code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import math from collections.abc import Iterator from itertools import takewhile def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = 2 while True: if is_prime(A__ ): yield num num += 1 def lowerCamelCase__ ( A__ : int = 2000000 ): '''simple docstring''' return sum(takewhile(lambda A__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } UpperCAmelCase_ = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } UpperCAmelCase_ = '▁' class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: str="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: int="<unk>" , UpperCamelCase_: List[Any]="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCamelCase = len(self.sp_model ) - 1 __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self: str ): return len(self.sp_model ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(UpperCamelCase_ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __getstate__( self: str ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: Optional[int] , UpperCamelCase_: List[Any] ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = credit_card_number __lowerCamelCase = 0 __lowerCamelCase = len(A__ ) - 2 for i in range(A__ , -1 , -2 ): # double the value of every second digit __lowerCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCamelCase = cc_number[:i] + str(A__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(A__ ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(A__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(A__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
12
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
1
def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' if collection == []: return [] # get some information about the collection __lowerCamelCase = len(A__ ) __lowerCamelCase = max(A__ ) __lowerCamelCase = min(A__ ) # create the counting array __lowerCamelCase = coll_max + 1 - coll_min __lowerCamelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , A__ ): __lowerCamelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowerCamelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , A__ ) ): __lowerCamelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return "".join([chr(A__ ) for i in counting_sort([ord(A__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase_ = logging.getLogger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'masked_bert' def __init__( self: Dict , UpperCamelCase_: int=3_05_22 , UpperCamelCase_: Optional[Any]=7_68 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: List[Any]=12 , UpperCamelCase_: str=30_72 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: str=5_12 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Any=1E-12 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: Optional[Any]="topK" , UpperCamelCase_: List[str]="constant" , UpperCamelCase_: Union[str, Any]=0.0 , **UpperCamelCase_: List[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = pruning_method __lowerCamelCase = mask_init __lowerCamelCase = mask_scale
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__( __lowerCamelCase): def __init__( self: Dict , *UpperCamelCase_: Any , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=None , **UpperCamelCase_: str ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = eval_examples __lowerCamelCase = post_process_function def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ): __lowerCamelCase = gen_kwargs.copy() __lowerCamelCase = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) __lowerCamelCase = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) __lowerCamelCase = gen_kwargs __lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset __lowerCamelCase = self.get_eval_dataloader(UpperCamelCase_ ) __lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowerCamelCase = self.compute_metrics __lowerCamelCase = None __lowerCamelCase = time.time() __lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCamelCase = eval_loop( UpperCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: __lowerCamelCase = compute_metrics __lowerCamelCase = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __lowerCamelCase = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: __lowerCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Dict ): __lowerCamelCase = gen_kwargs.copy() __lowerCamelCase = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. __lowerCamelCase = self.compute_metrics __lowerCamelCase = None __lowerCamelCase = time.time() __lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowerCamelCase = eval_loop( UpperCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: __lowerCamelCase = compute_metrics __lowerCamelCase = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , """predict""" ) __lowerCamelCase = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __lowerCamelCase = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
1
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : int ): '''simple docstring''' __lowerCamelCase = list(range(len(A__ ) ) ) __lowerCamelCase = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) __lowerCamelCase = 0 __lowerCamelCase = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __lowerCamelCase = 1 max_value += value[i] capacity -= weight[i] else: __lowerCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = test_results.split(""" """ ) __lowerCamelCase = 0 __lowerCamelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowerCamelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(A__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = None __lowerCamelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , A__ ): __lowerCamelCase = True __lowerCamelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): __lowerCamelCase = line __lowerCamelCase = False return failures class lowerCamelCase__: def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = title __lowerCamelCase = doc_test_results["""time_spent"""].split(""",""" )[0] __lowerCamelCase = doc_test_results["""success"""] __lowerCamelCase = doc_test_results["""failures"""] __lowerCamelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowerCamelCase = doc_test_results @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self._time_spent] __lowerCamelCase = 0 for time in time_spent: __lowerCamelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: __lowerCamelCase = [0, 0, time_parts[0]] __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s' @property def lowerCAmelCase__ ( self: List[str] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[int] ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = 40 __lowerCamelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} __lowerCamelCase = """""" for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( ): __lowerCamelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: int ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) __lowerCamelCase = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed.""" __lowerCamelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = """""" for key, value in failures.items(): __lowerCamelCase = value[:2_00] + """ [Truncated]""" if len(UpperCamelCase_ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' __lowerCamelCase = job_name __lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: __lowerCamelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: List[Any] ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) __lowerCamelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) __lowerCamelCase = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): __lowerCamelCase = F'*Num failures* :{len(job_result["failed"] )} \n' __lowerCamelCase = job_result["""failures"""] __lowerCamelCase = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'Results for {job}' , blocks=UpperCamelCase_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.environ["""GITHUB_RUN_ID"""] __lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' __lowerCamelCase = requests.get(A__ ).json() __lowerCamelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(A__ ): __lowerCamelCase = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , A__ ) return {} def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {} if os.path.exists(A__ ): __lowerCamelCase = os.listdir(A__ ) for file in files: try: with open(os.path.join(A__ , A__ ) , encoding="""utf-8""" ) as f: __lowerCamelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(A__ , A__ )}.' ) from e return _artifact def lowerCamelCase__ ( ): '''simple docstring''' class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = name __lowerCamelCase = [] def __str__( self: List[str] ): return self.name def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): self.paths.append({"""name""": self.name, """path""": path} ) __lowerCamelCase = {} __lowerCamelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowerCamelCase = directory if artifact_name not in _available_artifacts: __lowerCamelCase = Artifact(A__ ) _available_artifacts[artifact_name].add_path(A__ ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase__: def __init__( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: str=13 , UpperCamelCase_: Any=7 , UpperCamelCase_: str=False , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=33 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Union[str, Any]=37 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: int=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: str=5_12 , UpperCamelCase_: Dict=16 , UpperCamelCase_: str=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Any=3 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCAmelCase__ ( self: str ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self: Any ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = EsmModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: int ): __lowerCamelCase = EsmForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int ): __lowerCamelCase = self.num_labels __lowerCamelCase = EsmForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = () UpperCAmelCase__ : str = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Any = True def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = EsmModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: Tuple ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = EsmModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0] __lowerCamelCase = EsmEmbeddings(config=UpperCamelCase_ ) __lowerCamelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowerCamelCase = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowerCamelCase = create_position_ids_from_input_ids(UpperCamelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0] __lowerCamelCase = EsmEmbeddings(config=UpperCamelCase_ ) __lowerCamelCase = torch.empty(2 , 4 , 30 ) __lowerCamelCase = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowerCamelCase = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowerCamelCase = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase__ ( self: int ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase__ ( self: int ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self: List[str] ): pass @require_torch class lowerCamelCase__( __lowerCamelCase): @slow def lowerCAmelCase__ ( self: Tuple ): with torch.no_grad(): __lowerCamelCase = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowerCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(UpperCamelCase_ )[0] __lowerCamelCase = 33 __lowerCamelCase = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self: List[Any] ): with torch.no_grad(): __lowerCamelCase = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowerCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowerCamelCase = model(UpperCamelCase_ )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = 'char' UpperCAmelCase__ : List[str] = 'bpe' UpperCAmelCase__ : int = 'wp' UpperCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[Any] = ['image_processor', 'char_tokenizer'] UpperCAmelCase__ : Tuple = 'ViTImageProcessor' UpperCAmelCase__ : Optional[int] = 'MgpstrTokenizer' def __init__( self: Union[str, Any] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: Dict ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase_ , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __lowerCamelCase = tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained("""gpt2""" ) __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Any=None , **UpperCamelCase_: Any ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: __lowerCamelCase = self.char_tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase = encodings["""input_ids"""] return inputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = sequences __lowerCamelCase = char_preds.size(0 ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """char""" ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """bpe""" ) __lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """wp""" ) __lowerCamelCase = [] __lowerCamelCase = [] for i in range(UpperCamelCase_ ): __lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase = scores.index(max(UpperCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase = {} __lowerCamelCase = final_strs __lowerCamelCase = final_scores __lowerCamelCase = char_strs __lowerCamelCase = bpe_strs __lowerCamelCase = wp_strs return out def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ): if format == DecodeType.CHARACTER: __lowerCamelCase = self.char_decode __lowerCamelCase = 1 __lowerCamelCase = """[s]""" elif format == DecodeType.BPE: __lowerCamelCase = self.bpe_decode __lowerCamelCase = 2 __lowerCamelCase = """#""" elif format == DecodeType.WORDPIECE: __lowerCamelCase = self.wp_decode __lowerCamelCase = 1_02 __lowerCamelCase = """[SEP]""" else: raise ValueError(F'Format {format} is not supported.' ) __lowerCamelCase, __lowerCamelCase = [], [] __lowerCamelCase = pred_logits.size(0 ) __lowerCamelCase = pred_logits.size(1 ) __lowerCamelCase, __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase_ , sorted=UpperCamelCase_ ) __lowerCamelCase = preds_index.view(-1 , UpperCamelCase_ )[:, 1:] __lowerCamelCase = decoder(UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = torch.nn.functional.softmax(UpperCamelCase_ , dim=2 ).max(dim=2 ) __lowerCamelCase = preds_max_prob[:, 1:] for index in range(UpperCamelCase_ ): __lowerCamelCase = preds_str[index].find(UpperCamelCase_ ) __lowerCamelCase = preds_str[index][:pred_eos] __lowerCamelCase = preds_index[index].cpu().tolist() __lowerCamelCase = pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1 __lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase_ ) conf_scores.append(UpperCamelCase_ ) return dec_strs, conf_scores def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs def lowerCAmelCase__ ( self: int , UpperCamelCase_: Tuple ): return self.bpe_tokenizer.batch_decode(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Dict ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase_ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' UpperCAmelCase_ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' UpperCAmelCase_ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase__ ( A__ : Dict , A__ : List[Any] ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase__ ( A__ : int , A__ : str ): '''simple docstring''' __lowerCamelCase = simple_accuracy(A__ , A__ ) __lowerCamelCase = float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( A__ : str , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = float(pearsonr(A__ , A__ )[0] ) __lowerCamelCase = float(spearmanr(A__ , A__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Dict ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__( unittest.TestCase): @property def lowerCAmelCase__ ( self: List[str] ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase_ , output_type="""numpy""" ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase_ , output_type="""numpy""" , return_dict=UpperCamelCase_ )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """google/ncsnpp-celebahq-256""" __lowerCamelCase = UNetaDModel.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=20 , generator=UpperCamelCase_ , output_type="""numpy""" ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: list[int] ): __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = [0] * len_array if len_array > 0: __lowerCamelCase = array[0] for i in range(1 , UpperCamelCase_ ): __lowerCamelCase = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int ): __lowerCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
12
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert("""RGB""" ) return image def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = dct.pop(A__ ) __lowerCamelCase = val def lowerCamelCase__ ( A__ : str , A__ : int ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) __lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __lowerCamelCase = torch.cat((q_bias, torch.zeros_like(A__ , requires_grad=A__ ), v_bias) ) __lowerCamelCase = qkv_bias def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = 364 if """coco""" in model_name else 224 __lowerCamelCase = InstructBlipVisionConfig(image_size=A__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: __lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __lowerCamelCase = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() __lowerCamelCase = InstructBlipConfig(vision_config=A__ , text_config=A__ , qformer_config=A__ ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( A__ : Any , A__ : str=None , A__ : Any=False ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: __lowerCamelCase = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __lowerCamelCase = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) __lowerCamelCase, __lowerCamelCase = get_blipa_config(A__ ) __lowerCamelCase = InstructBlipForConditionalGeneration(A__ ).eval() __lowerCamelCase = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } __lowerCamelCase, __lowerCamelCase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __lowerCamelCase = """cuda:1""" if torch.cuda.is_available() else """cpu""" __lowerCamelCase = """cuda:2""" if torch.cuda.is_available() else """cpu""" __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = load_model_and_preprocess( name=A__ , model_type=A__ , is_eval=A__ , device=A__ ) original_model.eval() print("""Done!""" ) # update state dict keys __lowerCamelCase = original_model.state_dict() __lowerCamelCase = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase = state_dict.pop(A__ ) if key.startswith("""Qformer.bert""" ): __lowerCamelCase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __lowerCamelCase = key.replace("""self""" , """attention""" ) if "llm_proj" in key: __lowerCamelCase = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: __lowerCamelCase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): __lowerCamelCase = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): __lowerCamelCase = key.replace("""t5""" , """language""" ) __lowerCamelCase = val # read in qv biases read_in_q_v_bias(A__ , A__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A__ , strict=A__ ) __lowerCamelCase = load_demo_image() __lowerCamelCase = """What is unusual about this image?""" # create processor __lowerCamelCase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=A__ , image_std=A__ ) __lowerCamelCase = InstructBlipProcessor( image_processor=A__ , tokenizer=A__ , qformer_tokenizer=A__ , ) __lowerCamelCase = processor(images=A__ , text=A__ , return_tensors="""pt""" ).to(A__ ) # make sure processor creates exact same pixel values __lowerCamelCase = vis_processors["""eval"""](A__ ).unsqueeze(0 ).to(A__ ) __lowerCamelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A__ ) original_model.to(A__ ) hf_model.to(A__ ) with torch.no_grad(): if "vicuna" in model_name: __lowerCamelCase = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits __lowerCamelCase = hf_model(**A__ ).logits else: __lowerCamelCase = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits __lowerCamelCase = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(A__ ) __lowerCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __lowerCamelCase = hf_model(**A__ , labels=A__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __lowerCamelCase = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , A__ , atol=A__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) __lowerCamelCase = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) __lowerCamelCase = hf_model.generate( **A__ , do_sample=A__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __lowerCamelCase = 2 print("""Original generation:""" , A__ ) __lowerCamelCase = processor.batch_decode(A__ , skip_special_tokens=A__ ) __lowerCamelCase = [text.strip() for text in output_text] print("""HF generation:""" , A__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) UpperCAmelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCamelCase__ ( A__ : NDArray[floataa] , A__ : NDArray[floataa] , A__ : list[int] , A__ : int , ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = coefficient_matrix.shape __lowerCamelCase, __lowerCamelCase = constant_matrix.shape if rowsa != colsa: __lowerCamelCase = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(A__ ) if colsa != 1: __lowerCamelCase = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(A__ ) if rowsa != rowsa: __lowerCamelCase = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(A__ ) if len(A__ ) != rowsa: __lowerCamelCase = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(A__ )} and {rowsa}' ) raise ValueError(A__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) __lowerCamelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowerCamelCase, __lowerCamelCase = table.shape strictly_diagonally_dominant(A__ ) # Iterates the whole matrix for given number of times for _ in range(A__ ): __lowerCamelCase = [] for row in range(A__ ): __lowerCamelCase = 0 for col in range(A__ ): if col == row: __lowerCamelCase = table[row][col] elif col == cols - 1: __lowerCamelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowerCamelCase = (temp + val) / denom new_val.append(A__ ) __lowerCamelCase = new_val return [float(A__ ) for i in new_val] def lowerCamelCase__ ( A__ : NDArray[floataa] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = table.shape __lowerCamelCase = True for i in range(0 , A__ ): __lowerCamelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
from typing import Any def lowerCamelCase__ ( A__ : list ): '''simple docstring''' if not input_list: return [] __lowerCamelCase = [input_list.count(A__ ) for value in input_list] __lowerCamelCase = max(A__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase__ ( A__ : int , A__ : Optional[int] , A__ : Any , A__ : Any=5 ): '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 __lowerCamelCase = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 __lowerCamelCase = model(A__ )[0] # The last hidden-state is the first element of the output tuple __lowerCamelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowerCamelCase = logits[0, masked_index, :] __lowerCamelCase = logits.softmax(dim=0 ) __lowerCamelCase, __lowerCamelCase = prob.topk(k=A__ , dim=0 ) __lowerCamelCase = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) __lowerCamelCase = tokenizer.mask_token __lowerCamelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): __lowerCamelCase = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCAmelCase_ = CamembertTokenizer.from_pretrained('camembert-base') UpperCAmelCase_ = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() UpperCAmelCase_ = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
12
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
1
import operator def lowerCamelCase__ ( A__ : list , A__ : bool = False , A__ : list | None = None ): '''simple docstring''' __lowerCamelCase = operator.lt if reverse else operator.gt __lowerCamelCase = solution or [] if not arr: return solution __lowerCamelCase = [arr.pop(0 )] for i, item in enumerate(A__ ): if _operator(A__ , sublist[-1] ): sublist.append(A__ ) arr.pop(A__ ) # merging sublist into solution list if not solution: solution.extend(A__ ) else: while sublist: __lowerCamelCase = sublist.pop(0 ) for i, xx in enumerate(A__ ): if not _operator(A__ , A__ ): solution.insert(A__ , A__ ) break else: solution.append(A__ ) strand_sort(A__ , A__ , A__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCAmelCase_ = False class lowerCamelCase__( unittest.TestCase): pass @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __lowerCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class lowerCamelCase__: UpperCAmelCase__ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The column name of the images in the files.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = {} if self.train_dir is not None: __lowerCamelCase = self.train_dir if self.validation_dir is not None: __lowerCamelCase = self.validation_dir __lowerCamelCase = data_files if data_files else None @dataclass class lowerCamelCase__: UpperCAmelCase__ : str = field( default=__lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) UpperCAmelCase__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCAmelCase__ : str = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCAmelCase__ : float = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'}) @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'}) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , A__ , A__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0: __lowerCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) __lowerCamelCase = split["""train"""] __lowerCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: __lowerCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowerCamelCase = ViTMAEForPreTraining(A__ ) if training_args.do_train: __lowerCamelCase = ds["""train"""].column_names else: __lowerCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: __lowerCamelCase = data_args.image_column_name elif "image" in column_names: __lowerCamelCase = """image""" elif "img" in column_names: __lowerCamelCase = """img""" else: __lowerCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowerCamelCase = image_processor.size["""shortest_edge"""] else: __lowerCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowerCamelCase = Compose( [ Lambda(lambda A__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(A__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A__ : Optional[int] ): __lowerCamelCase = [transforms(A__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowerCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(A__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowerCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(A__ ) # Compute absolute learning rate __lowerCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowerCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __lowerCamelCase = Trainer( model=A__ , args=A__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , A__ ) trainer.save_metrics("""eval""" , A__ ) # Write model card and (optionally) push to hub __lowerCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
12
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCAmelCase_ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCAmelCase_ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } UpperCAmelCase_ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = ["input_ids"] UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = RESOURCE_FILES_NAMES def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=False , UpperCamelCase_: Union[str, Any]="utf8" , UpperCamelCase_: int="[UNK]" , UpperCamelCase_: Union[str, Any]="[SEP]" , UpperCamelCase_: Optional[Any]="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Any="[MASK]" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , vocab_file=UpperCamelCase_ , encoding=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = sentencepiece_model_ckpt __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowerCamelCase = self.load_vocab(filepath=UpperCamelCase_ ) else: __lowerCamelCase = {self.sp_model.id_to_piece(UpperCamelCase_ ): id for id in range(self.sp_model.get_piece_size() )} __lowerCamelCase = {v: k for k, v in self.vocab.items()} def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] ): if text is None: return None __lowerCamelCase = self.tokenize(UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = """""", [] for i, ch in enumerate(UpperCamelCase_ ): if ch in self.SP_CHAR_MAPPING: __lowerCamelCase = self.SP_CHAR_MAPPING.get(UpperCamelCase_ ) else: __lowerCamelCase = unicodedata.normalize("""NFKC""" , UpperCamelCase_ ) if self.is_whitespace(UpperCamelCase_ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase_ ) ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = normalized_text, [], 0 if self.do_lower_case: __lowerCamelCase = text.lower() for token in split_tokens: if token[:1] == "▁": __lowerCamelCase = token[1:] __lowerCamelCase = text[offset:].index(UpperCamelCase_ ) + offset __lowerCamelCase = start + len(UpperCamelCase_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __lowerCamelCase = end return token_mapping @property def lowerCAmelCase__ ( self: Optional[int] ): return len(self.vocab ) def lowerCAmelCase__ ( self: List[str] ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self: List[Any] ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: str , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] ): return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase_ , UpperCamelCase_ ) for c in text) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Any=False , UpperCamelCase_: Union[str, Any]=64 , UpperCamelCase_: Union[str, Any]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __lowerCamelCase = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __lowerCamelCase = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __lowerCamelCase = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __lowerCamelCase = self.sp_model.EncodeAsPieces(UpperCamelCase_ ) else: __lowerCamelCase = self.sp_model.SampleEncodeAsPieces(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [] for pi, piece in enumerate(UpperCamelCase_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase_ ) and pi != 0: new_pieces.append(UpperCamelCase_ ) continue else: continue __lowerCamelCase = 0 for i, chunk in enumerate(UpperCamelCase_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase_ ) or self.is_punct(UpperCamelCase_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase_ ) __lowerCamelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowerCamelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowerCamelCase = i if len(UpperCamelCase_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip() return out_string def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.convert_ids_to_tokens(UpperCamelCase_ ) __lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip() return out_string def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ): return self.reverse_vocab.get(UpperCamelCase_ , self.unk_token ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[str]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase_ ) + 1) + [1] * (len(UpperCamelCase_ ) + 3) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase_ ) == 1: __lowerCamelCase = unicodedata.category(UpperCamelCase_ ) if cat == "Zs": return True return False def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): __lowerCamelCase = {} with io.open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase_ ): __lowerCamelCase = line.rstrip("""\n""" ) __lowerCamelCase = int(UpperCamelCase_ ) return token_to_idx def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = 0 if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __lowerCamelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __lowerCamelCase = token_index writer.write(token + """\n""" ) index += 1 __lowerCamelCase = os.path.join(UpperCamelCase_ , """sentencepiece.bpe.model""" ) with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (vocab_file,)
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase__ ( A__ : List[str] ): # picklable for multiprocessing '''simple docstring''' return x.sum() def lowerCamelCase__ ( A__ : Dict ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : str class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = [1, 2] __lowerCamelCase = {"""a""": 1, """b""": 2} __lowerCamelCase = {"""a""": [1, 2], """b""": [3, 4]} __lowerCamelCase = {"""a""": {"""1""": 1}, """b""": 2} __lowerCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = 2 __lowerCamelCase = [2, 3] __lowerCamelCase = {"""a""": 2, """b""": 3} __lowerCamelCase = {"""a""": [2, 3], """b""": [4, 5]} __lowerCamelCase = {"""a""": {"""1""": 2}, """b""": 3} __lowerCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) __lowerCamelCase = 2 self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) __lowerCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} __lowerCamelCase = {"""a""": 2, """b""": 0, """c""": 2} __lowerCamelCase = { """a""": np.eye(2 ).astype(UpperCamelCase_ ), """b""": np.zeros(3 ).astype(UpperCamelCase_ ), """c""": np.ones(2 ).astype(UpperCamelCase_ ), } self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ , num_proc=UpperCamelCase_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCamelCase_ ): # can't pickle a local lambda map_nested(lambda UpperCamelCase_ : x + 1 , UpperCamelCase_ , num_proc=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {"""a""": 1, """b""": 2} __lowerCamelCase = {"""a""": 3, """b""": 4} __lowerCamelCase = {"""a""": 5, """b""": 6} __lowerCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = 'bar' __lowerCamelCase = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(UpperCamelCase_ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCamelCase__ ( A__ : List[str] , A__ : Tuple , A__ : int ): '''simple docstring''' with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: __lowerCamelCase = {f'{i}': i for i in range(A__ )} __lowerCamelCase = map_nested(lambda A__ : x + 10 , A__ , num_proc=A__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCamelCase__( __lowerCamelCase): @require_tf def lowerCAmelCase__ ( self: Any ): import tensorflow as tf from tensorflow.keras import layers __lowerCamelCase = layers.Dense(2 ) def gen_random_output(): __lowerCamelCase = tf.random.uniform((1, 3) ) return model(UpperCamelCase_ ).numpy() with temp_seed(42 , set_tensorflow=UpperCamelCase_ ): __lowerCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCamelCase_ ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCAmelCase__ ( self: Any ): import torch def gen_random_output(): __lowerCamelCase = torch.nn.Linear(3 , 2 ) __lowerCamelCase = torch.rand(1 , 3 ) return model(UpperCamelCase_ ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCamelCase_ ): __lowerCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=UpperCamelCase_ ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCAmelCase__ ( self: Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): __lowerCamelCase = gen_random_output() with temp_seed(42 ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = NestedDataStructure(A__ ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = NestedDataStructure(A__ ).flatten() assert output == expected_output def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = A(x=1 , y="""foobar""" ) __lowerCamelCase = {"""x""": 1, """y""": """foobar"""} assert asdict(A__ ) == expected_output __lowerCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} __lowerCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(A__ ) == expected_output with pytest.raises(A__ ): asdict([1, A(x=10 , y="""foo""" )] ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return text.split() def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase__ ( ): '''simple docstring''' with Pool(2 ) as pool: __lowerCamelCase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(A__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __lowerCamelCase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(A__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __lowerCamelCase = [] for yield_time, content in iflatmap_unordered( A__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A__ ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(A__ ) == 4
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
1
def lowerCamelCase__ ( A__ : float , A__ : float ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = 'data2vec-audio' def __init__( self: Any , UpperCamelCase_: List[str]=32 , UpperCamelCase_: Optional[Any]=7_68 , UpperCamelCase_: str=12 , UpperCamelCase_: int=12 , UpperCamelCase_: Optional[Any]=30_72 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: int=1E-5 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_: int=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_: int=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_: Any=False , UpperCamelCase_: Tuple=16 , UpperCamelCase_: Union[str, Any]=19 , UpperCamelCase_: List[str]=5 , UpperCamelCase_: Optional[Any]=0.05 , UpperCamelCase_: int=10 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Dict=0.0 , UpperCamelCase_: Dict=10 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: Tuple="sum" , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: int=2_56 , UpperCamelCase_: Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_: List[str]=(5, 3, 3, 1, 1) , UpperCamelCase_: Any=(1, 2, 3, 1, 1) , UpperCamelCase_: Dict=5_12 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: str=1 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: str=False , UpperCamelCase_: int=3 , UpperCamelCase_: Any=2 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Tuple=None , **UpperCamelCase_: int , ): super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = conv_pos_kernel_size __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # adapter __lowerCamelCase = add_adapter __lowerCamelCase = adapter_kernel_size __lowerCamelCase = adapter_stride __lowerCamelCase = num_adapter_layers __lowerCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = xvector_output_dim @property def lowerCAmelCase__ ( self: str ): return math.prod(self.conv_stride )
12
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
1
import argparse import os import re import packaging.version UpperCAmelCase_ = 'examples/' UpperCAmelCase_ = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase_ = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase_ = 'README.md' def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : Tuple ): '''simple docstring''' with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCamelCase = f.read() __lowerCamelCase, __lowerCamelCase = REPLACE_PATTERNS[pattern] __lowerCamelCase = replace.replace("""VERSION""" , A__ ) __lowerCamelCase = re_pattern.sub(A__ , A__ ) with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern="""examples""" ) def lowerCamelCase__ ( A__ : List[Any] , A__ : List[Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A__ , A__ , A__ ) if not patch: update_version_in_examples(A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """🤗 Transformers currently provides the following architectures""" __lowerCamelCase = """1. Want to contribute a new model?""" with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCamelCase = f.readlines() # Find the start of the list. __lowerCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __lowerCamelCase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: __lowerCamelCase = f.read() __lowerCamelCase = REPLACE_PATTERNS["""init"""][0].search(A__ ).groups()[0] return packaging.version.parse(A__ ) def lowerCamelCase__ ( A__ : Any=False ): '''simple docstring''' __lowerCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __lowerCamelCase = default_version.base_version elif patch: __lowerCamelCase = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __lowerCamelCase = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __lowerCamelCase = input(f'Which version are you releasing? [{default_version}]' ) if len(A__ ) == 0: __lowerCamelCase = default_version print(f'Updating version to {version}.' ) global_version_update(A__ , patch=A__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = get_version() __lowerCamelCase = f'{current_version.major}.{current_version.minor + 1}.0.dev0' __lowerCamelCase = current_version.base_version # Check with the user we got that right. __lowerCamelCase = input(f'Which version are we developing now? [{dev_version}]' ) if len(A__ ) == 0: __lowerCamelCase = dev_version print(f'Updating version to {version}.' ) global_version_update(A__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } UpperCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = RealmTokenizer def __init__( self: int , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any="[UNK]" , UpperCamelCase_: List[Any]="[SEP]" , UpperCamelCase_: Tuple="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Optional[int]="[MASK]" , UpperCamelCase_: List[Any]=True , UpperCamelCase_: str=None , **UpperCamelCase_: Any , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**UpperCamelCase_ ) __lowerCamelCase = do_lower_case def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , **UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = PaddingStrategy.MAX_LENGTH __lowerCamelCase = text __lowerCamelCase = kwargs.pop("""text_pair""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.pop("""return_tensors""" , UpperCamelCase_ ) __lowerCamelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(UpperCamelCase_ ): if batch_text_pair is not None: __lowerCamelCase = batch_text_pair[idx] else: __lowerCamelCase = None __lowerCamelCase = super().__call__(UpperCamelCase_ , UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = encoded_candidates.get("""input_ids""" ) __lowerCamelCase = encoded_candidates.get("""attention_mask""" ) __lowerCamelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase_ ) __lowerCamelCase = {key: item for key, item in output_data.items() if len(UpperCamelCase_ ) != 0} return BatchEncoding(UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any]=None ): __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Optional[Any]=18 , UpperCamelCase_: List[Any]=30 , UpperCamelCase_: int=4_00 , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: int=None , ): __lowerCamelCase = size if size is not None else {"""height""": 20, """width""": 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def lowerCAmelCase__ ( self: Optional[int] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" __lowerCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase__ ( self: List[Any] ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self: Tuple ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches __lowerCamelCase = """Hello""" __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self: Dict ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self: List[Any] ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def lowerCAmelCase__ ( self: List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) ) def lowerCAmelCase__ ( self: List[Any] ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MaskFormerFeatureExtractor'] UpperCAmelCase_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float , A__ : float , A__ : float , ): '''simple docstring''' __lowerCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: __lowerCamelCase = 1 - (matter_density + radiation_density + dark_energy) __lowerCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCAmelCase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( A__ : float , A__ : float ): '''simple docstring''' if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
from ...configuration_utils import PretrainedConfig class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = 'bert-generation' def __init__( self: Dict , UpperCamelCase_: Optional[Any]=5_03_58 , UpperCamelCase_: int=10_24 , UpperCamelCase_: Union[str, Any]=24 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: Optional[int]=40_96 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: int=1E-12 , UpperCamelCase_: str=0 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: List[str]=1 , UpperCamelCase_: List[str]="absolute" , UpperCamelCase_: str=True , **UpperCamelCase_: int , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase_ = pytest.mark.integration UpperCAmelCase_ = {'comet'} UpperCAmelCase_ = importlib.util.find_spec('fairseq') is not None UpperCAmelCase_ = {'code_eval'} UpperCAmelCase_ = os.name == 'nt' UpperCAmelCase_ = {'bertscore', 'frugalscore', 'perplexity'} UpperCAmelCase_ = importlib.util.find_spec('transformers') is not None def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' @wraps(A__ ) def wrapper(self : List[str] , A__ : str ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , A__ ) return wrapper def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' @wraps(A__ ) def wrapper(self : List[str] , A__ : Any ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , A__ ) return wrapper def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' @wraps(A__ ) def wrapper(self : Union[str, Any] , A__ : int ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , A__ ) return wrapper def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) @local class lowerCamelCase__( parameterized.TestCase): UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : str = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = """[...]""" __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase_ ) ).module_path ) __lowerCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCamelCase_ ) # check parameters __lowerCamelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCamelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCamelCase = doctest.testmod(UpperCamelCase_ , verbose=UpperCamelCase_ , raise_on_error=UpperCamelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Tuple ): __lowerCamelCase = """[...]""" __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCamelCase = doctest.testmod(UpperCamelCase_ , verbose=UpperCamelCase_ , raise_on_error=UpperCamelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase_ ): yield else: yield @contextmanager def lowerCAmelCase__ ( self: str ): def load_local_metric(UpperCamelCase_: int , *UpperCamelCase_: str , **UpperCamelCase_: Any ): return load_metric(os.path.join("""metrics""" , UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ ) with patch("""datasets.load_metric""" ) as mock_load_metric: __lowerCamelCase = load_local_metric yield @classmethod def lowerCAmelCase__ ( cls: Union[str, Any] , UpperCamelCase_: Any ): def wrapper(UpperCamelCase_: Any ): __lowerCamelCase = contextmanager(UpperCamelCase_ ) __lowerCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Any ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: __lowerCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' import torch def bert_cos_score_idf(A__ : Optional[Any] , A__ : List[str] , *A__ : List[str] , **A__ : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(A__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: __lowerCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' def load_from_checkpoint(A__ : str ): class lowerCamelCase__: def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: List[str] ): assert len(UpperCamelCase_ ) == 2 __lowerCamelCase = [0.19, 0.92] return scores, sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: __lowerCamelCase = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: __lowerCamelCase = load_from_checkpoint yield def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) __lowerCamelCase = """ERROR""" __lowerCamelCase = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(A__ , match=re.escape(A__ ) ): metric.compute(predictions=[] , references=[] , scheme=A__ )
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = LxmertTokenizer UpperCAmelCase__ : Tuple = LxmertTokenizerFast UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: str ): super().setUp() __lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = """UNwant\u00E9d,running""" __lowerCamelCase = """unwanted, running""" return input_text, output_text def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.tokenizer_class(self.vocab_file ) __lowerCamelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self: str ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(UpperCamelCase_ ) __lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : int ): '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[Any] , A__ : str ): '''simple docstring''' __lowerCamelCase = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def lowerCamelCase__ ( A__ : Any , A__ : List[Any] , A__ : Dict , A__ : Any=70000 ): '''simple docstring''' __lowerCamelCase = np.zeros(x.shape[1] ) for iterations in range(A__ ): __lowerCamelCase = np.dot(A__ , A__ ) __lowerCamelCase = sigmoid_function(A__ ) __lowerCamelCase = np.dot(x.T , h - y ) / y.size __lowerCamelCase = theta - alpha * gradient # updating the weights __lowerCamelCase = np.dot(A__ , A__ ) __lowerCamelCase = sigmoid_function(A__ ) __lowerCamelCase = cost_function(A__ , A__ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase_ = datasets.load_iris() UpperCAmelCase_ = iris.data[:, :2] UpperCAmelCase_ = (iris.target != 0) * 1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase_) , (UpperCAmelCase_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase_ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
12
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
1
UpperCAmelCase_ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } UpperCAmelCase_ = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def lowerCamelCase__ ( A__ : float , A__ : str , A__ : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(A__ )}' ) raise ValueError(A__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
12
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : Optional[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __lowerCamelCase = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 ) __lowerCamelCase = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[Any] ): for example in examples: __lowerCamelCase = video_classifier(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )}, {"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )}, ] , ) @require_torch def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" __lowerCamelCase = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) __lowerCamelCase = pipeline( """video-classification""" , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 ) __lowerCamelCase = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __lowerCamelCase = video_classifier(UpperCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) __lowerCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCAmelCase__ ( self: Union[str, Any] ): pass
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
import numpy as np def lowerCamelCase__ ( A__ : np.ndarray , A__ : float ): '''simple docstring''' return np.where(vector > 0 , A__ , (alpha * (np.exp(A__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
12
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__: UpperCAmelCase__ : str = PegasusConfig UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 'gelu' def __init__( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: List[Any]=99 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: str=5 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: List[str]=37 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Tuple=20 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: str=1 , UpperCamelCase_: Optional[int]=0 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowerCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCamelCase = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Dict ): __lowerCamelCase = 20 __lowerCamelCase = model_class_name(UpperCamelCase_ ) __lowerCamelCase = model.encode(inputs_dict["""input_ids"""] ) __lowerCamelCase, __lowerCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) __lowerCamelCase = model.decode(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Any ): __lowerCamelCase = 20 __lowerCamelCase = model_class_name(UpperCamelCase_ ) __lowerCamelCase = model.encode(inputs_dict["""input_ids"""] ) __lowerCamelCase, __lowerCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __lowerCamelCase = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def lowerCamelCase__ ( A__ : Optional[int] , A__ : Tuple , A__ : str , A__ : Tuple=None , A__ : Tuple=None , ): '''simple docstring''' if attention_mask is None: __lowerCamelCase = np.not_equal(A__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowerCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCAmelCase__ : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Dict = False def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = FlaxPegasusModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=None , **UpperCamelCase_: Dict ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __lowerCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase__ ( self: Tuple ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase_ ) __lowerCamelCase = np.ones((1, 1) ) __lowerCamelCase = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __lowerCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __lowerCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __lowerCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""np""" , truncation=UpperCamelCase_ , max_length=5_12 , padding=UpperCamelCase_ ) __lowerCamelCase = model.generate(**UpperCamelCase_ , num_beams=2 ).sequences __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert tgt_text == decoded
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(A__ , """_dynamo""" ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : bool = True ): '''simple docstring''' __lowerCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCamelCase = is_compiled_module(A__ ) if is_compiled: __lowerCamelCase = model __lowerCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): __lowerCamelCase = model.module if not keep_fpaa_wrapper: __lowerCamelCase = getattr(A__ , """forward""" ) __lowerCamelCase = model.__dict__.pop("""_original_forward""" , A__ ) if original_forward is not None: while hasattr(A__ , """__wrapped__""" ): __lowerCamelCase = forward.__wrapped__ if forward == original_forward: break __lowerCamelCase = forward if getattr(A__ , """_converted_to_transformer_engine""" , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: __lowerCamelCase = model __lowerCamelCase = compiled_model return model def lowerCamelCase__ ( ): '''simple docstring''' PartialState().wait_for_everyone() def lowerCamelCase__ ( A__ : Dict , A__ : str ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def lowerCamelCase__ ( **A__ : Tuple ): '''simple docstring''' for key, value in kwargs.items(): __lowerCamelCase = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' if not hasattr(A__ , """__qualname__""" ) and not hasattr(A__ , """__name__""" ): __lowerCamelCase = getattr(A__ , """__class__""" , A__ ) if hasattr(A__ , """__qualname__""" ): return obj.__qualname__ if hasattr(A__ , """__name__""" ): return obj.__name__ return str(A__ ) def lowerCamelCase__ ( A__ : str , A__ : int ): '''simple docstring''' for key, value in source.items(): if isinstance(A__ , A__ ): __lowerCamelCase = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: __lowerCamelCase = value return destination def lowerCamelCase__ ( A__ : int = None ): '''simple docstring''' if port is None: __lowerCamelCase = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
1
def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' assert x is not None assert y is not None __lowerCamelCase = len(A__ ) __lowerCamelCase = len(A__ ) # declaring the array for storing the dp values __lowerCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase = """""" __lowerCamelCase, __lowerCamelCase = m, n while i > 0 and j > 0: __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase_ = 'AGGTAB' UpperCAmelCase_ = 'GXTXAYB' UpperCAmelCase_ = 4 UpperCAmelCase_ = 'GTAB' UpperCAmelCase_ , UpperCAmelCase_ = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase__ ( A__ : Optional[int] , A__ : str , A__ : str ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , A__ ) __lowerCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __lowerCamelCase = dataset_size < in_memory_max_size else: __lowerCamelCase = False __lowerCamelCase = is_small_dataset(A__ ) assert result == expected
12
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
1
def lowerCamelCase__ ( A__ : Optional[Any]=28123 ): '''simple docstring''' __lowerCamelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCamelCase = set() __lowerCamelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(A__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCamelCase__( __lowerCamelCase): def __init__( self: Dict , UpperCamelCase_: UNetaDModel , UpperCamelCase_: UNetaDModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: Optional[int] , ): super().__init__() __lowerCamelCase = value_function __lowerCamelCase = unet __lowerCamelCase = scheduler __lowerCamelCase = env __lowerCamelCase = env.get_dataset() __lowerCamelCase = {} for key in self.data.keys(): try: __lowerCamelCase = self.data[key].mean() except: # noqa: E722 pass __lowerCamelCase = {} for key in self.data.keys(): try: __lowerCamelCase = self.data[key].std() except: # noqa: E722 pass __lowerCamelCase = env.observation_space.shape[0] __lowerCamelCase = env.action_space.shape[0] def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ): return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] ): return x_in * self.stds[key] + self.means[key] def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ): if type(UpperCamelCase_ ) is dict: return {k: self.to_torch(UpperCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCamelCase_ , device=self.unet.device ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ): for key, val in cond.items(): __lowerCamelCase = val.clone() return x_in def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: int ): __lowerCamelCase = x.shape[0] __lowerCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __lowerCamelCase = torch.full((batch_size,) , UpperCamelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __lowerCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample __lowerCamelCase = torch.autograd.grad([y.sum()] , [x] )[0] __lowerCamelCase = self.scheduler._get_variance(UpperCamelCase_ ) __lowerCamelCase = torch.exp(0.5 * posterior_variance ) __lowerCamelCase = model_std * grad __lowerCamelCase = 0 __lowerCamelCase = x.detach() __lowerCamelCase = x + scale * grad __lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowerCamelCase = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , predict_epsilon=UpperCamelCase_ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) __lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowerCamelCase = self.to_torch(UpperCamelCase_ ) return x, y def __call__( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[Any]=64 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: List[str]=0.1 ): # normalize the observations and create batch dimension __lowerCamelCase = self.normalize(UpperCamelCase_ , """observations""" ) __lowerCamelCase = obs[None].repeat(UpperCamelCase_ , axis=0 ) __lowerCamelCase = {0: self.to_torch(UpperCamelCase_ )} __lowerCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __lowerCamelCase = randn_tensor(UpperCamelCase_ , device=self.unet.device ) __lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowerCamelCase = self.to_torch(UpperCamelCase_ ) # run the diffusion process __lowerCamelCase, __lowerCamelCase = self.run_diffusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # sort output trajectories by value __lowerCamelCase = y.argsort(0 , descending=UpperCamelCase_ ).squeeze() __lowerCamelCase = x[sorted_idx] __lowerCamelCase = sorted_values[:, :, : self.action_dim] __lowerCamelCase = actions.detach().cpu().numpy() __lowerCamelCase = self.de_normalize(UpperCamelCase_ , key="""actions""" ) # select the action with the highest value if y is not None: __lowerCamelCase = 0 else: # if we didn't run value guiding, select a random action __lowerCamelCase = np.random.randint(0 , UpperCamelCase_ ) __lowerCamelCase = denorm_actions[selected_index, 0] return denorm_actions
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
1
def lowerCamelCase__ ( A__ : int = 10 ): '''simple docstring''' if not isinstance(A__ , A__ ) or n < 0: raise ValueError("""Invalid input""" ) __lowerCamelCase = 10**n __lowerCamelCase = 28433 * (pow(2 , 7830457 , A__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
def lowerCamelCase__ ( A__ : float , A__ : float ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
import string from math import logaa def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) __lowerCamelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCamelCase = corpus_without_punctuation.split("""\n""" ) __lowerCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(A__ )) def lowerCamelCase__ ( A__ : int , A__ : int , A__ : Optional[Any]=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return round(tf * idf , 3 )
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __lowerCamelCase = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=None ): __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCamelCase = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) __lowerCamelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(UpperCamelCase_ , """w""" , newline="""\n""" ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , """r""" ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) # Copy consistency with a really long name __lowerCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , UpperCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_ ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
12
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = [5, 11, 17, 23] __lowerCamelCase = [256, 512, 1024, 1024] __lowerCamelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowerCamelCase = 768 __lowerCamelCase = [1, 1, 1, 0.5] __lowerCamelCase = [256, 512, 768, 768] __lowerCamelCase = 150 __lowerCamelCase = 16 __lowerCamelCase = (1, 384, 384) __lowerCamelCase = False __lowerCamelCase = """project""" if "ade" in checkpoint_url: __lowerCamelCase = True __lowerCamelCase = 768 __lowerCamelCase = [1, 1, 1, 0.5] __lowerCamelCase = 150 __lowerCamelCase = 16 __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = """ade20k-id2label.json""" __lowerCamelCase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="""dataset""" ) ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowerCamelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowerCamelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowerCamelCase = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: __lowerCamelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowerCamelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowerCamelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowerCamelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowerCamelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowerCamelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowerCamelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowerCamelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowerCamelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowerCamelCase = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __lowerCamelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowerCamelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowerCamelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowerCamelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowerCamelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowerCamelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowerCamelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowerCamelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowerCamelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowerCamelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: __lowerCamelCase = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: __lowerCamelCase = name.replace("""..""" , """.""" ) if "stem.conv" in name: __lowerCamelCase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: __lowerCamelCase = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: __lowerCamelCase = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: __lowerCamelCase = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: __lowerCamelCase = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: __lowerCamelCase = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: config.hidden_size, :] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A__ : Any , A__ : Dict , A__ : Any , A__ : Any , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = get_dpt_config(A__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowerCamelCase = torch.load(A__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(A__ ) # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(A__ ) __lowerCamelCase = val # read in qkv matrices read_in_q_k_v(A__ , A__ ) # load HuggingFace model __lowerCamelCase = DPTForSemanticSegmentation(A__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(A__ ) model.load_state_dict(A__ ) model.eval() # Check outputs on an image __lowerCamelCase = 480 if """ade""" in checkpoint_url else 384 __lowerCamelCase = DPTImageProcessor(size=A__ ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(A__ , return_tensors="""pt""" ) # forward pass __lowerCamelCase = model(**A__ ).logits if """ade""" in checkpoint_url else model(**A__ ).predicted_depth if show_prediction: __lowerCamelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=A__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCAmelCase_ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = (UnCLIPScheduler,) def lowerCAmelCase__ ( self: List[Any] , **UpperCamelCase_: Any ): __lowerCamelCase = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self: Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) __lowerCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=UpperCamelCase_ ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=UpperCamelCase_ ) - -0.001_0011 < 1E-5 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) __lowerCamelCase = scheduler.timesteps __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) ) __lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(25 ) __lowerCamelCase = scheduler.timesteps __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) if i + 1 == timesteps.shape[0]: __lowerCamelCase = None else: __lowerCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) ) __lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def lowerCAmelCase__ ( self: Any ): pass def lowerCAmelCase__ ( self: Union[str, Any] ): pass
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=99 , UpperCamelCase_: List[str]=13 , UpperCamelCase_: int=16 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[str]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=False , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Any=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: str=30 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Dict=1 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Dict=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_model __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = eos_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = use_cache __lowerCamelCase = max_position_embeddings __lowerCamelCase = None __lowerCamelCase = decoder_seq_length __lowerCamelCase = 2 __lowerCamelCase = 1 def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , ): __lowerCamelCase = True __lowerCamelCase = TrOCRDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() __lowerCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) ) self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 ) __lowerCamelCase = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(UpperCamelCase_ )["""last_hidden_state"""] __lowerCamelCase = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )["""last_hidden_state"""] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase__ : Dict = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Dict = False def lowerCAmelCase__ ( self: str ): __lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase_ ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: List[str] ): pass def lowerCAmelCase__ ( self: Union[str, Any] ): pass def lowerCAmelCase__ ( self: List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase__ ( self: Union[str, Any] ): pass
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' def wrapper(*A__ : Dict , **A__ : Dict ): __lowerCamelCase = timeit.default_timer() __lowerCamelCase = func(*A__ , **A__ ) __lowerCamelCase = timeit.default_timer() - starttime return delta __lowerCamelCase = func.__name__ return wrapper def lowerCamelCase__ ( A__ : dict , A__ : Tuple=100 , A__ : Optional[Any]=None ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = seq_shapes or {} for i in range(A__ ): __lowerCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A__ , _ArrayXD ): __lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A__ , datasets.Value ): if v.dtype == "string": __lowerCamelCase = """The small grey turtle was surprisingly fast when challenged.""" else: __lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(A__ , datasets.Sequence ): while isinstance(A__ , datasets.Sequence ): __lowerCamelCase = v.feature __lowerCamelCase = seq_shapes[k] __lowerCamelCase = np.random.rand(*A__ ).astype(v.dtype ) __lowerCamelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Optional[int]=100 , A__ : int=None ): '''simple docstring''' __lowerCamelCase = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ ) with ArrowWriter(features=A__ , path=A__ ) as writer: for key, record in dummy_data: __lowerCamelCase = features.encode_example(A__ ) writer.write(A__ ) __lowerCamelCase, __lowerCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __lowerCamelCase = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) ) return dataset
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A__ : List[str] , A__ : Any , A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = FunnelConfig.from_json_file(A__ ) print(f'Building PyTorch model from configuration: {config}' ) __lowerCamelCase = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(A__ , A__ , A__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' __lowerCamelCase = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any]=None , A__ : Any=None ): '''simple docstring''' if conf_path is None: __lowerCamelCase = """./model_checkpoints/vqgan_only.yaml""" __lowerCamelCase = load_config(A__ , display=A__ ) __lowerCamelCase = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase = """./model_checkpoints/vqgan_only.pt""" __lowerCamelCase = torch.load(A__ , map_location=A__ ) if ".ckpt" in ckpt_path: __lowerCamelCase = sd["""state_dict"""] model.load_state_dict(A__ , strict=A__ ) model.to(A__ ) del sd return model def lowerCamelCase__ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = model.encode(A__ ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) __lowerCamelCase = model.decode(A__ ) return xrec def lowerCamelCase__ ( A__ : Tuple , A__ : List[Any]=False ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = string.rsplit(""".""" , 1 ) if reload: __lowerCamelCase = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ , package=A__ ) , cls ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : Dict=True , A__ : int=True ): '''simple docstring''' __lowerCamelCase = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( A__ : List[Any] , A__ : str , A__ : Dict , A__ : List[Any] ): '''simple docstring''' if ckpt: __lowerCamelCase = torch.load(A__ , map_location="""cpu""" ) __lowerCamelCase = pl_sd["""global_step"""] print(f'loaded model from global step {global_step}.' ) else: __lowerCamelCase = {"""state_dict""": None} __lowerCamelCase = None __lowerCamelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=A__ , eval_mode=A__ )["""model"""] return model, global_step
12
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( A__ : str , A__ : list[str] ): '''simple docstring''' __lowerCamelCase = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCamelCase = random.choice(A__ ) return "".join(A__ ) def lowerCamelCase__ ( A__ : tuple[str, float] , A__ : list[tuple[str, float]] , A__ : list[str] , ): '''simple docstring''' __lowerCamelCase = [] # Generate more children proportionally to the fitness score. __lowerCamelCase = int(parent_a[1] * 100 ) + 1 __lowerCamelCase = 10 if child_n >= 10 else child_n for _ in range(A__ ): __lowerCamelCase = population_score[random.randint(0 , A__ )][0] __lowerCamelCase, __lowerCamelCase = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def lowerCamelCase__ ( A__ : str , A__ : list[str] , A__ : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: __lowerCamelCase = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCamelCase = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(A__ ) # Generate random starting population. __lowerCamelCase = [] for _ in range(A__ ): population.append("""""".join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCamelCase, __lowerCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCamelCase = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. __lowerCamelCase = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. __lowerCamelCase = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) UpperCAmelCase_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
12
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = 'RegNetConfig' # Base docstring UpperCAmelCase_ = 'facebook/regnet-y-040' UpperCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring UpperCAmelCase_ = 'facebook/regnet-y-040' UpperCAmelCase_ = 'tabby, tabby cat' UpperCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[str] = "relu" , **UpperCamelCase_: List[str] , ): super().__init__(**UpperCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=UpperCamelCase_ , kernel_size=UpperCamelCase_ , strides=UpperCamelCase_ , padding="""VALID""" , groups=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" , ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __lowerCamelCase = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = self.convolution(self.padding(UpperCamelCase_ ) ) __lowerCamelCase = self.normalization(UpperCamelCase_ ) __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Tuple ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = config.num_channels __lowerCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any ): __lowerCamelCase = shape_list(UpperCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 2, 3, 1) ) __lowerCamelCase = self.embedder(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 2 , **UpperCamelCase_: List[Any] ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = tf.keras.layers.ConvaD( filters=UpperCamelCase_ , kernel_size=1 , strides=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" ) __lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False ): return self.normalization(self.convolution(UpperCamelCase_ ) , training=UpperCamelCase_ ) class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: str , UpperCamelCase_: int , UpperCamelCase_: int , **UpperCamelCase_: str ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" ) __lowerCamelCase = [ tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase = self.pooler(UpperCamelCase_ ) for layer_module in self.attention: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = hidden_state * pooled return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: Any ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase = [ TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.2""" ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = self.shortcut(UpperCamelCase_ ) hidden_state += residual __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: Any , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __lowerCamelCase = [ TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(UpperCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.3""" ), ] __lowerCamelCase = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): __lowerCamelCase = hidden_state for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) __lowerCamelCase = self.shortcut(UpperCamelCase_ ) hidden_state += residual __lowerCamelCase = self.activation(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: List[str] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , **UpperCamelCase_: Tuple ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __lowerCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , name="""layers.0""" ), *[layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): for layer_module in self.layers: __lowerCamelCase = layer_module(UpperCamelCase_ ) return hidden_state class lowerCamelCase__( tf.keras.layers.Layer): def __init__( self: List[Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Dict ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( UpperCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(UpperCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , depth=UpperCamelCase_ , name=F'stages.{i+1}' ) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True ): __lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) __lowerCamelCase = stage_module(UpperCamelCase_ ) if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=UpperCamelCase_ , hidden_states=UpperCamelCase_ ) @keras_serializable class lowerCamelCase__( tf.keras.layers.Layer): UpperCAmelCase__ : Union[str, Any] = RegNetConfig def __init__( self: str , UpperCamelCase_: str , **UpperCamelCase_: List[str] ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = config __lowerCamelCase = TFRegNetEmbeddings(UpperCamelCase_ , name="""embedder""" ) __lowerCamelCase = TFRegNetEncoder(UpperCamelCase_ , name="""encoder""" ) __lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" ) @unpack_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.embedder(UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = self.encoder( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = encoder_outputs[0] __lowerCamelCase = self.pooler(UpperCamelCase_ ) # Change to NCHW output format have uniformity in the modules __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) __lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase = tuple([tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase_ , pooler_output=UpperCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = RegNetConfig UpperCAmelCase__ : str = 'regnet' UpperCAmelCase__ : Union[str, Any] = 'pixel_values' @property def lowerCAmelCase__ ( self: Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} UpperCAmelCase_ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCamelCase , ) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: List[str] , **UpperCamelCase_: Any ): super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: int=False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( pixel_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCamelCase , ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): def __init__( self: Optional[int] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Dict ): super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = config.num_labels __lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" ) # classification head __lowerCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: bool = None , UpperCamelCase_: bool = None , UpperCamelCase_: List[str]=False , ): __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier[0](UpperCamelCase_ ) __lowerCamelCase = self.classifier[1](UpperCamelCase_ ) __lowerCamelCase = None if labels is None else self.hf_compute_loss(labels=UpperCamelCase_ , logits=UpperCamelCase_ ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=UpperCamelCase_ , logits=UpperCamelCase_ , hidden_states=outputs.hidden_states )
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa ) __lowerCamelCase, __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCamelCase_ , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa ) __lowerCamelCase = controlnet_params __lowerCamelCase = """bird""" __lowerCamelCase = jax.device_count() __lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) __lowerCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.split(UpperCamelCase_ , jax.device_count() ) __lowerCamelCase = replicate(UpperCamelCase_ ) __lowerCamelCase = shard(UpperCamelCase_ ) __lowerCamelCase = shard(UpperCamelCase_ ) __lowerCamelCase = pipe( prompt_ids=UpperCamelCase_ , image=UpperCamelCase_ , params=UpperCamelCase_ , prng_seed=UpperCamelCase_ , num_inference_steps=50 , jit=UpperCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase, __lowerCamelCase = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa ) __lowerCamelCase, __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCamelCase_ , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa ) __lowerCamelCase = controlnet_params __lowerCamelCase = """Chef in the kitchen""" __lowerCamelCase = jax.device_count() __lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) __lowerCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.split(UpperCamelCase_ , jax.device_count() ) __lowerCamelCase = replicate(UpperCamelCase_ ) __lowerCamelCase = shard(UpperCamelCase_ ) __lowerCamelCase = shard(UpperCamelCase_ ) __lowerCamelCase = pipe( prompt_ids=UpperCamelCase_ , image=UpperCamelCase_ , params=UpperCamelCase_ , prng_seed=UpperCamelCase_ , num_inference_steps=50 , jit=UpperCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
12
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Dict , *UpperCamelCase_: List[Any] , **UpperCamelCase_: str ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
import os import string import sys UpperCAmelCase_ = 1 << 8 UpperCAmelCase_ = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCAmelCase_ = KEYMAP['up'] UpperCAmelCase_ = KEYMAP['left'] if sys.platform == "win32": UpperCAmelCase_ = [] UpperCAmelCase_ = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase_ = ord(str(i)) def lowerCamelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt __lowerCamelCase = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A__ ) == 0: # Read the keystroke __lowerCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(A__ ) if ord(A__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __lowerCamelCase = chr(KEYMAP["""esc"""] ) except KeyError: __lowerCamelCase = cha[1] else: __lowerCamelCase = ch.decode(A__ ) else: __lowerCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCamelCase = sys.stdin.fileno() __lowerCamelCase = termios.tcgetattr(A__ ) try: tty.setraw(A__ ) __lowerCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(A__ , termios.TCSADRAIN , A__ ) return ch def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = get_raw_chars() if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A__ ) == KEYMAP["esc"]: __lowerCamelCase = get_raw_chars() if ord(A__ ) == KEYMAP["mod_int"]: __lowerCamelCase = get_raw_chars() if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
import argparse import datetime def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } __lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __lowerCamelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __lowerCamelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day __lowerCamelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __lowerCamelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year __lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __lowerCamelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) ) # Start math if m <= 2: __lowerCamelCase = y - 1 __lowerCamelCase = m + 12 # maths var __lowerCamelCase = int(str(A__ )[:2] ) __lowerCamelCase = int(str(A__ )[2:] ) __lowerCamelCase = int(2.6 * m - 5.39 ) __lowerCamelCase = int(c / 4 ) __lowerCamelCase = int(k / 4 ) __lowerCamelCase = int(d + k ) __lowerCamelCase = int(t + u + v + x ) __lowerCamelCase = int(z - (2 * c) ) __lowerCamelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __lowerCamelCase = f'Your date {date_input}, is a {days[str(A__ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase_ = parser.parse_args() zeller(args.date_input)
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
1
def lowerCamelCase__ ( A__ : int = 10 , A__ : int = 22 ): '''simple docstring''' __lowerCamelCase = range(1 , A__ ) __lowerCamelCase = range(1 , A__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } __lowerCamelCase = Dataset.from_dict(A__ ) return dataset class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = get_dataset() __lowerCamelCase = make_duplicate_clusters(UpperCamelCase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = get_dataset() __lowerCamelCase, __lowerCamelCase = deduplicate_dataset(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) print(UpperCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , UpperCamelCase_ )
12
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCAmelCase_ = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } UpperCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' UpperCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase__ ( A__ : tuple ): '''simple docstring''' return x[0] def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_letter_count(A__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=A__ ) __lowerCamelCase = """""".join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=A__ , reverse=A__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_frequency_order(A__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = 'bart' UpperCAmelCase__ : Dict = ['past_key_values'] UpperCAmelCase__ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: str , UpperCamelCase_: Any=5_02_65 , UpperCamelCase_: Dict=10_24 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Dict=40_96 , UpperCamelCase_: List[str]=16 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Union[str, Any]=40_96 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: str=0.0 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[Any]=10_24 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: str=0.02 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Dict=False , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Dict=3 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Dict=0 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: List[Any]=2 , **UpperCamelCase_: int , ): __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = classifier_dropout __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase_ ): __lowerCamelCase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Tuple ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowerCamelCase = {0: """batch"""} __lowerCamelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""} __lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowerCamelCase, __lowerCamelCase = self.num_layers for i in range(UpperCamelCase_ ): __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase__ ( self: Dict ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = super().outputs else: __lowerCamelCase = super(UpperCamelCase_ , self ).outputs if self.use_past: __lowerCamelCase, __lowerCamelCase = self.num_layers for i in range(UpperCamelCase_ ): __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs __lowerCamelCase = seq_length if not self.use_past else 1 __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowerCamelCase = dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape __lowerCamelCase = common_inputs["""decoder_input_ids"""].shape[1] __lowerCamelCase, __lowerCamelCase = self.num_attention_heads __lowerCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase = decoder_seq_length + 3 __lowerCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCamelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) __lowerCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCamelCase, __lowerCamelCase = self.num_layers __lowerCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers __lowerCamelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. __lowerCamelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase, __lowerCamelCase = self.num_layers __lowerCamelCase, __lowerCamelCase = self.num_attention_heads __lowerCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase = common_inputs["""attention_mask"""].dtype __lowerCamelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) __lowerCamelCase = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) __lowerCamelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCamelCase = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) elif self.task == "causal-lm": __lowerCamelCase = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCAmelCase_ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: __lowerCamelCase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: __lowerCamelCase = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCamelCase = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: __lowerCamelCase = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = {} import re __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_conv_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_proj_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __lowerCamelCase = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __lowerCamelCase = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __lowerCamelCase = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: __lowerCamelCase = original_key __lowerCamelCase = replace_key(A__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __lowerCamelCase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __lowerCamelCase = original_key __lowerCamelCase = original_key __lowerCamelCase = value return new_dict @torch.no_grad() def lowerCamelCase__ ( A__ : str=None , A__ : List[Any]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __lowerCamelCase = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) __lowerCamelCase = MODEL_MAPPING[model_name.split("""/""" )[-1]] __lowerCamelCase = JukeboxConfig.from_pretrained(A__ ) __lowerCamelCase = JukeboxModel(A__ ) __lowerCamelCase = [] __lowerCamelCase = {} for i, dict_name in enumerate(A__ ): __lowerCamelCase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] __lowerCamelCase = {} for k in old_dic.keys(): if k.endswith(""".b""" ): __lowerCamelCase = old_dic[k] elif k.endswith(""".w""" ): __lowerCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCamelCase = old_dic[k] else: __lowerCamelCase = old_dic[k] __lowerCamelCase = """vqvae""" if i == 0 else f'priors.{3 - i}' __lowerCamelCase = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) __lowerCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(A__ , A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1
import numpy # List of input, output pairs UpperCAmelCase_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase_ = [2, 4, 1, 5] UpperCAmelCase_ = len(train_data) UpperCAmelCase_ = 0.009 def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]="train" ): '''simple docstring''' return calculate_hypothesis_value(A__ , A__ ) - output( A__ , A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( A__ : Dict , A__ : int ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( A__ : str , A__ : List[Any]=m ): '''simple docstring''' __lowerCamelCase = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = summation_of_cost_derivative(A__ , A__ ) / m return cost_derivative_value def lowerCamelCase__ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 , len(A__ ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__ , A__ , atol=A__ , rtol=A__ , ): break __lowerCamelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def lowerCamelCase__ ( ): '''simple docstring''' for i in range(len(A__ ) ): print(("""Actual output value:""", output(A__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(A__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
12
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
1
import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase_ = re.compile(r'\b(a|an|the)\b', re.UNICODE) UpperCAmelCase_ = None def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=A__ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=A__ , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' def remove_articles(A__ : List[Any] ): return ARTICLES_REGEX.sub(""" """ , A__ ) def white_space_fix(A__ : List[Any] ): return " ".join(text.split() ) def remove_punc(A__ : Optional[Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' if not s: return [] return normalize_answer(A__ ).split() def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' return int(normalize_answer(A__ ) == normalize_answer(A__ ) ) def lowerCamelCase__ ( A__ : Dict , A__ : str ): '''simple docstring''' __lowerCamelCase = get_tokens(A__ ) __lowerCamelCase = get_tokens(A__ ) __lowerCamelCase = collections.Counter(A__ ) & collections.Counter(A__ ) __lowerCamelCase = sum(common.values() ) if len(A__ ) == 0 or len(A__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(A__ ) __lowerCamelCase = 1.0 * num_same / len(A__ ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Dict ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa["""id"""] __lowerCamelCase = [t for t in qa["""answers"""]["""text"""] if normalize_answer(A__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [""""""] if qid not in preds: print(f'Missing prediction for {qid}' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(A__ , A__ ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(A__ , A__ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase__ ( A__ : Dict , A__ : str , A__ : Dict , A__ : Any ): '''simple docstring''' __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def lowerCamelCase__ ( A__ : Optional[int] , A__ : Tuple , A__ : str=None ): '''simple docstring''' if not qid_list: __lowerCamelCase = len(A__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: __lowerCamelCase = len(A__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def lowerCamelCase__ ( A__ : List[Any] , A__ : Union[str, Any] , A__ : Tuple ): '''simple docstring''' for k in new_eval: __lowerCamelCase = new_eval[k] def lowerCamelCase__ ( A__ : Tuple , A__ : int , A__ : Dict , A__ : Optional[int] ): '''simple docstring''' plt.step(A__ , A__ , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(A__ , A__ , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(A__ ) plt.savefig(A__ ) plt.clf() def lowerCamelCase__ ( A__ : Dict , A__ : List[str] , A__ : int , A__ : Dict , A__ : Any=None , A__ : Optional[Any]=None ): '''simple docstring''' __lowerCamelCase = sorted(A__ , key=lambda A__ : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(A__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(A__ ) if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(A__ ) recalls.append(A__ ) if out_image: plot_pr_curve(A__ , A__ , A__ , A__ ) return {"ap": 100.0 * avg_prec} def lowerCamelCase__ ( A__ : str , A__ : Union[str, Any] , A__ : Optional[int] , A__ : int , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' if out_image_dir and not os.path.exists(A__ ): os.makedirs(A__ ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) __lowerCamelCase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) __lowerCamelCase = {k: float(A__ ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(A__ , A__ , """pr_exact""" ) merge_eval(A__ , A__ , """pr_f1""" ) merge_eval(A__ , A__ , """pr_oracle""" ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : int , A__ : int ): '''simple docstring''' if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(A__ ) / float(len(A__ ) ) plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(A__ , f'na_prob_hist_{name}.png' ) ) plt.clf() def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Tuple , A__ : int ): '''simple docstring''' __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(A__ , key=lambda A__ : na_probs[k] ) for i, qid in enumerate(A__ ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(A__ ), best_thresh def lowerCamelCase__ ( A__ : str , A__ : List[str] , A__ : Optional[Any] , A__ : Any , A__ : str , A__ : int ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = find_best_thresh(A__ , A__ , A__ , A__ ) __lowerCamelCase, __lowerCamelCase = find_best_thresh(A__ , A__ , A__ , A__ ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def lowerCamelCase__ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(A__ ) __lowerCamelCase = dataset_json["""data"""] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(A__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(A__ ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(A__ ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase, __lowerCamelCase = get_raw_scores(A__ , A__ ) __lowerCamelCase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(A__ , A__ ) if has_ans_qids: __lowerCamelCase = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , """HasAns""" ) if no_ans_qids: __lowerCamelCase = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(A__ , A__ ) else: print(json.dumps(A__ , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCAmelCase_ = 'true' def lowerCamelCase__ ( A__ : Any , A__ : List[str]=82 , A__ : int=16 ): '''simple docstring''' set_seed(42 ) __lowerCamelCase = RegressionModel() __lowerCamelCase = deepcopy(A__ ) __lowerCamelCase = RegressionDataset(length=A__ ) __lowerCamelCase = DataLoader(A__ , batch_size=A__ ) model.to(accelerator.device ) __lowerCamelCase, __lowerCamelCase = accelerator.prepare(A__ , A__ ) return model, ddp_model, dataloader def lowerCamelCase__ ( A__ : Accelerator , A__ : List[Any]=False ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(A__ : str ): __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs with accelerator.main_process_first(): __lowerCamelCase = dataset.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : List[str] ): if use_longest: return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(A__ , shuffle=A__ , collate_fn=A__ , batch_size=16 ) def lowerCamelCase__ ( A__ : int , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = Accelerator(dispatch_batches=A__ , split_batches=A__ ) __lowerCamelCase = get_dataloader(A__ , not dispatch_batches ) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=A__ ) __lowerCamelCase, __lowerCamelCase = accelerator.prepare(A__ , A__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( A__ : Any , A__ : List[Any] , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = [] for batch in dataloader: __lowerCamelCase, __lowerCamelCase = batch.values() with torch.no_grad(): __lowerCamelCase = model(A__ ) __lowerCamelCase, __lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase, __lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(A__ ) targs.append(A__ ) __lowerCamelCase, __lowerCamelCase = torch.cat(A__ ), torch.cat(A__ ) return logits, targs def lowerCamelCase__ ( A__ : Accelerator , A__ : List[Any]=82 , A__ : List[Any]=False , A__ : str=False , A__ : Union[str, Any]=16 ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = get_basic_setup(A__ , A__ , A__ ) __lowerCamelCase, __lowerCamelCase = generate_predictions(A__ , A__ , A__ ) assert ( len(A__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A__ )}' def lowerCamelCase__ ( A__ : bool = False , A__ : bool = False ): '''simple docstring''' __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase, __lowerCamelCase = get_mrpc_setup(A__ , A__ ) # First do baseline __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = setup["""no"""] model.to(A__ ) model.eval() for batch in dataloader: batch.to(A__ ) with torch.inference_mode(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A__ , references=batch["""labels"""] ) __lowerCamelCase = metric.compute() # Then do distributed __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase = batch["""labels"""] __lowerCamelCase, __lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A__ , references=A__ ) __lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Accelerator(split_batches=A__ , dispatch_batches=A__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(A__ , A__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase = Accelerator(split_batches=A__ , dispatch_batches=A__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(A__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) __lowerCamelCase = Accelerator() test_torch_metrics(A__ , 512 ) accelerator.state._reset_state() def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
12
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger() def lowerCamelCase__ ( A__ : int , A__ : str , A__ : LevitConfig , A__ : Path , A__ : bool = True ): '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowerCamelCase = timm.create_model("""levit_128s""" , pretrained=A__ ) else: __lowerCamelCase = timm.create_model("""levit_128""" , pretrained=A__ ) if hidden_sizes == 192: __lowerCamelCase = timm.create_model("""levit_192""" , pretrained=A__ ) if hidden_sizes == 256: __lowerCamelCase = timm.create_model("""levit_256""" , pretrained=A__ ) if hidden_sizes == 384: __lowerCamelCase = timm.create_model("""levit_384""" , pretrained=A__ ) from_model.eval() __lowerCamelCase = LevitForImageClassificationWithTeacher(A__ ).eval() __lowerCamelCase = OrderedDict() __lowerCamelCase = from_model.state_dict() __lowerCamelCase = list(from_model.state_dict().keys() ) __lowerCamelCase = list(our_model.state_dict().keys() ) print(len(A__ ) , len(A__ ) ) for i in range(len(A__ ) ): __lowerCamelCase = weights[og_keys[i]] our_model.load_state_dict(A__ ) __lowerCamelCase = torch.randn((2, 3, 224, 224) ) __lowerCamelCase = from_model(A__ ) __lowerCamelCase = our_model(A__ ).logits assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." __lowerCamelCase = name print(A__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowerCamelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'Pushed {checkpoint_name}' ) def lowerCamelCase__ ( A__ : Path , A__ : str = None , A__ : bool = True ): '''simple docstring''' __lowerCamelCase = """imagenet-1k-id2label.json""" __lowerCamelCase = 1000 __lowerCamelCase = (1, num_labels) __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) __lowerCamelCase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __lowerCamelCase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: str , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: str , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[str] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = ['sentencepiece'] def __init__( self: List[str] , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : List[Any] = ['sentencepiece'] def __init__( self: Optional[Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Dict = ['sentencepiece'] def __init__( self: Any , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = ['sentencepiece'] def __init__( self: Any , *UpperCamelCase_: int , **UpperCamelCase_: Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: Optional[int] , *UpperCamelCase_: Any , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: Dict , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[Any] = ['sentencepiece'] def __init__( self: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: List[Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Dict = ['sentencepiece'] def __init__( self: List[str] , *UpperCamelCase_: int , **UpperCamelCase_: Dict ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Any = ['sentencepiece'] def __init__( self: Dict , *UpperCamelCase_: int , **UpperCamelCase_: Any ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = ['sentencepiece'] def __init__( self: int , *UpperCamelCase_: Any , **UpperCamelCase_: Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: int , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: Optional[Any] , *UpperCamelCase_: Any , **UpperCamelCase_: Union[str, Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Any = ['sentencepiece'] def __init__( self: Optional[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: List[str] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : str = ['sentencepiece'] def __init__( self: Tuple , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: List[str] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[Any] = ['sentencepiece'] def __init__( self: List[str] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: str , *UpperCamelCase_: Any , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: List[str] , *UpperCamelCase_: int , **UpperCamelCase_: Dict ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: List[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Any ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Any = ['sentencepiece'] def __init__( self: Dict , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Union[str, Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Any = ['sentencepiece'] def __init__( self: Optional[int] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Tuple ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : List[Any] = ['sentencepiece'] def __init__( self: str , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : int = ['sentencepiece'] def __init__( self: Union[str, Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Any ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : str = ['sentencepiece'] def __init__( self: Union[str, Any] , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : int = ['sentencepiece'] def __init__( self: Optional[int] , *UpperCamelCase_: Tuple , **UpperCamelCase_: str ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : int = ['sentencepiece'] def __init__( self: Dict , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Tuple = ['sentencepiece'] def __init__( self: Dict , *UpperCamelCase_: int , **UpperCamelCase_: int ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['sentencepiece'] def __init__( self: List[str] , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Union[str, Any] ): requires_backends(self , ["""sentencepiece"""] ) class lowerCamelCase__( metaclass=__lowerCamelCase): UpperCAmelCase__ : int = ['sentencepiece'] def __init__( self: Optional[Any] , *UpperCamelCase_: List[str] , **UpperCamelCase_: int ): requires_backends(self , ["""sentencepiece"""] )
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } UpperCAmelCase_ = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Dict = ['input_ids', 'attention_mask'] UpperCAmelCase__ : Union[str, Any] = DistilBertTokenizer def __init__( self: str , UpperCamelCase_: Dict=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Any="[UNK]" , UpperCamelCase_: Optional[int]="[SEP]" , UpperCamelCase_: Any="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Dict="[MASK]" , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=None , **UpperCamelCase_: Union[str, Any] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**UpperCamelCase_ ) __lowerCamelCase = do_lower_case def lowerCAmelCase__ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None ): __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
import copy import random from transformers import CLIPTokenizer class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[str] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = {} def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[int] , *UpperCamelCase_: Dict , **UpperCamelCase_: Tuple ): __lowerCamelCase = super().add_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , *UpperCamelCase_: Any , UpperCamelCase_: Optional[Any]=1 , **UpperCamelCase_: Optional[Any] ): __lowerCamelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) else: __lowerCamelCase = [] for i in range(UpperCamelCase_ ): __lowerCamelCase = placeholder_token + F'_{i}' self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) __lowerCamelCase = output def lowerCAmelCase__ ( self: int , UpperCamelCase_: str , UpperCamelCase_: List[str]=False , UpperCamelCase_: Optional[Any]=1.0 ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowerCamelCase = self.token_map[placeholder_token] __lowerCamelCase = tokens[: 1 + int(len(UpperCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: __lowerCamelCase = copy.copy(UpperCamelCase_ ) random.shuffle(UpperCamelCase_ ) __lowerCamelCase = text.replace(UpperCamelCase_ , """ """.join(UpperCamelCase_ ) ) return text def __call__( self: str , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str]=False , UpperCamelCase_: List[str]=1.0 , **UpperCamelCase_: Tuple ): return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[Any] , *UpperCamelCase_: Optional[int] , UpperCamelCase_: str=False , UpperCamelCase_: int=1.0 , **UpperCamelCase_: List[Any] ): return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , )
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = set() # edges = list of graph's edges __lowerCamelCase = get_edges(A__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __lowerCamelCase, __lowerCamelCase = edges.pop() chosen_vertices.add(A__ ) chosen_vertices.add(A__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(A__ ) return chosen_vertices def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'swin2sr' UpperCAmelCase__ : List[Any] = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: List[str] , UpperCamelCase_: List[str]=64 , UpperCamelCase_: str=1 , UpperCamelCase_: int=3 , UpperCamelCase_: Any=1_80 , UpperCamelCase_: Optional[Any]=[6, 6, 6, 6, 6, 6] , UpperCamelCase_: Optional[int]=[6, 6, 6, 6, 6, 6] , UpperCamelCase_: Union[str, Any]=8 , UpperCamelCase_: Union[str, Any]=2.0 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: str=2 , UpperCamelCase_: int=1.0 , UpperCamelCase_: str="1conv" , UpperCamelCase_: Any="pixelshuffle" , **UpperCamelCase_: Optional[Any] , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = upscale __lowerCamelCase = img_range __lowerCamelCase = resi_connection __lowerCamelCase = upsampler
12
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase__ ( A__ : List[Any] , A__ : Union[str, Any] , A__ : Any=None , A__ : List[str]=None ): '''simple docstring''' if attention_mask is None: __lowerCamelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase__: UpperCAmelCase__ : Tuple = OPTConfig UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : int = 'gelu' def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple=13 , UpperCamelCase_: str=7 , UpperCamelCase_: Tuple=True , UpperCamelCase_: int=False , UpperCamelCase_: str=99 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: List[Any]=20 , UpperCamelCase_: str=2 , UpperCamelCase_: Tuple=1 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: List[str]=16 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = embed_dim __lowerCamelCase = word_embed_proj_dim __lowerCamelCase = False def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCamelCase_ , **self.config_updates , ) __lowerCamelCase = prepare_opt_inputs_dict(UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str ): __lowerCamelCase = TFOPTModel(config=UpperCamelCase_ ) __lowerCamelCase = inputs_dict["""input_ids"""] __lowerCamelCase = input_ids[:1, :] __lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] __lowerCamelCase = 1 # first forward pass __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) @require_tf class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase__ : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase__ : str = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : Any = 10 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = TFOPTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCamelCase_: Tuple , UpperCamelCase_: Tuple ): if hasattr(UpperCamelCase_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCamelCase_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowerCamelCase = model_class(config=UpperCamelCase_ ) __lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_input_embeddings() ) __lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCamelCase_ ) __lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_input_embeddings() ) __lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCamelCase_ ) # check that weights remain the same after resizing __lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase = False self.assertTrue(UpperCamelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCamelCase_ ) __lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase = False self.assertTrue(UpperCamelCase_ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return tf.constant(A__ , dtype=tf.intaa ) @require_tf class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : Dict = 99 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCamelCase = input_ids.shape[0] __lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: int ): __lowerCamelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) __lowerCamelCase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowerCamelCase = tf.not_equal(UpperCamelCase_ , model.config.pad_token_id ) with tf.GradientTape(): __lowerCamelCase = model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ).last_hidden_state __lowerCamelCase = (1, 11, 5_12) self.assertEqual(output.shape , UpperCamelCase_ ) __lowerCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=4E-3 ) ) __lowerCamelCase = tf.function(UpperCamelCase_ , jit_compile=UpperCamelCase_ ) __lowerCamelCase = xla_generate(UpperCamelCase_ , UpperCamelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=4E-2 ) ) @require_tf @slow class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[Any] ): super().setUp() __lowerCamelCase = """facebook/opt-350m""" def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" , padding=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-4 ) ) __lowerCamelCase = tf.function(UpperCamelCase_ , jit_compile=UpperCamelCase_ ) __lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-4 ) ) @require_tf @slow class lowerCamelCase__( unittest.TestCase): @property def lowerCAmelCase__ ( self: int ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """facebook/opt-125m""" __lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCamelCase = [] __lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ ) for prompt in self.prompts: __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" ).input_ids __lowerCamelCase = model.generate(UpperCamelCase_ , max_length=10 ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """facebook/opt-350m""" __lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = """left""" # use different length sentences to test batching __lowerCamelCase = [ """Hello, my dog is a little""", """Today, I""", ] __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" , padding=UpperCamelCase_ ) __lowerCamelCase = inputs["""input_ids"""] __lowerCamelCase = model.generate(input_ids=UpperCamelCase_ , attention_mask=inputs["""attention_mask"""] ) __lowerCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowerCamelCase = model.generate(input_ids=UpperCamelCase_ ) __lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) __lowerCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowerCamelCase = model.generate(input_ids=UpperCamelCase_ , max_length=model.config.max_length - num_paddings ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase_ ) __lowerCamelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """facebook/opt-350m""" __lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCamelCase = [] __lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ ) for prompt in self.prompts: __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" ).input_ids __lowerCamelCase = model.generate(UpperCamelCase_ , max_length=10 ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = ['image_processor', 'tokenizer'] UpperCAmelCase__ : Dict = 'CLIPImageProcessor' UpperCAmelCase__ : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Optional[Any] ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase_ , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self: List[str] , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: int ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Tuple ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self: Optional[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self: List[str] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase_ , ) return self.image_processor
12
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
1
from math import factorial class lowerCamelCase__: def __init__( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: int ): __lowerCamelCase = real if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [1] * rank else: __lowerCamelCase = rank def __repr__( self: List[Any] ): return ( F'{self.real}+' F'{"+".join(str(UpperCamelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCamelCase_ ) def __add__( self: int , UpperCamelCase_: Tuple ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return Dual(self.real + other , self.duals ) __lowerCamelCase = self.duals.copy() __lowerCamelCase = other.duals.copy() if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): o_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) ) elif len(UpperCamelCase_ ) < len(UpperCamelCase_ ): s_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) ) __lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCamelCase_ ) UpperCAmelCase__ : Dict = __add__ def __sub__( self: List[str] , UpperCamelCase_: Dict ): return self + other * -1 def __mul__( self: Any , UpperCamelCase_: Optional[Any] ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCamelCase_ ) __lowerCamelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = __mul__ def __truediv__( self: Dict , UpperCamelCase_: Tuple ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCamelCase_ ) raise ValueError def __floordiv__( self: int , UpperCamelCase_: int ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCamelCase_ ) raise ValueError def __pow__( self: Tuple , UpperCamelCase_: str ): if n < 0 or isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self __lowerCamelCase = self for _ in range(n - 1 ): x *= self return x def lowerCamelCase__ ( A__ : List[str] , A__ : str , A__ : str ): '''simple docstring''' if not callable(A__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(A__ , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(A__ , A__ ): raise ValueError("""differentiate() requires an int as input for order""" ) __lowerCamelCase = Dual(A__ , 1 ) __lowerCamelCase = func(A__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(A__ ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
12
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
1
from __future__ import annotations import bisect def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: __lowerCamelCase = len(A__ ) while lo < hi: __lowerCamelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCamelCase = mid + 1 else: __lowerCamelCase = mid return lo def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: __lowerCamelCase = len(A__ ) while lo < hi: __lowerCamelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCamelCase = mid + 1 else: __lowerCamelCase = mid return lo def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(A__ , A__ , A__ , A__ ) , A__ ) def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(A__ , A__ , A__ , A__ ) , A__ ) def lowerCamelCase__ ( A__ : list[int] , A__ : int ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = len(A__ ) - 1 while left <= right: __lowerCamelCase = left + (right - left) // 2 __lowerCamelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCamelCase = midpoint - 1 else: __lowerCamelCase = midpoint + 1 return None def lowerCamelCase__ ( A__ : list[int] , A__ : int ): '''simple docstring''' __lowerCamelCase = bisect.bisect_left(A__ , A__ ) if index != len(A__ ) and sorted_collection[index] == item: return index return None def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int , A__ : int ): '''simple docstring''' if right < left: return None __lowerCamelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(A__ , A__ , A__ , midpoint - 1 ) else: return binary_search_by_recursion(A__ , A__ , midpoint + 1 , A__ ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ = sorted(int(item) for item in user_input.split(',')) UpperCAmelCase_ = int(input('Enter a single number to be found in the list:\n')) UpperCAmelCase_ = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
12
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : int = 'upernet' def __init__( self: str , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: Optional[Any]=[1, 2, 3, 6] , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: int=0.4 , UpperCamelCase_: Optional[Any]=3_84 , UpperCamelCase_: int=2_56 , UpperCamelCase_: int=1 , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: int=2_55 , **UpperCamelCase_: int , ): super().__init__(**UpperCamelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowerCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = backbone_config.get("""model_type""" ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(UpperCamelCase_ ) __lowerCamelCase = backbone_config __lowerCamelCase = hidden_size __lowerCamelCase = initializer_range __lowerCamelCase = pool_scales __lowerCamelCase = use_auxiliary_head __lowerCamelCase = auxiliary_loss_weight __lowerCamelCase = auxiliary_in_channels __lowerCamelCase = auxiliary_channels __lowerCamelCase = auxiliary_num_convs __lowerCamelCase = auxiliary_concat_input __lowerCamelCase = loss_ignore_index def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) __lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowerCamelCase = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: str ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , **UpperCamelCase_: List[str] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase = self.get_image_processor(do_normalize=UpperCamelCase_ ) __lowerCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = processor(text=UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = ["""cat""", """nasa badge"""] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = [["""cat""", """nasa badge"""], ["""person"""]] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = max([len(UpperCamelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """google/owlvit-base-patch32""" __lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = ["""cat""", """nasa badge"""] __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = 16 __lowerCamelCase = inputs["""input_ids"""] __lowerCamelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(UpperCamelCase_ ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
1
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if number > 0: raise ValueError("""input must be a negative integer""" ) __lowerCamelCase = len(bin(A__ )[3:] ) __lowerCamelCase = bin(abs(A__ ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( ( """1""" + """0""" * (binary_number_length - len(A__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase__( nn.Module): def __init__( self: List[str] , UpperCamelCase_: nn.Module , UpperCamelCase_: int ): super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , UpperCamelCase_ , bias=UpperCamelCase_ ) , nn.Linear(UpperCamelCase_ , module.out_features , bias=UpperCamelCase_ ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=UpperCamelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , *UpperCamelCase_: str , **UpperCamelCase_: List[str] ): return self.module(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) + self.adapter(UpperCamelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase__( unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module UpperCAmelCase__ : Any = 'bigscience/bloom-1b7' # Constant values UpperCAmelCase__ : Union[str, Any] = 2.1_09_65_95_52_69_25_74 UpperCAmelCase__ : List[Any] = 'Hello my name is' UpperCAmelCase__ : Tuple = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I') EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n') EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University') UpperCAmelCase__ : Any = 10 def lowerCAmelCase__ ( self: Optional[Any] ): # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[str] ): super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) def lowerCAmelCase__ ( self: Union[str, Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(UpperCamelCase_ , """quantization_config""" ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCAmelCase__ ( self: Dict ): from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCAmelCase__ ( self: List[str] ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(UpperCamelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase_ , device_map="""auto""" ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) def lowerCAmelCase__ ( self: Dict ): with self.assertRaises(UpperCamelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowerCAmelCase__ ( self: Dict ): with self.assertRaises(UpperCamelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(UpperCamelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: List[Any] ): __lowerCamelCase = """t5-small""" __lowerCamelCase = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = """Translate in German: Hello, my dog is cute""" def lowerCAmelCase__ ( self: Dict ): gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __lowerCamelCase = model.generate(**UpperCamelCase_ ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __lowerCamelCase = model.generate(**UpperCamelCase_ ) __lowerCamelCase = modules def lowerCAmelCase__ ( self: Optional[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __lowerCamelCase = model.generate(**UpperCamelCase_ ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) __lowerCamelCase = model.generate(**UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Dict ): super().setUp() # model_name __lowerCamelCase = """bigscience/bloom-560m""" __lowerCamelCase = """t5-small""" # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" ) def lowerCAmelCase__ ( self: int ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Optional[Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() def lowerCAmelCase__ ( self: Union[str, Any] ): del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Tuple ): super().setUp() def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=UpperCamelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """facebook/opt-350m""" super().setUp() def lowerCAmelCase__ ( self: int ): if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(UpperCamelCase_ ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**UpperCamelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(UpperCamelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = 'gpt2-xl' UpperCAmelCase__ : Union[str, Any] = 3.31_91_85_48_54_15_21_87
12
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' for shard in shards: for i in range(A__ ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(os.environ["""RANK"""] ) __lowerCamelCase = int(os.environ["""WORLD_SIZE"""] ) __lowerCamelCase = ArgumentParser() parser.add_argument("""--streaming""" , type=A__ ) parser.add_argument("""--local_rank""" , type=A__ ) parser.add_argument("""--num_workers""" , type=A__ , default=0 ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.streaming __lowerCamelCase = args.num_workers __lowerCamelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(A__ )]} __lowerCamelCase = IterableDataset.from_generator(A__ , gen_kwargs=A__ ) if not streaming: __lowerCamelCase = Dataset.from_list(list(A__ ) ) __lowerCamelCase = split_dataset_by_node(A__ , rank=A__ , world_size=A__ ) __lowerCamelCase = torch.utils.data.DataLoader(A__ , num_workers=A__ ) __lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
12
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
1
import os def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.path.dirname(os.path.realpath(A__ ) ) __lowerCamelCase = os.path.join(A__ , """triangle.txt""" ) with open(A__ ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [] for line in triangle: __lowerCamelCase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(A__ ) ) a.append(A__ ) for i in range(1 , len(A__ ) ): for j in range(len(a[i] ) ): __lowerCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A__ , A__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
12
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
1