="""np""" , return_attention_mask=_lowerCamelCase , ) a = inputs.input_features a = inputs.attention_mask a = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a = feature_extractor( _lowerCamelCase , padding="""longest""" , max_length=16 , truncation=_lowerCamelCase , return_tensors="""np""" , return_attention_mask=_lowerCamelCase , ) a = inputs.input_features a = inputs.attention_mask a = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' import torch a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = np.random.rand(100 , 32 ).astype(np.floataa ) a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' from datasets import load_dataset a = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech a = ds.sort("""id""" ).select(range(_lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on a = self._load_datasamples(1 ) a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = feature_extractor(_lowerCamelCase , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _lowerCamelCase , atol=1E-4 ) )
228
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
0
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = args.log_outputs _snake_case = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric _snake_case = load_metric("""wer""" ) _snake_case = load_metric("""cer""" ) # compute metrics _snake_case = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) _snake_case = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results _snake_case = f"""WER: {wer_result}\nCER: {cer_result}""" print(a_ ) with open(f"""{dataset_id}_eval_results.txt""" , """w""" ) as f: f.write(a_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _snake_case = f"""log_{dataset_id}_predictions.txt""" _snake_case = f"""log_{dataset_id}_targets.txt""" with open(a_ , """w""" ) as p, open(a_ , """w""" ) as t: # mapping function to write output def write_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): p.write(f"""{i}""" + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f"""{i}""" + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(a_ , with_indices=a_ ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _snake_case = re.sub(a_ , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _snake_case = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: _snake_case = """ """.join(text.split(a_ ) ) return text def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=a_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) _snake_case = feature_extractor.sampling_rate # resample audio _snake_case = dataset.cast_column("""audio""" , Audio(sampling_rate=a_ ) ) # load eval pipeline if args.device is None: _snake_case = 0 if torch.cuda.is_available() else -1 _snake_case = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_SCREAMING_SNAKE_CASE ): _snake_case = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _snake_case = prediction["""text"""] _snake_case = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples _snake_case = dataset.map(a_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a_ , a_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) __lowerCAmelCase = parser.parse_args() main(args)
341
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' if len(a_ ) <= 1: return [tuple(a_ )] _lowerCAmelCase = [] def generate(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _lowerCAmelCase = arr[k - 1], arr[i] else: # k is odd _lowerCAmelCase = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(heaps(arr))
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __A ( unittest.TestCase ): def lowercase__ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Dict = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = None ops.enable_eager_execution_internal() lowerCAmelCase : Tuple = tf.config.list_physical_devices('CPU' ) if len(_lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase : str = tf.config.list_logical_devices(device_type='CPU' ) lowerCAmelCase : Union[str, Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase : Any = GradientAccumulator() lowerCAmelCase : List[Any] = tf.Variable([4.0, 3.0] ) lowerCAmelCase : Optional[Any] = create_optimizer(5E-5 , 10 , 5 ) lowerCAmelCase : Tuple = tf.Variable([0.0, 0.0] , trainable=_lowerCamelCase ) def accumulate_on_replica(UpperCAmelCase_ : Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): with strategy.scope(): lowerCAmelCase : Union[str, Any] = strategy.experimental_local_results(_lowerCamelCase ) local_variables[0].assign(_lowerCamelCase ) local_variables[1].assign(_lowerCamelCase ) strategy.run(_lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowerCamelCase ) def _check_local_values(UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Dict = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowerCamelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowerCamelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
138
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase = logging.get_logger(__name__) class A_ ( __A ): '''simple docstring''' _UpperCamelCase : Any = """vision-encoder-decoder""" _UpperCamelCase : int = True def __init__( self , **snake_case ): super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase = kwargs.pop('encoder' ) lowercase = encoder_config.pop('model_type' ) lowercase = kwargs.pop('decoder' ) lowercase = decoder_config.pop('model_type' ) lowercase = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) lowercase = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) lowercase = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , **snake_case ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowercase = True lowercase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.encoder.to_dict() lowercase = self.decoder.to_dict() lowercase = self.__class__.model_type return output class A_ ( __A ): '''simple docstring''' _UpperCamelCase : List[str] = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class A_ ( __A ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = OrderedDict() lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowercase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ): import torch lowercase = OrderedDict() lowercase = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) lowercase = dummy_input["""input_ids"""].shape lowercase = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase = dummy_input.pop('input_ids' ) lowercase = dummy_input.pop('attention_mask' ) lowercase = torch.zeros(_lowerCamelCase ) return common_inputs class A_ ( __A ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = "default" ): lowercase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
195
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __UpperCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install \"sacrebleu>=1.4.12\"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Sequence(datasets.Value('string', id='sequence' ), id='references' ), } ), codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'], reference_urls=[ 'https://github.com/m-popovic/chrF', ], ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = CHRF.CHAR_ORDER, SCREAMING_SNAKE_CASE_ = CHRF.WORD_ORDER, SCREAMING_SNAKE_CASE_ = CHRF.BETA, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, ) -> Tuple: UpperCamelCase : int = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCamelCase : Optional[Any] = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] UpperCamelCase : List[Any] = CHRF(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) UpperCamelCase : int = sb_chrf.corpus_score(_lowerCamelCase, _lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
119
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( __A): __lowerCAmelCase : str = (DDPMParallelScheduler,) def a_ ( self : Dict , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Dict = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def a_ ( self : Dict ): """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def a_ ( self : Any ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def a_ ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def a_ ( self : List[str] ): """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ : Any = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def a_ ( self : Any ): """simple docstring""" A_ : Tuple = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Union[str, Any] = scheduler_class(**_lowerCamelCase ) A_ : Optional[int] = len(_lowerCamelCase ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = self.dummy_sample_deter + 0.1 A_ : Optional[Any] = self.dummy_sample_deter - 0.1 A_ : List[Any] = samplea.shape[0] A_ : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) A_ : Optional[Any] = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) A_ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A_ : str = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) A_ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def a_ ( self : Tuple ): """simple docstring""" A_ : int = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**_lowerCamelCase ) A_ : Union[str, Any] = len(_lowerCamelCase ) A_ : Dict = self.dummy_model() A_ : Any = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Union[str, Any] = pred_prev_sample A_ : int = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def a_ ( self : Any ): """simple docstring""" A_ : Optional[Any] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) A_ : int = scheduler_class(**_lowerCamelCase ) A_ : Dict = len(_lowerCamelCase ) A_ : Union[str, Any] = self.dummy_model() A_ : List[str] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual A_ : str = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[str] = pred_prev_sample A_ : str = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : List[Any] = scheduler_class(**_lowerCamelCase ) A_ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) A_ : List[str] = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: A_ : int = -1 else: A_ : Dict = timesteps[i + 1] A_ : Union[str, Any] = scheduler.previous_timestep(_lowerCamelCase ) A_ : str = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) A_ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : str = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = [1_00, 87, 50, 1, 0] A_ : List[str] = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : str = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
167
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
0