code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import math
from collections.abc import Iterator
from itertools import takewhile
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = 2
while True:
if is_prime(A__ ):
yield num
num += 1
def lowerCamelCase__ ( A__ : int = 2000000 ):
'''simple docstring'''
return sum(takewhile(lambda A__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 12 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCAmelCase_ = {
'vocab_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'
),
},
}
UpperCAmelCase_ = {
'moussaKam/mbarthez': 1_024,
'moussaKam/barthez': 1_024,
'moussaKam/barthez-orangesum-title': 1_024,
}
UpperCAmelCase_ = '▁'
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask']
def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: str="</s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: int="<unk>" , UpperCamelCase_: List[Any]="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__lowerCamelCase = vocab_file
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
__lowerCamelCase = len(self.sp_model ) - 1
__lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
__lowerCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCAmelCase__ ( self: str ):
return len(self.sp_model )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowerCamelCase = self.sp_model.PieceToId(UpperCamelCase_ )
return spm_id if spm_id else self.unk_token_id
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int ):
__lowerCamelCase = []
__lowerCamelCase = """"""
__lowerCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCamelCase_ ) + token
__lowerCamelCase = True
__lowerCamelCase = []
else:
current_sub_tokens.append(UpperCamelCase_ )
__lowerCamelCase = False
out_string += self.sp_model.decode(UpperCamelCase_ )
return out_string.strip()
def __getstate__( self: str ):
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
return state
def __setstate__( self: Optional[int] , UpperCamelCase_: List[Any] ):
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowerCamelCase = {}
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__lowerCamelCase = os.path.join(
UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , """wb""" ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 12 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
@register_to_config
def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ):
super().__init__()
__lowerCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
__lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = None
__lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : VQModel
UpperCAmelCase__ : CLIPTextModel
UpperCAmelCase__ : CLIPTokenizer
UpperCAmelCase__ : TransformeraDModel
UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings
UpperCAmelCase__ : VQDiffusionScheduler
def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1
# get prompt text embeddings
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
__lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate text embeddings for each generation per prompt
__lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
__lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
__lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 )
else:
__lowerCamelCase = [""""""] * batch_size
__lowerCamelCase = text_input_ids.shape[-1]
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , )
__lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
__lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase = negative_prompt_embeds.shape[1]
__lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 )
__lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = 1
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = len(UpperCamelCase_ )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' )
__lowerCamelCase = batch_size * num_images_per_prompt
__lowerCamelCase = guidance_scale > 1.0
__lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
# get the initial completely masked latents unless the user supplied it
__lowerCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
__lowerCamelCase = self.transformer.num_vector_embeds - 1
__lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"""Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"""
F' {self.transformer.num_vector_embeds - 1} (inclusive).' )
__lowerCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device )
__lowerCamelCase = self.scheduler.timesteps.to(self.device )
__lowerCamelCase = latents
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the sample if we are doing classifier free guidance
__lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
__lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = model_output.chunk(2 )
__lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ )
__lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
# remove `log(0)`'s (`-inf`s)
__lowerCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.vqvae.config.vq_embed_dim
__lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
__lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ )
__lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ):
__lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ )
__lowerCamelCase = torch.exp(UpperCamelCase_ )
__lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
__lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ )
__lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
__lowerCamelCase = keep_mask[:, :-1, :]
__lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
__lowerCamelCase = log_p_x_0.clone()
__lowerCamelCase = -torch.inf # -inf = log(0)
return rv
| 12 | 1 |
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = credit_card_number
__lowerCamelCase = 0
__lowerCamelCase = len(A__ ) - 2
for i in range(A__ , -1 , -2 ):
# double the value of every second digit
__lowerCamelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
__lowerCamelCase = cc_number[:i] + str(A__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(A__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 13 <= len(A__ ) <= 16:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(A__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(A__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('4111111111111111')
validate_credit_card_number('32323')
| 12 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 | 1 |
def lowerCamelCase__ ( A__ : List[str] ):
'''simple docstring'''
if collection == []:
return []
# get some information about the collection
__lowerCamelCase = len(A__ )
__lowerCamelCase = max(A__ )
__lowerCamelCase = min(A__ )
# create the counting array
__lowerCamelCase = coll_max + 1 - coll_min
__lowerCamelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , A__ ):
__lowerCamelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__lowerCamelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , A__ ) ):
__lowerCamelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
return "".join([chr(A__ ) for i in counting_sort([ord(A__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt"
UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip()
UpperCAmelCase_ = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))
| 12 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ = 16
UpperCAmelCase_ = 32
def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained(A__ )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(A__ : int ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
__lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase, __lowerCamelCase = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config["""lr"""]
__lowerCamelCase = int(config["""num_epochs"""] )
__lowerCamelCase = int(config["""seed"""] )
__lowerCamelCase = int(config["""batch_size"""] )
__lowerCamelCase = args.model_name_or_path
set_seed(A__ )
__lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
__lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1]
__lowerCamelCase = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(A__ ) + 1
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
accelerator.print("""resumed checkpoint performance:""" , A__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f:
__lowerCamelCase = json.load(A__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = f'epoch_{epoch}'
__lowerCamelCase = os.path.join(args.output_dir , A__ )
accelerator.save_state(A__ )
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]["""lr"""]
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(f'epoch {epoch}:' , A__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f:
json.dump(A__ , A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , )
parser.add_argument(
"""--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 1 |
import logging
from transformers.configuration_utils import PretrainedConfig
UpperCAmelCase_ = logging.getLogger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = 'masked_bert'
def __init__( self: Dict , UpperCamelCase_: int=3_05_22 , UpperCamelCase_: Optional[Any]=7_68 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: List[Any]=12 , UpperCamelCase_: str=30_72 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: str=5_12 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Any=1E-12 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: Optional[Any]="topK" , UpperCamelCase_: List[str]="constant" , UpperCamelCase_: Union[str, Any]=0.0 , **UpperCamelCase_: List[Any] , ):
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = pruning_method
__lowerCamelCase = mask_init
__lowerCamelCase = mask_scale
| 12 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: Dict , *UpperCamelCase_: Any , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=None , **UpperCamelCase_: str ):
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = eval_examples
__lowerCamelCase = post_process_function
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ):
__lowerCamelCase = gen_kwargs.copy()
__lowerCamelCase = (
gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
__lowerCamelCase = (
gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
__lowerCamelCase = gen_kwargs
__lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
__lowerCamelCase = self.get_eval_dataloader(UpperCamelCase_ )
__lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__lowerCamelCase = self.compute_metrics
__lowerCamelCase = None
__lowerCamelCase = time.time()
__lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__lowerCamelCase = eval_loop(
UpperCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
__lowerCamelCase = compute_metrics
__lowerCamelCase = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__lowerCamelCase = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
else:
__lowerCamelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCamelCase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ )
return metrics
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Dict ):
__lowerCamelCase = gen_kwargs.copy()
__lowerCamelCase = self.get_test_dataloader(UpperCamelCase_ )
# Temporarily disable metric computation, we will do it in the loop here.
__lowerCamelCase = self.compute_metrics
__lowerCamelCase = None
__lowerCamelCase = time.time()
__lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__lowerCamelCase = eval_loop(
UpperCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
__lowerCamelCase = compute_metrics
__lowerCamelCase = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , """predict""" )
__lowerCamelCase = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__lowerCamelCase = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(A__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , )
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
depth_first_search([] , [] , [] , A__ , A__ )
# Print all the boards
for board in boards:
for column in board:
print(A__ )
print("""""" )
print(len(A__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ = {
'configuration_blip': [
'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlipConfig',
'BlipTextConfig',
'BlipVisionConfig',
],
'processing_blip': ['BlipProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['BlipImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlipModel',
'BlipPreTrainedModel',
'BlipForConditionalGeneration',
'BlipForQuestionAnswering',
'BlipVisionModel',
'BlipTextModel',
'BlipForImageTextRetrieval',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBlipModel',
'TFBlipPreTrainedModel',
'TFBlipForConditionalGeneration',
'TFBlipForQuestionAnswering',
'TFBlipVisionModel',
'TFBlipTextModel',
'TFBlipForImageTextRetrieval',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = list(range(len(A__ ) ) )
__lowerCamelCase = [v / w for v, w in zip(A__ , A__ )]
index.sort(key=lambda A__ : ratio[i] , reverse=A__ )
__lowerCamelCase = 0
__lowerCamelCase = [0] * len(A__ )
for i in index:
if weight[i] <= capacity:
__lowerCamelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
__lowerCamelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 | 1 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase = test_results.split(""" """ )
__lowerCamelCase = 0
__lowerCamelCase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
__lowerCamelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(A__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = {}
__lowerCamelCase = None
__lowerCamelCase = False
for line in failures_short_lines.split("""\n""" ):
if re.search(R"""_ \[doctest\]""" , A__ ):
__lowerCamelCase = True
__lowerCamelCase = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
__lowerCamelCase = line
__lowerCamelCase = False
return failures
class lowerCamelCase__:
def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = title
__lowerCamelCase = doc_test_results["""time_spent"""].split(""",""" )[0]
__lowerCamelCase = doc_test_results["""success"""]
__lowerCamelCase = doc_test_results["""failures"""]
__lowerCamelCase = self.n_success + self.n_failures
# Failures and success of the modeling tests
__lowerCamelCase = doc_test_results
@property
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = [self._time_spent]
__lowerCamelCase = 0
for time in time_spent:
__lowerCamelCase = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(UpperCamelCase_ ) == 1:
__lowerCamelCase = [0, 0, time_parts[0]]
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return F'{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s'
@property
def lowerCAmelCase__ ( self: List[str] ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[int] ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = 40
__lowerCamelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )}
__lowerCamelCase = """"""
for category, failures in category_failures.items():
if len(UpperCamelCase_ ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(UpperCamelCase_ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( ):
__lowerCamelCase = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(UpperCamelCase_ )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: int ):
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
__lowerCamelCase = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed."""
__lowerCamelCase = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ):
__lowerCamelCase = """"""
for key, value in failures.items():
__lowerCamelCase = value[:2_00] + """ [Truncated]""" if len(UpperCamelCase_ ) > 2_50 else value
failures_text += F'*{key}*\n_{value}_\n\n'
__lowerCamelCase = job_name
__lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
__lowerCamelCase = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: List[Any] ):
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
__lowerCamelCase = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
__lowerCamelCase = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
__lowerCamelCase = F'*Num failures* :{len(job_result["failed"] )} \n'
__lowerCamelCase = job_result["""failures"""]
__lowerCamelCase = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'Results for {job}' , blocks=UpperCamelCase_ , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = os.environ["""GITHUB_RUN_ID"""]
__lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
__lowerCamelCase = requests.get(A__ ).json()
__lowerCamelCase = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
__lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(A__ ):
__lowerCamelCase = requests.get(url + f'&page={i + 2}' ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , A__ )
return {}
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = {}
if os.path.exists(A__ ):
__lowerCamelCase = os.listdir(A__ )
for file in files:
try:
with open(os.path.join(A__ , A__ ) , encoding="""utf-8""" ) as f:
__lowerCamelCase = f.read()
except UnicodeDecodeError as e:
raise ValueError(f'Could not open {os.path.join(A__ , A__ )}.' ) from e
return _artifact
def lowerCamelCase__ ( ):
'''simple docstring'''
class lowerCamelCase__:
def __init__( self: Optional[Any] , UpperCamelCase_: str ):
__lowerCamelCase = name
__lowerCamelCase = []
def __str__( self: List[str] ):
return self.name
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ):
self.paths.append({"""name""": self.name, """path""": path} )
__lowerCamelCase = {}
__lowerCamelCase = filter(os.path.isdir , os.listdir() )
for directory in directories:
__lowerCamelCase = directory
if artifact_name not in _available_artifacts:
__lowerCamelCase = Artifact(A__ )
_available_artifacts[artifact_name].add_path(A__ )
return _available_artifacts
if __name__ == "__main__":
UpperCAmelCase_ = get_job_links()
UpperCAmelCase_ = retrieve_available_artifacts()
UpperCAmelCase_ = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
UpperCAmelCase_ = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
UpperCAmelCase_ = github_actions_job_links.get('run_doctests')
UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
UpperCAmelCase_ = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats'])
UpperCAmelCase_ = failed
UpperCAmelCase_ = success
UpperCAmelCase_ = time_spent[1:-1] + ', '
UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
UpperCAmelCase_ = line.replace('FAILED ', '')
UpperCAmelCase_ = line.split()[0].replace('\n', '')
if "::" in line:
UpperCAmelCase_ , UpperCAmelCase_ = line.split('::')
else:
UpperCAmelCase_ , UpperCAmelCase_ = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
UpperCAmelCase_ = docs[file_regex]
doc_test_results[category]["failed"].append(test)
UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A'
UpperCAmelCase_ = failure
break
UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ):
'''simple docstring'''
if len(A__ ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(A__ )
or left < -len(A__ )
or right >= len(A__ )
or right < -len(A__ )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
__lowerCamelCase = (left + right) >> 1 # the middle
__lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid]
__lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 12 | 1 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class lowerCamelCase__:
def __init__( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: str=13 , UpperCamelCase_: Any=7 , UpperCamelCase_: str=False , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=33 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Union[str, Any]=37 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: int=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: str=5_12 , UpperCamelCase_: Dict=16 , UpperCamelCase_: str=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Any=3 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=None , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_labels
__lowerCamelCase = num_choices
__lowerCamelCase = scope
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__lowerCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase__ ( self: Any ):
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = EsmModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: int ):
__lowerCamelCase = EsmForMaskedLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int ):
__lowerCamelCase = self.num_labels
__lowerCamelCase = EsmForTokenClassification(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
), (
__lowerCamelCase
), (
__lowerCamelCase
), (
__lowerCamelCase
), (
__lowerCamelCase
), (
__lowerCamelCase
),
) = config_and_inputs
__lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = False
UpperCAmelCase__ : Tuple = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Optional[int] = ()
UpperCAmelCase__ : str = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Any = True
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = EsmModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 )
def lowerCAmelCase__ ( self: List[Any] ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self: Optional[Any] ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowerCamelCase = type
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ )
@slow
def lowerCAmelCase__ ( self: Tuple ):
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = EsmModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0]
__lowerCamelCase = EsmEmbeddings(config=UpperCamelCase_ )
__lowerCamelCase = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
__lowerCamelCase = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
__lowerCamelCase = create_position_ids_from_input_ids(UpperCamelCase_ , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()[0]
__lowerCamelCase = EsmEmbeddings(config=UpperCamelCase_ )
__lowerCamelCase = torch.empty(2 , 4 , 30 )
__lowerCamelCase = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
__lowerCamelCase = torch.as_tensor([expected_single_positions, expected_single_positions] )
__lowerCamelCase = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase_ )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) )
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCAmelCase__ ( self: int ):
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def lowerCAmelCase__ ( self: int ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCAmelCase__ ( self: List[str] ):
pass
@require_torch
class lowerCamelCase__( __lowerCamelCase):
@slow
def lowerCAmelCase__ ( self: Tuple ):
with torch.no_grad():
__lowerCamelCase = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
__lowerCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowerCamelCase = model(UpperCamelCase_ )[0]
__lowerCamelCase = 33
__lowerCamelCase = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , UpperCamelCase_ )
__lowerCamelCase = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
@slow
def lowerCAmelCase__ ( self: List[Any] ):
with torch.no_grad():
__lowerCamelCase = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
__lowerCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
__lowerCamelCase = model(UpperCamelCase_ )[0]
# compare the actual values for a slice.
__lowerCamelCase = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 12 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = SMALL_MODEL_IDENTIFIER
__lowerCamelCase = """pt"""
__lowerCamelCase = """tf"""
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ )
model_tf.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """mock_framework"""
# Framework provided - return whatever the user provides
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Both in environment -> use PyTorch
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# Both not in environment -> raise error
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
| 12 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = 'char'
UpperCAmelCase__ : List[str] = 'bpe'
UpperCAmelCase__ : int = 'wp'
UpperCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : List[Any] = ['image_processor', 'char_tokenizer']
UpperCAmelCase__ : Tuple = 'ViTImageProcessor'
UpperCAmelCase__ : Optional[int] = 'MgpstrTokenizer'
def __init__( self: Union[str, Any] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: Dict ):
__lowerCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCamelCase_ , )
__lowerCamelCase = kwargs.pop("""feature_extractor""" )
__lowerCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
__lowerCamelCase = tokenizer
__lowerCamelCase = AutoTokenizer.from_pretrained("""gpt2""" )
__lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(UpperCamelCase_ , UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Any=None , **UpperCamelCase_: Any ):
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
__lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if text is not None:
__lowerCamelCase = self.char_tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
__lowerCamelCase = encodings["""input_ids"""]
return inputs
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int ):
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = sequences
__lowerCamelCase = char_preds.size(0 )
__lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """char""" )
__lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """bpe""" )
__lowerCamelCase, __lowerCamelCase = self._decode_helper(UpperCamelCase_ , """wp""" )
__lowerCamelCase = []
__lowerCamelCase = []
for i in range(UpperCamelCase_ ):
__lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]]
__lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]]
__lowerCamelCase = scores.index(max(UpperCamelCase_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__lowerCamelCase = {}
__lowerCamelCase = final_strs
__lowerCamelCase = final_scores
__lowerCamelCase = char_strs
__lowerCamelCase = bpe_strs
__lowerCamelCase = wp_strs
return out
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ):
if format == DecodeType.CHARACTER:
__lowerCamelCase = self.char_decode
__lowerCamelCase = 1
__lowerCamelCase = """[s]"""
elif format == DecodeType.BPE:
__lowerCamelCase = self.bpe_decode
__lowerCamelCase = 2
__lowerCamelCase = """#"""
elif format == DecodeType.WORDPIECE:
__lowerCamelCase = self.wp_decode
__lowerCamelCase = 1_02
__lowerCamelCase = """[SEP]"""
else:
raise ValueError(F'Format {format} is not supported.' )
__lowerCamelCase, __lowerCamelCase = [], []
__lowerCamelCase = pred_logits.size(0 )
__lowerCamelCase = pred_logits.size(1 )
__lowerCamelCase, __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase_ , sorted=UpperCamelCase_ )
__lowerCamelCase = preds_index.view(-1 , UpperCamelCase_ )[:, 1:]
__lowerCamelCase = decoder(UpperCamelCase_ )
__lowerCamelCase, __lowerCamelCase = torch.nn.functional.softmax(UpperCamelCase_ , dim=2 ).max(dim=2 )
__lowerCamelCase = preds_max_prob[:, 1:]
for index in range(UpperCamelCase_ ):
__lowerCamelCase = preds_str[index].find(UpperCamelCase_ )
__lowerCamelCase = preds_str[index][:pred_eos]
__lowerCamelCase = preds_index[index].cpu().tolist()
__lowerCamelCase = pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1
__lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1]
__lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(UpperCamelCase_ )
conf_scores.append(UpperCamelCase_ )
return dec_strs, conf_scores
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )]
return decode_strs
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Tuple ):
return self.bpe_tokenizer.batch_decode(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Dict ):
__lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )]
return decode_strs
| 12 |
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCAmelCase_ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def lowerCamelCase__ ( A__ : list[list[int]] ):
'''simple docstring'''
__lowerCamelCase = []
for i in range(len(A__ ) ):
__lowerCamelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__lowerCamelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(A__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(A__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(A__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__lowerCamelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(A__ )
return next_generation
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
for _ in range(A__ ):
# Create output image
__lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) )
__lowerCamelCase = img.load()
# Save cells to image
for x in range(len(A__ ) ):
for y in range(len(cells[0] ) ):
__lowerCamelCase = 255 - cells[y][x] * 255
__lowerCamelCase = (colour, colour, colour)
# Save image
images.append(A__ )
__lowerCamelCase = new_generation(A__ )
return images
if __name__ == "__main__":
UpperCAmelCase_ = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 12 | 1 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
UpperCAmelCase_ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n'
UpperCAmelCase_ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n'
UpperCAmelCase_ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def lowerCamelCase__ ( A__ : Dict , A__ : List[Any] ):
'''simple docstring'''
return float((preds == labels).mean() )
def lowerCamelCase__ ( A__ : int , A__ : str ):
'''simple docstring'''
__lowerCamelCase = simple_accuracy(A__ , A__ )
__lowerCamelCase = float(fa_score(y_true=A__ , y_pred=A__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCamelCase__ ( A__ : str , A__ : List[str] ):
'''simple docstring'''
__lowerCamelCase = float(pearsonr(A__ , A__ )[0] )
__lowerCamelCase = float(spearmanr(A__ , A__ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowerCamelCase__( datasets.Metric):
def lowerCAmelCase__ ( self: Dict ):
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[str] ):
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(UpperCamelCase_ , UpperCamelCase_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline
UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ : int = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Union[str, Any] = frozenset([])
def lowerCAmelCase__ ( self: str ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(UpperCamelCase_ )
__lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) )
__lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ )
__lowerCamelCase = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
__lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase__ ( self: int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" )
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 12 | 1 |
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCamelCase__( unittest.TestCase):
@property
def lowerCAmelCase__ ( self: List[str] ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = KarrasVeScheduler()
__lowerCamelCase = KarrasVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase_ , output_type="""numpy""" ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase_ , output_type="""numpy""" , return_dict=UpperCamelCase_ )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = """google/ncsnpp-celebahq-256"""
__lowerCamelCase = UNetaDModel.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = KarrasVeScheduler()
__lowerCamelCase = KarrasVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(num_inference_steps=20 , generator=UpperCamelCase_ , output_type="""numpy""" ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 12 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
class lowerCamelCase__:
def __init__( self: Optional[Any] , UpperCamelCase_: list[int] ):
__lowerCamelCase = len(UpperCamelCase_ )
__lowerCamelCase = [0] * len_array
if len_array > 0:
__lowerCamelCase = array[0]
for i in range(1 , UpperCamelCase_ ):
__lowerCamelCase = self.prefix_sum[i - 1] + array[i]
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: int ):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int ):
__lowerCamelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCamelCase_ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ):
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
__lowerCamelCase = model
__lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ )
__lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ )
def __call__( self: Dict , **UpperCamelCase_: Any ):
__lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()}
return self.model.run(UpperCamelCase_ , UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ):
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
__lowerCamelCase = """CPUExecutionProvider"""
return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name )
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ )
if src_path.exists():
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ):
if os.path.isfile(UpperCamelCase_ ):
logger.error(F'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
# saving model weights/files
self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(UpperCamelCase_ ):
__lowerCamelCase = OnnxRuntimeModel.load_model(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
# load model from hub
else:
# download model
__lowerCamelCase = hf_hub_download(
repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , )
__lowerCamelCase = Path(UpperCamelCase_ ).parent
__lowerCamelCase = Path(UpperCamelCase_ ).name
__lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
return cls(model=UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = None
if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2:
__lowerCamelCase, __lowerCamelCase = model_id.split("""@""" )
return cls._from_pretrained(
model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
| 12 | 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"""
__lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ).convert("""RGB""" )
return image
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
__lowerCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") )
# fmt: on
return rename_keys
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = dct.pop(A__ )
__lowerCamelCase = val
def lowerCamelCase__ ( A__ : str , A__ : int ):
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' )
__lowerCamelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
__lowerCamelCase = torch.cat((q_bias, torch.zeros_like(A__ , requires_grad=A__ ), v_bias) )
__lowerCamelCase = qkv_bias
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = 364 if """coco""" in model_name else 224
__lowerCamelCase = InstructBlipVisionConfig(image_size=A__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
__lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__lowerCamelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
__lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict()
elif "vicuna-13b" in model_name:
__lowerCamelCase = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict()
else:
raise ValueError("""Model name not supported""" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
__lowerCamelCase = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict()
__lowerCamelCase = InstructBlipConfig(vision_config=A__ , text_config=A__ , qformer_config=A__ )
return config, image_size
@torch.no_grad()
def lowerCamelCase__ ( A__ : Any , A__ : str=None , A__ : Any=False ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" )
qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} )
if "t5" in model_name:
__lowerCamelCase = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
__lowerCamelCase = LlamaTokenizerFast.from_pretrained(
"""huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" )
tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} )
__lowerCamelCase, __lowerCamelCase = get_blipa_config(A__ )
__lowerCamelCase = InstructBlipForConditionalGeneration(A__ ).eval()
__lowerCamelCase = {
"""instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""),
"""instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""),
"""instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""),
"""instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""),
}
__lowerCamelCase, __lowerCamelCase = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
__lowerCamelCase = """cuda:1""" if torch.cuda.is_available() else """cpu"""
__lowerCamelCase = """cuda:2""" if torch.cuda.is_available() else """cpu"""
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = load_model_and_preprocess(
name=A__ , model_type=A__ , is_eval=A__ , device=A__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
__lowerCamelCase = original_model.state_dict()
__lowerCamelCase = create_rename_keys(A__ )
for src, dest in rename_keys:
rename_key(A__ , A__ , A__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__lowerCamelCase = state_dict.pop(A__ )
if key.startswith("""Qformer.bert""" ):
__lowerCamelCase = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
__lowerCamelCase = key.replace("""self""" , """attention""" )
if "llm_proj" in key:
__lowerCamelCase = key.replace("""llm_proj""" , """language_projection""" )
if "t5_proj" in key:
__lowerCamelCase = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""llm_model""" ):
__lowerCamelCase = key.replace("""llm_model""" , """language_model""" )
if key.startswith("""t5""" ):
__lowerCamelCase = key.replace("""t5""" , """language""" )
__lowerCamelCase = val
# read in qv biases
read_in_q_v_bias(A__ , A__ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(A__ , strict=A__ )
__lowerCamelCase = load_demo_image()
__lowerCamelCase = """What is unusual about this image?"""
# create processor
__lowerCamelCase = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=A__ , image_std=A__ )
__lowerCamelCase = InstructBlipProcessor(
image_processor=A__ , tokenizer=A__ , qformer_tokenizer=A__ , )
__lowerCamelCase = processor(images=A__ , text=A__ , return_tensors="""pt""" ).to(A__ )
# make sure processor creates exact same pixel values
__lowerCamelCase = vis_processors["""eval"""](A__ ).unsqueeze(0 ).to(A__ )
__lowerCamelCase = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A__ )
original_model.to(A__ )
hf_model.to(A__ )
with torch.no_grad():
if "vicuna" in model_name:
__lowerCamelCase = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits
__lowerCamelCase = hf_model(**A__ ).logits
else:
__lowerCamelCase = original_model(
{"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits
__lowerCamelCase = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(A__ )
__lowerCamelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
__lowerCamelCase = hf_model(**A__ , labels=A__ ).logits
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
__lowerCamelCase = 1E-4 if """vicuna""" in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , A__ , atol=A__ )
print("""Looks ok!""" )
print("""Generating with original model...""" )
__lowerCamelCase = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("""Generating with HF model...""" )
__lowerCamelCase = hf_model.generate(
**A__ , do_sample=A__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
__lowerCamelCase = 2
print("""Original generation:""" , A__ )
__lowerCamelCase = processor.batch_decode(A__ , skip_special_tokens=A__ )
__lowerCamelCase = [text.strip() for text in output_text]
print("""HF generation:""" , A__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(A__ )
hf_model.save_pretrained(A__ )
if push_to_hub:
processor.push_to_hub(f'Salesforce/{model_name}' )
hf_model.push_to_hub(f'Salesforce/{model_name}' )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
UpperCAmelCase_ = [
'instructblip-vicuna-7b',
'instructblip-vicuna-13b',
'instructblip-flan-t5-xl',
'instructblip-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='instructblip-flan-t5-xl',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
UpperCAmelCase_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
UpperCAmelCase_ = get_logger(__name__)
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
if accelerator.process_index == 0:
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving model to {ckpt_dir}' )
__lowerCamelCase = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Model saved to {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = (
os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
if f'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading model from {ckpt_dir}' )
__lowerCamelCase = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , )
__lowerCamelCase = state_dict["""model"""]
logger.info(f'Model loaded from {ckpt_dir}' )
model.load_state_dict(A__ )
def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = FSDP.optim_state_dict(A__ , A__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving Optimizer state to {output_optimizer_file}' )
torch.save(A__ , A__ )
logger.info(f'Optimizer state saved in {output_optimizer_file}' )
else:
__lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Optimizer state saved in {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading Optimizer state from {input_optimizer_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Optimizer state loaded from {input_optimizer_file}' )
else:
__lowerCamelCase = (
os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
if f'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading Optimizer from {ckpt_dir}' )
__lowerCamelCase = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , )
__lowerCamelCase = optim_state["""optimizer"""]
logger.info(f'Optimizer loaded from {ckpt_dir}' )
__lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ )
optimizer.load_state_dict(A__ )
| 12 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def lowerCamelCase__ ( A__ : NDArray[floataa] , A__ : NDArray[floataa] , A__ : list[int] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase = coefficient_matrix.shape
__lowerCamelCase, __lowerCamelCase = constant_matrix.shape
if rowsa != colsa:
__lowerCamelCase = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(A__ )
if colsa != 1:
__lowerCamelCase = f'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(A__ )
if rowsa != rowsa:
__lowerCamelCase = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
f'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(A__ )
if len(A__ ) != rowsa:
__lowerCamelCase = (
"""Number of initial values must be equal to number of rows in coefficient """
f'matrix but received {len(A__ )} and {rowsa}'
)
raise ValueError(A__ )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
__lowerCamelCase = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__lowerCamelCase, __lowerCamelCase = table.shape
strictly_diagonally_dominant(A__ )
# Iterates the whole matrix for given number of times
for _ in range(A__ ):
__lowerCamelCase = []
for row in range(A__ ):
__lowerCamelCase = 0
for col in range(A__ ):
if col == row:
__lowerCamelCase = table[row][col]
elif col == cols - 1:
__lowerCamelCase = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__lowerCamelCase = (temp + val) / denom
new_val.append(A__ )
__lowerCamelCase = new_val
return [float(A__ ) for i in new_val]
def lowerCamelCase__ ( A__ : NDArray[floataa] ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase = table.shape
__lowerCamelCase = True
for i in range(0 , A__ ):
__lowerCamelCase = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
from typing import Any
def lowerCamelCase__ ( A__ : list ):
'''simple docstring'''
if not input_list:
return []
__lowerCamelCase = [input_list.count(A__ ) for value in input_list]
__lowerCamelCase = max(A__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(A__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ):
'''simple docstring'''
__lowerCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowerCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , )
__lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ):
if latents is None:
__lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__lowerCamelCase = latents.to(UpperCamelCase_ )
__lowerCamelCase = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
__lowerCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowerCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ )
# We'll offload the last model manually.
__lowerCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase__ ( self: int ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ):
__lowerCamelCase = self._execution_device
__lowerCamelCase = guidance_scale > 1.0
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
__lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
__lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ )
__lowerCamelCase = self.scheduler.timesteps
__lowerCamelCase = self.movq.config.latent_channels
__lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor )
# create initial latent
__lowerCamelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint}
__lowerCamelCase = self.unet(
sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0]
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
__lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 )
__lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 )
__lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0]
# post-processing
__lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
__lowerCamelCase = image * 0.5 + 0.5
__lowerCamelCase = image.clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 12 | 1 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 12 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
__lowerCamelCase = rescale_embeddings
__lowerCamelCase = attention_type
__lowerCamelCase = use_bias
__lowerCamelCase = block_size
__lowerCamelCase = num_random_blocks
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: Optional[Any] ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[str] ):
super().test_hidden_states_output()
@slow
def lowerCAmelCase__ ( self: Optional[Any] ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ):
return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("""outputs.attentions""" ):
return
else:
super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
def lowerCamelCase__ ( A__ : list ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
for _ in range(A__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
UpperCAmelCase_ = list(range(10, 0, -1))
print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
| 12 | 1 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def lowerCamelCase__ ( A__ : int , A__ : Optional[int] , A__ : Any , A__ : Any=5 ):
'''simple docstring'''
assert masked_input.count("""<mask>""" ) == 1
__lowerCamelCase = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1
__lowerCamelCase = model(A__ )[0] # The last hidden-state is the first element of the output tuple
__lowerCamelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__lowerCamelCase = logits[0, masked_index, :]
__lowerCamelCase = logits.softmax(dim=0 )
__lowerCamelCase, __lowerCamelCase = prob.topk(k=A__ , dim=0 )
__lowerCamelCase = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] )
__lowerCamelCase = tokenizer.mask_token
__lowerCamelCase = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
__lowerCamelCase = predicted_token_bpe.replace("""\u2581""" , """ """ )
if " {0}".format(A__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(A__ ) , A__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(A__ , A__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
UpperCAmelCase_ = CamembertTokenizer.from_pretrained('camembert-base')
UpperCAmelCase_ = CamembertForMaskedLM.from_pretrained('camembert-base')
model.eval()
UpperCAmelCase_ = 'Le camembert est <mask> :)'
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 12 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__:
def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = question_encoder
__lowerCamelCase = generator
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
if os.path.isfile(UpperCamelCase_ ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase_ )
self.generator.save_pretrained(UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ )
if config is None:
__lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ )
def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ):
return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ):
return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ):
return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.generator
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ):
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase_ , )
if max_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = labels["""input_ids"""]
return model_inputs
| 12 | 1 |
import operator
def lowerCamelCase__ ( A__ : list , A__ : bool = False , A__ : list | None = None ):
'''simple docstring'''
__lowerCamelCase = operator.lt if reverse else operator.gt
__lowerCamelCase = solution or []
if not arr:
return solution
__lowerCamelCase = [arr.pop(0 )]
for i, item in enumerate(A__ ):
if _operator(A__ , sublist[-1] ):
sublist.append(A__ )
arr.pop(A__ )
# merging sublist into solution list
if not solution:
solution.extend(A__ )
else:
while sublist:
__lowerCamelCase = sublist.pop(0 )
for i, xx in enumerate(A__ ):
if not _operator(A__ , A__ ):
solution.insert(A__ , A__ )
break
else:
solution.append(A__ )
strand_sort(A__ , A__ , A__ )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 12 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 | 1 |
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
UpperCAmelCase_ = False
class lowerCamelCase__( unittest.TestCase):
pass
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
__lowerCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 12 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
@register_to_config
def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ):
super().__init__()
__lowerCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
__lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = None
__lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : VQModel
UpperCAmelCase__ : CLIPTextModel
UpperCAmelCase__ : CLIPTokenizer
UpperCAmelCase__ : TransformeraDModel
UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings
UpperCAmelCase__ : VQDiffusionScheduler
def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1
# get prompt text embeddings
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
__lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate text embeddings for each generation per prompt
__lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
__lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
__lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 )
else:
__lowerCamelCase = [""""""] * batch_size
__lowerCamelCase = text_input_ids.shape[-1]
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , )
__lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
__lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase = negative_prompt_embeds.shape[1]
__lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 )
__lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = 1
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = len(UpperCamelCase_ )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' )
__lowerCamelCase = batch_size * num_images_per_prompt
__lowerCamelCase = guidance_scale > 1.0
__lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
# get the initial completely masked latents unless the user supplied it
__lowerCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
__lowerCamelCase = self.transformer.num_vector_embeds - 1
__lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"""Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"""
F' {self.transformer.num_vector_embeds - 1} (inclusive).' )
__lowerCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device )
__lowerCamelCase = self.scheduler.timesteps.to(self.device )
__lowerCamelCase = latents
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the sample if we are doing classifier free guidance
__lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
__lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = model_output.chunk(2 )
__lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ )
__lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
# remove `log(0)`'s (`-inf`s)
__lowerCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.vqvae.config.vq_embed_dim
__lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
__lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ )
__lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ):
__lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ )
__lowerCamelCase = torch.exp(UpperCamelCase_ )
__lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
__lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ )
__lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
__lowerCamelCase = keep_mask[:, :-1, :]
__lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
__lowerCamelCase = log_p_x_0.clone()
__lowerCamelCase = -torch.inf # -inf = log(0)
return rv
| 12 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCAmelCase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : Optional[str] = field(
default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'})
UpperCAmelCase__ : Optional[str] = field(
default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'})
UpperCAmelCase__ : Optional[str] = field(
default=__lowerCamelCase , metadata={'help': 'The column name of the images in the files.'})
UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'})
UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'})
UpperCAmelCase__ : Optional[float] = field(
default=0.15 , metadata={'help': 'Percent to split off of train for validation.'})
UpperCAmelCase__ : Optional[int] = field(
default=__lowerCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
UpperCAmelCase__ : Optional[int] = field(
default=__lowerCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = {}
if self.train_dir is not None:
__lowerCamelCase = self.train_dir
if self.validation_dir is not None:
__lowerCamelCase = self.validation_dir
__lowerCamelCase = data_files if data_files else None
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : str = field(
default=__lowerCamelCase , metadata={
'help': (
'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'
)
} , )
UpperCAmelCase__ : Optional[str] = field(
default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'})
UpperCAmelCase__ : Optional[str] = field(
default=__lowerCamelCase , metadata={
'help': (
'Override some existing default config settings when a model is trained from scratch. Example: '
'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'
)
} , )
UpperCAmelCase__ : Optional[str] = field(
default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'})
UpperCAmelCase__ : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
UpperCAmelCase__ : str = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'})
UpperCAmelCase__ : bool = field(
default=__lowerCamelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
UpperCAmelCase__ : float = field(
default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'})
UpperCAmelCase__ : bool = field(
default=__lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'})
@dataclass
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : float = field(
default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'})
def lowerCamelCase__ ( A__ : List[str] ):
'''simple docstring'''
__lowerCamelCase = torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" , A__ , A__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__lowerCamelCase = training_args.get_process_log_level()
logger.setLevel(A__ )
transformers.utils.logging.set_verbosity(A__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCamelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCamelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
__lowerCamelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
__lowerCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0:
__lowerCamelCase = ds["""train"""].train_test_split(data_args.train_val_split )
__lowerCamelCase = split["""train"""]
__lowerCamelCase = split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
__lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **A__ )
elif model_args.model_name_or_path:
__lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **A__ )
else:
__lowerCamelCase = ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f'Overriding config: {model_args.config_overrides}' )
config.update_from_string(model_args.config_overrides )
logger.info(f'New config: {config}' )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
__lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **A__ )
elif model_args.model_name_or_path:
__lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **A__ )
else:
__lowerCamelCase = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
__lowerCamelCase = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
__lowerCamelCase = ViTMAEForPreTraining(A__ )
if training_args.do_train:
__lowerCamelCase = ds["""train"""].column_names
else:
__lowerCamelCase = ds["""validation"""].column_names
if data_args.image_column_name is not None:
__lowerCamelCase = data_args.image_column_name
elif "image" in column_names:
__lowerCamelCase = """image"""
elif "img" in column_names:
__lowerCamelCase = """img"""
else:
__lowerCamelCase = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
__lowerCamelCase = image_processor.size["""shortest_edge"""]
else:
__lowerCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""])
__lowerCamelCase = Compose(
[
Lambda(lambda A__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(A__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(A__ : Optional[int] ):
__lowerCamelCase = [transforms(A__ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
__lowerCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(A__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
__lowerCamelCase = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(A__ )
# Compute absolute learning rate
__lowerCamelCase = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
__lowerCamelCase = training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
__lowerCamelCase = Trainer(
model=A__ , args=A__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , )
# Training
if training_args.do_train:
__lowerCamelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCamelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCamelCase = last_checkpoint
__lowerCamelCase = trainer.train(resume_from_checkpoint=A__ )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__lowerCamelCase = trainer.evaluate()
trainer.log_metrics("""eval""" , A__ )
trainer.save_metrics("""eval""" , A__ )
# Write model card and (optionally) push to hub
__lowerCamelCase = {
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**A__ )
else:
trainer.create_model_card(**A__ )
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 12 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_swiftformer': [
'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SwiftFormerConfig',
'SwiftFormerOnnxConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'SwiftFormerForImageClassification',
'SwiftFormerModel',
'SwiftFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ = 16
UpperCAmelCase_ = 32
def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained(A__ )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(A__ : int ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
__lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase, __lowerCamelCase = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config["""lr"""]
__lowerCamelCase = int(config["""num_epochs"""] )
__lowerCamelCase = int(config["""seed"""] )
__lowerCamelCase = int(config["""batch_size"""] )
__lowerCamelCase = args.model_name_or_path
set_seed(A__ )
__lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
__lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1]
__lowerCamelCase = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(A__ ) + 1
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
accelerator.print("""resumed checkpoint performance:""" , A__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f:
__lowerCamelCase = json.load(A__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = f'epoch_{epoch}'
__lowerCamelCase = os.path.join(args.output_dir , A__ )
accelerator.save_state(A__ )
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]["""lr"""]
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(f'epoch {epoch}:' , A__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f:
json.dump(A__ , A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , )
parser.add_argument(
"""--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 12 | 1 |
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = '▁'
UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'}
UpperCAmelCase_ = {
'sentencepiece_model_file': 'sentencepiece.bpe.model',
'vocab_file': 'vocab.txt',
}
UpperCAmelCase_ = {
'vocab_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
},
'sentencepiece_model_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
},
}
UpperCAmelCase_ = {
'ernie-m-base': 514,
'ernie-m-large': 514,
}
UpperCAmelCase_ = {
'ernie-m-base': {'do_lower_case': False},
'ernie-m-large': {'do_lower_case': False},
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : List[str] = ["input_ids"]
UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : int = RESOURCE_FILES_NAMES
def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=False , UpperCamelCase_: Union[str, Any]="utf8" , UpperCamelCase_: int="[UNK]" , UpperCamelCase_: Union[str, Any]="[SEP]" , UpperCamelCase_: Optional[Any]="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Any="[MASK]" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: Union[str, Any] , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , vocab_file=UpperCamelCase_ , encoding=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__lowerCamelCase = do_lower_case
__lowerCamelCase = sentencepiece_model_ckpt
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase_ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__lowerCamelCase = self.load_vocab(filepath=UpperCamelCase_ )
else:
__lowerCamelCase = {self.sp_model.id_to_piece(UpperCamelCase_ ): id for id in range(self.sp_model.get_piece_size() )}
__lowerCamelCase = {v: k for k, v in self.vocab.items()}
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] ):
if text is None:
return None
__lowerCamelCase = self.tokenize(UpperCamelCase_ )
__lowerCamelCase, __lowerCamelCase = """""", []
for i, ch in enumerate(UpperCamelCase_ ):
if ch in self.SP_CHAR_MAPPING:
__lowerCamelCase = self.SP_CHAR_MAPPING.get(UpperCamelCase_ )
else:
__lowerCamelCase = unicodedata.normalize("""NFKC""" , UpperCamelCase_ )
if self.is_whitespace(UpperCamelCase_ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(UpperCamelCase_ ) )
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = normalized_text, [], 0
if self.do_lower_case:
__lowerCamelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__lowerCamelCase = token[1:]
__lowerCamelCase = text[offset:].index(UpperCamelCase_ ) + offset
__lowerCamelCase = start + len(UpperCamelCase_ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__lowerCamelCase = end
return token_mapping
@property
def lowerCAmelCase__ ( self: Optional[int] ):
return len(self.vocab )
def lowerCAmelCase__ ( self: List[str] ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self: List[Any] ):
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
return state
def __setstate__( self: str , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowerCamelCase = {}
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] ):
return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase_ , UpperCamelCase_ ) for c in text) )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Any=False , UpperCamelCase_: Union[str, Any]=64 , UpperCamelCase_: Union[str, Any]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__lowerCamelCase = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__lowerCamelCase = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__lowerCamelCase = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__lowerCamelCase = self.sp_model.EncodeAsPieces(UpperCamelCase_ )
else:
__lowerCamelCase = self.sp_model.SampleEncodeAsPieces(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = []
for pi, piece in enumerate(UpperCamelCase_ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(UpperCamelCase_ ) and pi != 0:
new_pieces.append(UpperCamelCase_ )
continue
else:
continue
__lowerCamelCase = 0
for i, chunk in enumerate(UpperCamelCase_ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(UpperCamelCase_ ) or self.is_punct(UpperCamelCase_ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(UpperCamelCase_ )
__lowerCamelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__lowerCamelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__lowerCamelCase = i
if len(UpperCamelCase_ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip()
return out_string
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ):
__lowerCamelCase = self.convert_ids_to_tokens(UpperCamelCase_ )
__lowerCamelCase = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip()
return out_string
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) )
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ):
return self.reverse_vocab.get(UpperCamelCase_ , self.unk_token )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: str=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
__lowerCamelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[str]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(UpperCamelCase_ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(UpperCamelCase_ ) + 1) + [1] * (len(UpperCamelCase_ ) + 3)
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[str] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(UpperCamelCase_ ) == 1:
__lowerCamelCase = unicodedata.category(UpperCamelCase_ )
if cat == "Zs":
return True
return False
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ):
__lowerCamelCase = {}
with io.open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(UpperCamelCase_ ):
__lowerCamelCase = line.rstrip("""\n""" )
__lowerCamelCase = int(UpperCamelCase_ )
return token_to_idx
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ):
__lowerCamelCase = 0
if os.path.isdir(UpperCamelCase_ ):
__lowerCamelCase = os.path.join(
UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__lowerCamelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
""" Please check that the vocabulary is not corrupted!""" )
__lowerCamelCase = token_index
writer.write(token + """\n""" )
index += 1
__lowerCamelCase = os.path.join(UpperCamelCase_ , """sentencepiece.bpe.model""" )
with open(UpperCamelCase_ , """wb""" ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (vocab_file,)
| 12 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 1 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def lowerCamelCase__ ( A__ : List[str] ): # picklable for multiprocessing
'''simple docstring'''
return x.sum()
def lowerCamelCase__ ( A__ : Dict ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : str
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = {}
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = [1, 2]
__lowerCamelCase = {"""a""": 1, """b""": 2}
__lowerCamelCase = {"""a""": [1, 2], """b""": [3, 4]}
__lowerCamelCase = {"""a""": {"""1""": 1}, """b""": 2}
__lowerCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
__lowerCamelCase = {}
__lowerCamelCase = []
__lowerCamelCase = 2
__lowerCamelCase = [2, 3]
__lowerCamelCase = {"""a""": 2, """b""": 3}
__lowerCamelCase = {"""a""": [2, 3], """b""": [4, 5]}
__lowerCamelCase = {"""a""": {"""1""": 2}, """b""": 3}
__lowerCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
__lowerCamelCase = 2
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
__lowerCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )}
__lowerCamelCase = {"""a""": 2, """b""": 0, """c""": 2}
__lowerCamelCase = {
"""a""": np.eye(2 ).astype(UpperCamelCase_ ),
"""b""": np.zeros(3 ).astype(UpperCamelCase_ ),
"""c""": np.ones(2 ).astype(UpperCamelCase_ ),
}
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ , num_proc=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCamelCase_ , UpperCamelCase_ , map_numpy=UpperCamelCase_ , num_proc=UpperCamelCase_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCamelCase_ ): # can't pickle a local lambda
map_nested(lambda UpperCamelCase_ : x + 1 , UpperCamelCase_ , num_proc=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = {"""a""": 1, """b""": 2}
__lowerCamelCase = {"""a""": 3, """b""": 4}
__lowerCamelCase = {"""a""": 5, """b""": 6}
__lowerCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
class lowerCamelCase__:
UpperCAmelCase__ : Optional[int] = 'bar'
__lowerCamelCase = Foo()
self.assertEqual(foo.my_attr , """bar""" )
with temporary_assignment(UpperCamelCase_ , """my_attr""" , """BAR""" ):
self.assertEqual(foo.my_attr , """BAR""" )
self.assertEqual(foo.my_attr , """bar""" )
@pytest.mark.parametrize(
"""iterable_length, num_proc, expected_num_proc""" , [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] , )
def lowerCamelCase__ ( A__ : List[str] , A__ : Tuple , A__ : int ):
'''simple docstring'''
with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch(
"""datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool:
__lowerCamelCase = {f'{i}': i for i in range(A__ )}
__lowerCamelCase = map_nested(lambda A__ : x + 10 , A__ , num_proc=A__ , parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class lowerCamelCase__( __lowerCamelCase):
@require_tf
def lowerCAmelCase__ ( self: Any ):
import tensorflow as tf
from tensorflow.keras import layers
__lowerCamelCase = layers.Dense(2 )
def gen_random_output():
__lowerCamelCase = tf.random.uniform((1, 3) )
return model(UpperCamelCase_ ).numpy()
with temp_seed(42 , set_tensorflow=UpperCamelCase_ ):
__lowerCamelCase = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCamelCase_ ):
__lowerCamelCase = gen_random_output()
__lowerCamelCase = gen_random_output()
np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def lowerCAmelCase__ ( self: Any ):
import torch
def gen_random_output():
__lowerCamelCase = torch.nn.Linear(3 , 2 )
__lowerCamelCase = torch.rand(1 , 3 )
return model(UpperCamelCase_ ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCamelCase_ ):
__lowerCamelCase = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCamelCase_ ):
__lowerCamelCase = gen_random_output()
__lowerCamelCase = gen_random_output()
np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def lowerCAmelCase__ ( self: Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
__lowerCamelCase = gen_random_output()
with temp_seed(42 ):
__lowerCamelCase = gen_random_output()
__lowerCamelCase = gen_random_output()
np.testing.assert_equal(UpperCamelCase_ , UpperCamelCase_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("""input_data""" , [{}] )
def lowerCamelCase__ ( A__ : Dict ):
'''simple docstring'''
__lowerCamelCase = NestedDataStructure(A__ ).data
assert output_data == input_data
@pytest.mark.parametrize(
"""data, expected_output""" , [
({}, []),
([], []),
("""foo""", ["""foo"""]),
(["""foo""", """bar"""], ["""foo""", """bar"""]),
([["""foo""", """bar"""]], ["""foo""", """bar"""]),
([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]),
([[["""foo"""], """bar"""]], ["""foo""", """bar"""]),
({"""a""": 1, """b""": 2}, [1, 2]),
({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]),
({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]),
({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]),
({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]),
({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]),
({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]),
({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]),
({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]),
({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]),
({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]),
] , )
def lowerCamelCase__ ( A__ : Dict , A__ : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase = NestedDataStructure(A__ ).flatten()
assert output == expected_output
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = A(x=1 , y="""foobar""" )
__lowerCamelCase = {"""x""": 1, """y""": """foobar"""}
assert asdict(A__ ) == expected_output
__lowerCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]}
__lowerCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]}
assert asdict(A__ ) == expected_output
with pytest.raises(A__ ):
asdict([1, A(x=10 , y="""foo""" )] )
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
return text.split()
def lowerCamelCase__ ( A__ : Any ):
'''simple docstring'''
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def lowerCamelCase__ ( ):
'''simple docstring'''
with Pool(2 ) as pool:
__lowerCamelCase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) )
assert out.count("""hello""" ) == 10
assert out.count("""there""" ) == 10
assert len(A__ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
__lowerCamelCase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) )
assert out.count("""hello""" ) == 10
assert out.count("""there""" ) == 10
assert len(A__ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
__lowerCamelCase = []
for yield_time, content in iflatmap_unordered(
A__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(A__ )
assert out.count("""a""" ) == 2
assert out.count("""b""" ) == 2
assert len(A__ ) == 4
| 12 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
def lowerCamelCase__ ( A__ : float , A__ : float ):
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"""{price_plus_tax(100, 0.25) = }""")
print(f"""{price_plus_tax(125.50, 0.05) = }""")
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(A__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , )
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
depth_first_search([] , [] , [] , A__ , A__ )
# Print all the boards
for board in boards:
for column in board:
print(A__ )
print("""""" )
print(len(A__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 12 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json',
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = 'data2vec-audio'
def __init__( self: Any , UpperCamelCase_: List[str]=32 , UpperCamelCase_: Optional[Any]=7_68 , UpperCamelCase_: str=12 , UpperCamelCase_: int=12 , UpperCamelCase_: Optional[Any]=30_72 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: int=1E-5 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_: int=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_: int=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_: Any=False , UpperCamelCase_: Tuple=16 , UpperCamelCase_: Union[str, Any]=19 , UpperCamelCase_: List[str]=5 , UpperCamelCase_: Optional[Any]=0.05 , UpperCamelCase_: int=10 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Dict=0.0 , UpperCamelCase_: Dict=10 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: Tuple="sum" , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: int=2_56 , UpperCamelCase_: Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_: List[str]=(5, 3, 3, 1, 1) , UpperCamelCase_: Any=(1, 2, 3, 1, 1) , UpperCamelCase_: Dict=5_12 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: str=1 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: str=False , UpperCamelCase_: int=3 , UpperCamelCase_: Any=2 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Tuple=None , **UpperCamelCase_: int , ):
super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = conv_pos_kernel_size
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layerdrop
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
__lowerCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# adapter
__lowerCamelCase = add_adapter
__lowerCamelCase = adapter_kernel_size
__lowerCamelCase = adapter_stride
__lowerCamelCase = num_adapter_layers
__lowerCamelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = list(UpperCamelCase_ )
__lowerCamelCase = xvector_output_dim
@property
def lowerCAmelCase__ ( self: str ):
return math.prod(self.conv_stride )
| 12 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ = 'examples/'
UpperCAmelCase_ = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCAmelCase_ = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCAmelCase_ = 'README.md'
def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : Tuple ):
'''simple docstring'''
with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__lowerCamelCase = f.read()
__lowerCamelCase, __lowerCamelCase = REPLACE_PATTERNS[pattern]
__lowerCamelCase = replace.replace("""VERSION""" , A__ )
__lowerCamelCase = re_pattern.sub(A__ , A__ )
with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(A__ )
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
for folder, directories, fnames in os.walk(A__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern="""examples""" )
def lowerCamelCase__ ( A__ : List[Any] , A__ : List[Any]=False ):
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(A__ , A__ , A__ )
if not patch:
update_version_in_examples(A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = """🤗 Transformers currently provides the following architectures"""
__lowerCamelCase = """1. Want to contribute a new model?"""
with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__lowerCamelCase = f.readlines()
# Find the start of the list.
__lowerCamelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__lowerCamelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
__lowerCamelCase = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
__lowerCamelCase = f.read()
__lowerCamelCase = REPLACE_PATTERNS["""init"""][0].search(A__ ).groups()[0]
return packaging.version.parse(A__ )
def lowerCamelCase__ ( A__ : Any=False ):
'''simple docstring'''
__lowerCamelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
__lowerCamelCase = default_version.base_version
elif patch:
__lowerCamelCase = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
__lowerCamelCase = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
__lowerCamelCase = input(f'Which version are you releasing? [{default_version}]' )
if len(A__ ) == 0:
__lowerCamelCase = default_version
print(f'Updating version to {version}.' )
global_version_update(A__ , patch=A__ )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = get_version()
__lowerCamelCase = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
__lowerCamelCase = current_version.base_version
# Check with the user we got that right.
__lowerCamelCase = input(f'Which version are we developing now? [{dev_version}]' )
if len(A__ ) == 0:
__lowerCamelCase = dev_version
print(f'Updating version to {version}.' )
global_version_update(A__ )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCAmelCase_ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 | 1 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
__lowerCamelCase = rescale_embeddings
__lowerCamelCase = attention_type
__lowerCamelCase = use_bias
__lowerCamelCase = block_size
__lowerCamelCase = num_random_blocks
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: Optional[Any] ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[str] ):
super().test_hidden_states_output()
@slow
def lowerCAmelCase__ ( self: Optional[Any] ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ):
return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("""outputs.attentions""" ):
return
else:
super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ):
'''simple docstring'''
if len(A__ ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(A__ )
or left < -len(A__ )
or right >= len(A__ )
or right < -len(A__ )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
__lowerCamelCase = (left + right) >> 1 # the middle
__lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid]
__lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 12 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase_ = {
'vocab_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt',
},
'tokenizer_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'
),
'google/realm-orqa-nq-openqa': (
'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-nq-reader': (
'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-openqa': (
'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-reader': (
'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase_ = {
'google/realm-cc-news-pretrained-embedder': 512,
'google/realm-cc-news-pretrained-encoder': 512,
'google/realm-cc-news-pretrained-scorer': 512,
'google/realm-cc-news-pretrained-openqa': 512,
'google/realm-orqa-nq-openqa': 512,
'google/realm-orqa-nq-reader': 512,
'google/realm-orqa-wq-openqa': 512,
'google/realm-orqa-wq-reader': 512,
}
UpperCAmelCase_ = {
'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True},
'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-reader': {'do_lower_case': True},
'google/realm-orqa-wq-openqa': {'do_lower_case': True},
'google/realm-orqa-wq-reader': {'do_lower_case': True},
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = RealmTokenizer
def __init__( self: int , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any="[UNK]" , UpperCamelCase_: List[Any]="[SEP]" , UpperCamelCase_: Tuple="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Optional[int]="[MASK]" , UpperCamelCase_: List[Any]=True , UpperCamelCase_: str=None , **UpperCamelCase_: Any , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**UpperCamelCase_ )
__lowerCamelCase = do_lower_case
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , **UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = PaddingStrategy.MAX_LENGTH
__lowerCamelCase = text
__lowerCamelCase = kwargs.pop("""text_pair""" , UpperCamelCase_ )
__lowerCamelCase = kwargs.pop("""return_tensors""" , UpperCamelCase_ )
__lowerCamelCase = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(UpperCamelCase_ ):
if batch_text_pair is not None:
__lowerCamelCase = batch_text_pair[idx]
else:
__lowerCamelCase = None
__lowerCamelCase = super().__call__(UpperCamelCase_ , UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = encoded_candidates.get("""input_ids""" )
__lowerCamelCase = encoded_candidates.get("""attention_mask""" )
__lowerCamelCase = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(UpperCamelCase_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(UpperCamelCase_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(UpperCamelCase_ )
__lowerCamelCase = {key: item for key, item in output_data.items() if len(UpperCamelCase_ ) != 0}
return BatchEncoding(UpperCamelCase_ , tensor_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any]=None ):
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ):
__lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 12 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = SMALL_MODEL_IDENTIFIER
__lowerCamelCase = """pt"""
__lowerCamelCase = """tf"""
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ )
model_tf.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """mock_framework"""
# Framework provided - return whatever the user provides
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Both in environment -> use PyTorch
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# Both not in environment -> raise error
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
| 12 | 1 |
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
UpperCAmelCase_ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Optional[Any]=18 , UpperCamelCase_: List[Any]=30 , UpperCamelCase_: int=4_00 , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: int=None , ):
__lowerCamelCase = size if size is not None else {"""height""": 20, """width""": 20}
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = num_channels
__lowerCamelCase = image_size
__lowerCamelCase = min_resolution
__lowerCamelCase = max_resolution
__lowerCamelCase = size
__lowerCamelCase = do_normalize
__lowerCamelCase = do_convert_rgb
__lowerCamelCase = [5_12, 10_24, 20_48, 40_96]
__lowerCamelCase = patch_size if patch_size is not None else {"""height""": 16, """width""": 16}
def lowerCAmelCase__ ( self: Optional[int] ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"""
__lowerCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = PixaStructImageProcessingTester(self )
@property
def lowerCAmelCase__ ( self: List[str] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = self.image_processor_tester.prepare_dummy_image()
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
__lowerCamelCase = 20_48
__lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) )
def lowerCAmelCase__ ( self: List[Any] ):
# Initialize image_processor
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
__lowerCamelCase = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__lowerCamelCase = image_processor(
UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self: Tuple ):
# Initialize image_processor
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
__lowerCamelCase = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
__lowerCamelCase = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
__lowerCamelCase = """Hello"""
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__lowerCamelCase = image_processor(
UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self: Dict ):
# Initialize image_processor
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
__lowerCamelCase = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__lowerCamelCase = image_processor(
UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self: List[Any] ):
# Initialize image_processor
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
__lowerCamelCase = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__lowerCamelCase = image_processor(
UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : int = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 )
__lowerCamelCase = 3
@property
def lowerCAmelCase__ ( self: List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCamelCase_ , """do_convert_rgb""" ) )
def lowerCAmelCase__ ( self: List[Any] ):
# Initialize image_processor
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
__lowerCamelCase = (
(self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__lowerCamelCase = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__lowerCamelCase = image_processor(
UpperCamelCase_ , return_tensors="""pt""" , max_patches=UpperCamelCase_ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 12 |
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCAmelCase_ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def lowerCamelCase__ ( A__ : list[list[int]] ):
'''simple docstring'''
__lowerCamelCase = []
for i in range(len(A__ ) ):
__lowerCamelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__lowerCamelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(A__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(A__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(A__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__lowerCamelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(A__ )
return next_generation
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
for _ in range(A__ ):
# Create output image
__lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) )
__lowerCamelCase = img.load()
# Save cells to image
for x in range(len(A__ ) ):
for y in range(len(cells[0] ) ):
__lowerCamelCase = 255 - cells[y][x] * 255
__lowerCamelCase = (colour, colour, colour)
# Save image
images.append(A__ )
__lowerCamelCase = new_generation(A__ )
return images
if __name__ == "__main__":
UpperCAmelCase_ = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ = {
'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'],
'configuration_maskformer_swin': ['MaskFormerSwinConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MaskFormerFeatureExtractor']
UpperCAmelCase_ = ['MaskFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'MaskFormerForInstanceSegmentation',
'MaskFormerModel',
'MaskFormerPreTrainedModel',
]
UpperCAmelCase_ = [
'MaskFormerSwinBackbone',
'MaskFormerSwinModel',
'MaskFormerSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline
UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ : int = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Union[str, Any] = frozenset([])
def lowerCAmelCase__ ( self: str ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(UpperCamelCase_ )
__lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) )
__lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ )
__lowerCamelCase = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
__lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase__ ( self: int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" )
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 12 | 1 |
def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float , A__ : float , A__ : float , ):
'''simple docstring'''
__lowerCamelCase = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
__lowerCamelCase = 1 - (matter_density + radiation_density + dark_energy)
__lowerCamelCase = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
__lowerCamelCase = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
UpperCAmelCase_ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 12 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ):
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
__lowerCamelCase = model
__lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ )
__lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ )
def __call__( self: Dict , **UpperCamelCase_: Any ):
__lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()}
return self.model.run(UpperCamelCase_ , UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ):
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
__lowerCamelCase = """CPUExecutionProvider"""
return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name )
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ )
if src_path.exists():
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ):
if os.path.isfile(UpperCamelCase_ ):
logger.error(F'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
# saving model weights/files
self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(UpperCamelCase_ ):
__lowerCamelCase = OnnxRuntimeModel.load_model(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
# load model from hub
else:
# download model
__lowerCamelCase = hf_hub_download(
repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , )
__lowerCamelCase = Path(UpperCamelCase_ ).parent
__lowerCamelCase = Path(UpperCamelCase_ ).name
__lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
return cls(model=UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = None
if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2:
__lowerCamelCase, __lowerCamelCase = model_id.split("""@""" )
return cls._from_pretrained(
model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
from __future__ import annotations
from math import pi, sqrt
def lowerCamelCase__ ( A__ : float , A__ : float ):
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
UpperCAmelCase_ = get_logger(__name__)
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
if accelerator.process_index == 0:
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving model to {ckpt_dir}' )
__lowerCamelCase = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Model saved to {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = (
os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
if f'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading model from {ckpt_dir}' )
__lowerCamelCase = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , )
__lowerCamelCase = state_dict["""model"""]
logger.info(f'Model loaded from {ckpt_dir}' )
model.load_state_dict(A__ )
def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = FSDP.optim_state_dict(A__ , A__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving Optimizer state to {output_optimizer_file}' )
torch.save(A__ , A__ )
logger.info(f'Optimizer state saved in {output_optimizer_file}' )
else:
__lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Optimizer state saved in {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading Optimizer state from {input_optimizer_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Optimizer state loaded from {input_optimizer_file}' )
else:
__lowerCamelCase = (
os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
if f'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading Optimizer from {ckpt_dir}' )
__lowerCamelCase = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , )
__lowerCamelCase = optim_state["""optimizer"""]
logger.info(f'Optimizer loaded from {ckpt_dir}' )
__lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ )
optimizer.load_state_dict(A__ )
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Optional[int] = 'bert-generation'
def __init__( self: Dict , UpperCamelCase_: Optional[Any]=5_03_58 , UpperCamelCase_: int=10_24 , UpperCamelCase_: Union[str, Any]=24 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: Optional[int]=40_96 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: int=1E-12 , UpperCamelCase_: str=0 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: List[str]=1 , UpperCamelCase_: List[str]="absolute" , UpperCamelCase_: str=True , **UpperCamelCase_: int , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase_ = pytest.mark.integration
UpperCAmelCase_ = {'comet'}
UpperCAmelCase_ = importlib.util.find_spec('fairseq') is not None
UpperCAmelCase_ = {'code_eval'}
UpperCAmelCase_ = os.name == 'nt'
UpperCAmelCase_ = {'bertscore', 'frugalscore', 'perplexity'}
UpperCAmelCase_ = importlib.util.find_spec('transformers') is not None
def lowerCamelCase__ ( A__ : Any ):
'''simple docstring'''
@wraps(A__ )
def wrapper(self : List[str] , A__ : str ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self , A__ )
return wrapper
def lowerCamelCase__ ( A__ : Optional[Any] ):
'''simple docstring'''
@wraps(A__ )
def wrapper(self : List[str] , A__ : Any ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self , A__ )
return wrapper
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
@wraps(A__ )
def wrapper(self : Union[str, Any] , A__ : int ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self , A__ )
return wrapper
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names())
@for_all_test_methods(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
@local
class lowerCamelCase__( parameterized.TestCase):
UpperCAmelCase__ : Union[str, Any] = {}
UpperCAmelCase__ : str = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = """[...]"""
__lowerCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase_ ) ).module_path )
__lowerCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCamelCase_ )
# check parameters
__lowerCamelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCamelCase_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
__lowerCamelCase = doctest.testmod(UpperCamelCase_ , verbose=UpperCamelCase_ , raise_on_error=UpperCamelCase_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Tuple ):
__lowerCamelCase = """[...]"""
__lowerCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase_ ) ).module_path )
# run doctest
with self.use_local_metrics():
__lowerCamelCase = doctest.testmod(UpperCamelCase_ , verbose=UpperCamelCase_ , raise_on_error=UpperCamelCase_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase_ ):
yield
else:
yield
@contextmanager
def lowerCAmelCase__ ( self: str ):
def load_local_metric(UpperCamelCase_: int , *UpperCamelCase_: str , **UpperCamelCase_: Any ):
return load_metric(os.path.join("""metrics""" , UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ )
with patch("""datasets.load_metric""" ) as mock_load_metric:
__lowerCamelCase = load_local_metric
yield
@classmethod
def lowerCAmelCase__ ( cls: Union[str, Any] , UpperCamelCase_: Any ):
def wrapper(UpperCamelCase_: Any ):
__lowerCamelCase = contextmanager(UpperCamelCase_ )
__lowerCamelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Any ):
assert len(input_dict["""input_ids"""] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
__lowerCamelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
import torch
def bert_cos_score_idf(A__ : Optional[Any] , A__ : List[str] , *A__ : List[str] , **A__ : str ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(A__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
__lowerCamelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def lowerCamelCase__ ( A__ : Any ):
'''simple docstring'''
def load_from_checkpoint(A__ : str ):
class lowerCamelCase__:
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: List[str] ):
assert len(UpperCamelCase_ ) == 2
__lowerCamelCase = [0.19, 0.92]
return scores, sum(UpperCamelCase_ ) / len(UpperCamelCase_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
__lowerCamelCase = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
__lowerCamelCase = load_from_checkpoint
yield
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = load_metric(os.path.join("""metrics""" , """seqeval""" ) )
__lowerCamelCase = """ERROR"""
__lowerCamelCase = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(A__ , match=re.escape(A__ ) ):
metric.compute(predictions=[] , references=[] , scheme=A__ )
| 12 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ):
'''simple docstring'''
__lowerCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowerCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , )
__lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ):
if latents is None:
__lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__lowerCamelCase = latents.to(UpperCamelCase_ )
__lowerCamelCase = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
__lowerCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowerCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ )
# We'll offload the last model manually.
__lowerCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase__ ( self: int ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ):
__lowerCamelCase = self._execution_device
__lowerCamelCase = guidance_scale > 1.0
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
__lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
__lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ )
__lowerCamelCase = self.scheduler.timesteps
__lowerCamelCase = self.movq.config.latent_channels
__lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor )
# create initial latent
__lowerCamelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint}
__lowerCamelCase = self.unet(
sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0]
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
__lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 )
__lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 )
__lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0]
# post-processing
__lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
__lowerCamelCase = image * 0.5 + 0.5
__lowerCamelCase = image.clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 12 | 1 |
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : int = LxmertTokenizer
UpperCAmelCase__ : Tuple = LxmertTokenizerFast
UpperCAmelCase__ : Optional[Any] = True
UpperCAmelCase__ : int = True
def lowerCAmelCase__ ( self: str ):
super().setUp()
__lowerCamelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = """UNwant\u00E9d,running"""
__lowerCamelCase = """unwanted, running"""
return input_text, output_text
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = self.tokenizer_class(self.vocab_file )
__lowerCamelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(UpperCamelCase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] )
def lowerCAmelCase__ ( self: str ):
if not self.test_rust_tokenizer:
return
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = """I was born in 92000, and this is falsé."""
__lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ )
__lowerCamelCase = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = tokenizer.encode(UpperCamelCase_ )
__lowerCamelCase = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
__lowerCamelCase = rescale_embeddings
__lowerCamelCase = attention_type
__lowerCamelCase = use_bias
__lowerCamelCase = block_size
__lowerCamelCase = num_random_blocks
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: Optional[Any] ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[str] ):
super().test_hidden_states_output()
@slow
def lowerCAmelCase__ ( self: Optional[Any] ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ):
return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("""outputs.attentions""" ):
return
else:
super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
return 1 / (1 + np.exp(-z ))
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : int ):
'''simple docstring'''
return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean()
def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[Any] , A__ : str ):
'''simple docstring'''
__lowerCamelCase = np.dot(A__ , A__ )
return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) )
def lowerCamelCase__ ( A__ : Any , A__ : List[Any] , A__ : Dict , A__ : Any=70000 ):
'''simple docstring'''
__lowerCamelCase = np.zeros(x.shape[1] )
for iterations in range(A__ ):
__lowerCamelCase = np.dot(A__ , A__ )
__lowerCamelCase = sigmoid_function(A__ )
__lowerCamelCase = np.dot(x.T , h - y ) / y.size
__lowerCamelCase = theta - alpha * gradient # updating the weights
__lowerCamelCase = np.dot(A__ , A__ )
__lowerCamelCase = sigmoid_function(A__ )
__lowerCamelCase = cost_function(A__ , A__ )
if iterations % 100 == 0:
print(f'loss: {j} \t' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCAmelCase_ = datasets.load_iris()
UpperCAmelCase_ = iris.data[:, :2]
UpperCAmelCase_ = (iris.target != 0) * 1
UpperCAmelCase_ = 0.1
UpperCAmelCase_ = logistic_reg(alpha, x, y, max_iterations=70_000)
print('theta: ', theta) # printing the theta i.e our weights vector
def lowerCamelCase__ ( A__ : Dict ):
'''simple docstring'''
return sigmoid_function(
np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 0].min(), x[:, 0].max())
((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 1].min(), x[:, 1].max())
((UpperCAmelCase_) , (UpperCAmelCase_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCAmelCase_ = np.c_[xxa.ravel(), xxa.ravel()]
UpperCAmelCase_ = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show()
| 12 |
def lowerCamelCase__ ( A__ : list ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
for _ in range(A__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
UpperCAmelCase_ = list(range(10, 0, -1))
print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
| 12 | 1 |
UpperCAmelCase_ = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.60_9344,
"knot": 1.852,
}
UpperCAmelCase_ = {
"km/h": 1.0,
"m/s": 0.2_7777_7778,
"mph": 0.6_2137_1192,
"knot": 0.5_3995_6803,
}
def lowerCamelCase__ ( A__ : float , A__ : str , A__ : str ):
'''simple docstring'''
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__lowerCamelCase = (
f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
f'Valid values are: {", ".join(A__ )}'
)
raise ValueError(A__ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__:
def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = question_encoder
__lowerCamelCase = generator
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
if os.path.isfile(UpperCamelCase_ ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase_ )
self.generator.save_pretrained(UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ )
if config is None:
__lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ )
def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ):
return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ):
return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ):
return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.generator
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ):
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase_ , )
if max_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = labels["""input_ids"""]
return model_inputs
| 12 | 1 |
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'--original_config_file',
default=None,
type=str,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--scheduler_type',
default='pndm',
type=str,
help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']',
)
parser.add_argument(
'--pipeline_type',
default=None,
type=str,
help=(
'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''
'. If `None` pipeline will be automatically inferred.'
),
)
parser.add_argument(
'--image_size',
default=None,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--prediction_type',
default=None,
type=str,
help=(
'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'
' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
parser.add_argument(
'--stable_unclip',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.',
)
parser.add_argument(
'--stable_unclip_prior',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.',
)
parser.add_argument(
'--clip_stats_path',
type=str,
help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.',
required=False,
)
parser.add_argument(
'--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.'
)
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--vae_path',
type=str,
default=None,
required=False,
help='Set to a path, hub id to an already converted vae to not convert it again.',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 12 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCamelCase__( unittest.TestCase):
UpperCAmelCase__ : Optional[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
__lowerCamelCase = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 )
__lowerCamelCase = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[Any] ):
for example in examples:
__lowerCamelCase = video_classifier(UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
] , )
@require_torch
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
__lowerCamelCase = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
__lowerCamelCase = pipeline(
"""video-classification""" , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 )
__lowerCamelCase = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
__lowerCamelCase = video_classifier(UpperCamelCase_ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , )
__lowerCamelCase = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
[{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
| 12 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
@register_to_config
def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ):
super().__init__()
__lowerCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
__lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = None
__lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : VQModel
UpperCAmelCase__ : CLIPTextModel
UpperCAmelCase__ : CLIPTokenizer
UpperCAmelCase__ : TransformeraDModel
UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings
UpperCAmelCase__ : VQDiffusionScheduler
def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1
# get prompt text embeddings
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
__lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate text embeddings for each generation per prompt
__lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
__lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
__lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 )
else:
__lowerCamelCase = [""""""] * batch_size
__lowerCamelCase = text_input_ids.shape[-1]
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , )
__lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
__lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase = negative_prompt_embeds.shape[1]
__lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 )
__lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = 1
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = len(UpperCamelCase_ )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' )
__lowerCamelCase = batch_size * num_images_per_prompt
__lowerCamelCase = guidance_scale > 1.0
__lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
# get the initial completely masked latents unless the user supplied it
__lowerCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
__lowerCamelCase = self.transformer.num_vector_embeds - 1
__lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"""Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"""
F' {self.transformer.num_vector_embeds - 1} (inclusive).' )
__lowerCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device )
__lowerCamelCase = self.scheduler.timesteps.to(self.device )
__lowerCamelCase = latents
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the sample if we are doing classifier free guidance
__lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
__lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = model_output.chunk(2 )
__lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ )
__lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
# remove `log(0)`'s (`-inf`s)
__lowerCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.vqvae.config.vq_embed_dim
__lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
__lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ )
__lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ):
__lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ )
__lowerCamelCase = torch.exp(UpperCamelCase_ )
__lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
__lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ )
__lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
__lowerCamelCase = keep_mask[:, :-1, :]
__lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
__lowerCamelCase = log_p_x_0.clone()
__lowerCamelCase = -torch.inf # -inf = log(0)
return rv
| 12 | 1 |
import numpy as np
def lowerCamelCase__ ( A__ : np.ndarray , A__ : float ):
'''simple docstring'''
return np.where(vector > 0 , A__ , (alpha * (np.exp(A__ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 12 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ = 16
UpperCAmelCase_ = 32
def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained(A__ )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(A__ : int ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
__lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase, __lowerCamelCase = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config["""lr"""]
__lowerCamelCase = int(config["""num_epochs"""] )
__lowerCamelCase = int(config["""seed"""] )
__lowerCamelCase = int(config["""batch_size"""] )
__lowerCamelCase = args.model_name_or_path
set_seed(A__ )
__lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
__lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1]
__lowerCamelCase = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(A__ ) + 1
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
accelerator.print("""resumed checkpoint performance:""" , A__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f:
__lowerCamelCase = json.load(A__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = f'epoch_{epoch}'
__lowerCamelCase = os.path.join(args.output_dir , A__ )
accelerator.save_state(A__ )
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]["""lr"""]
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(f'epoch {epoch}:' , A__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f:
json.dump(A__ , A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , )
parser.add_argument(
"""--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 12 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase_ = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCamelCase__:
UpperCAmelCase__ : str = PegasusConfig
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 'gelu'
def __init__( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: List[Any]=99 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: str=5 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: List[str]=37 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: Tuple=20 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: str=1 , UpperCamelCase_: Optional[int]=0 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__lowerCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowerCamelCase = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return config, inputs_dict
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Dict ):
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(UpperCamelCase_ )
__lowerCamelCase = model.encode(inputs_dict["""input_ids"""] )
__lowerCamelCase, __lowerCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , )
__lowerCamelCase = model.decode(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Any ):
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(UpperCamelCase_ )
__lowerCamelCase = model.encode(inputs_dict["""input_ids"""] )
__lowerCamelCase, __lowerCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__lowerCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , )
__lowerCamelCase = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Tuple , A__ : str , A__ : Tuple=None , A__ : Tuple=None , ):
'''simple docstring'''
if attention_mask is None:
__lowerCamelCase = np.not_equal(A__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__lowerCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : int = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
UpperCAmelCase__ : Dict = True
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Dict = False
UpperCAmelCase__ : Dict = False
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = FlaxPegasusModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def encode_jitted(UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=None , **UpperCamelCase_: Dict ):
return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = encode_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = encode_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = model_class(UpperCamelCase_ )
__lowerCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__lowerCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str ):
return model.decode(
decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = decode_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = decode_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCAmelCase__ ( self: Tuple ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase_ )
__lowerCamelCase = np.ones((1, 1) )
__lowerCamelCase = model(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__lowerCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__lowerCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__lowerCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""np""" , truncation=UpperCamelCase_ , max_length=5_12 , padding=UpperCamelCase_ )
__lowerCamelCase = model.generate(**UpperCamelCase_ , num_beams=2 ).sequences
__lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
assert tgt_text == decoded
| 12 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 1 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(A__ , """_dynamo""" ):
return False
return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule )
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : bool = True ):
'''simple docstring'''
__lowerCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
__lowerCamelCase = is_compiled_module(A__ )
if is_compiled:
__lowerCamelCase = model
__lowerCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(A__ , A__ ):
__lowerCamelCase = model.module
if not keep_fpaa_wrapper:
__lowerCamelCase = getattr(A__ , """forward""" )
__lowerCamelCase = model.__dict__.pop("""_original_forward""" , A__ )
if original_forward is not None:
while hasattr(A__ , """__wrapped__""" ):
__lowerCamelCase = forward.__wrapped__
if forward == original_forward:
break
__lowerCamelCase = forward
if getattr(A__ , """_converted_to_transformer_engine""" , A__ ):
convert_model(A__ , to_transformer_engine=A__ )
if is_compiled:
__lowerCamelCase = model
__lowerCamelCase = compiled_model
return model
def lowerCamelCase__ ( ):
'''simple docstring'''
PartialState().wait_for_everyone()
def lowerCamelCase__ ( A__ : Dict , A__ : str ):
'''simple docstring'''
if PartialState().distributed_type == DistributedType.TPU:
xm.save(A__ , A__ )
elif PartialState().local_process_index == 0:
torch.save(A__ , A__ )
@contextmanager
def lowerCamelCase__ ( **A__ : Tuple ):
'''simple docstring'''
for key, value in kwargs.items():
__lowerCamelCase = str(A__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def lowerCamelCase__ ( A__ : Any ):
'''simple docstring'''
if not hasattr(A__ , """__qualname__""" ) and not hasattr(A__ , """__name__""" ):
__lowerCamelCase = getattr(A__ , """__class__""" , A__ )
if hasattr(A__ , """__qualname__""" ):
return obj.__qualname__
if hasattr(A__ , """__name__""" ):
return obj.__name__
return str(A__ )
def lowerCamelCase__ ( A__ : str , A__ : int ):
'''simple docstring'''
for key, value in source.items():
if isinstance(A__ , A__ ):
__lowerCamelCase = destination.setdefault(A__ , {} )
merge_dicts(A__ , A__ )
else:
__lowerCamelCase = value
return destination
def lowerCamelCase__ ( A__ : int = None ):
'''simple docstring'''
if port is None:
__lowerCamelCase = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(("""localhost""", port) ) == 0
| 12 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
def lowerCamelCase__ ( A__ : str , A__ : str ):
'''simple docstring'''
assert x is not None
assert y is not None
__lowerCamelCase = len(A__ )
__lowerCamelCase = len(A__ )
# declaring the array for storing the dp values
__lowerCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
__lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0
__lowerCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
__lowerCamelCase = """"""
__lowerCamelCase, __lowerCamelCase = m, n
while i > 0 and j > 0:
__lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
__lowerCamelCase = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
UpperCAmelCase_ = 'AGGTAB'
UpperCAmelCase_ = 'GXTXAYB'
UpperCAmelCase_ = 4
UpperCAmelCase_ = 'GTAB'
UpperCAmelCase_ , UpperCAmelCase_ = longest_common_subsequence(a, b)
print('len =', ln, ', sub-sequence =', subseq)
import doctest
doctest.testmod()
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(A__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , )
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
depth_first_search([] , [] , [] , A__ , A__ )
# Print all the boards
for board in boards:
for column in board:
print(A__ )
print("""""" )
print(len(A__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 12 | 1 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def lowerCamelCase__ ( A__ : Optional[int] , A__ : str , A__ : str ):
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , A__ )
__lowerCamelCase = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
__lowerCamelCase = dataset_size < in_memory_max_size
else:
__lowerCamelCase = False
__lowerCamelCase = is_small_dataset(A__ )
assert result == expected
| 12 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
def lowerCamelCase__ ( A__ : Optional[Any]=28123 ):
'''simple docstring'''
__lowerCamelCase = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
__lowerCamelCase = set()
__lowerCamelCase = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(A__ )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 | 1 |
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: Dict , UpperCamelCase_: UNetaDModel , UpperCamelCase_: UNetaDModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: Optional[int] , ):
super().__init__()
__lowerCamelCase = value_function
__lowerCamelCase = unet
__lowerCamelCase = scheduler
__lowerCamelCase = env
__lowerCamelCase = env.get_dataset()
__lowerCamelCase = {}
for key in self.data.keys():
try:
__lowerCamelCase = self.data[key].mean()
except: # noqa: E722
pass
__lowerCamelCase = {}
for key in self.data.keys():
try:
__lowerCamelCase = self.data[key].std()
except: # noqa: E722
pass
__lowerCamelCase = env.observation_space.shape[0]
__lowerCamelCase = env.action_space.shape[0]
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ):
return (x_in - self.means[key]) / self.stds[key]
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] ):
return x_in * self.stds[key] + self.means[key]
def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ):
if type(UpperCamelCase_ ) is dict:
return {k: self.to_torch(UpperCamelCase_ ) for k, v in x_in.items()}
elif torch.is_tensor(UpperCamelCase_ ):
return x_in.to(self.unet.device )
return torch.tensor(UpperCamelCase_ , device=self.unet.device )
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ):
for key, val in cond.items():
__lowerCamelCase = val.clone()
return x_in
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: int ):
__lowerCamelCase = x.shape[0]
__lowerCamelCase = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
__lowerCamelCase = torch.full((batch_size,) , UpperCamelCase_ , device=self.unet.device , dtype=torch.long )
for _ in range(UpperCamelCase_ ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
__lowerCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample
__lowerCamelCase = torch.autograd.grad([y.sum()] , [x] )[0]
__lowerCamelCase = self.scheduler._get_variance(UpperCamelCase_ )
__lowerCamelCase = torch.exp(0.5 * posterior_variance )
__lowerCamelCase = model_std * grad
__lowerCamelCase = 0
__lowerCamelCase = x.detach()
__lowerCamelCase = x + scale * grad
__lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim )
__lowerCamelCase = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , predict_epsilon=UpperCamelCase_ )["""prev_sample"""]
# apply conditions to the trajectory (set the initial state)
__lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim )
__lowerCamelCase = self.to_torch(UpperCamelCase_ )
return x, y
def __call__( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[Any]=64 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: List[str]=0.1 ):
# normalize the observations and create batch dimension
__lowerCamelCase = self.normalize(UpperCamelCase_ , """observations""" )
__lowerCamelCase = obs[None].repeat(UpperCamelCase_ , axis=0 )
__lowerCamelCase = {0: self.to_torch(UpperCamelCase_ )}
__lowerCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
__lowerCamelCase = randn_tensor(UpperCamelCase_ , device=self.unet.device )
__lowerCamelCase = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim )
__lowerCamelCase = self.to_torch(UpperCamelCase_ )
# run the diffusion process
__lowerCamelCase, __lowerCamelCase = self.run_diffusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# sort output trajectories by value
__lowerCamelCase = y.argsort(0 , descending=UpperCamelCase_ ).squeeze()
__lowerCamelCase = x[sorted_idx]
__lowerCamelCase = sorted_values[:, :, : self.action_dim]
__lowerCamelCase = actions.detach().cpu().numpy()
__lowerCamelCase = self.de_normalize(UpperCamelCase_ , key="""actions""" )
# select the action with the highest value
if y is not None:
__lowerCamelCase = 0
else:
# if we didn't run value guiding, select a random action
__lowerCamelCase = np.random.randint(0 , UpperCamelCase_ )
__lowerCamelCase = denorm_actions[selected_index, 0]
return denorm_actions
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ):
'''simple docstring'''
if len(A__ ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(A__ )
or left < -len(A__ )
or right >= len(A__ )
or right < -len(A__ )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
__lowerCamelCase = (left + right) >> 1 # the middle
__lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid]
__lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 12 | 1 |
def lowerCamelCase__ ( A__ : int = 10 ):
'''simple docstring'''
if not isinstance(A__ , A__ ) or n < 0:
raise ValueError("""Invalid input""" )
__lowerCamelCase = 10**n
__lowerCamelCase = 28433 * (pow(2 , 7830457 , A__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 12 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = SMALL_MODEL_IDENTIFIER
__lowerCamelCase = """pt"""
__lowerCamelCase = """tf"""
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ )
model_tf.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """mock_framework"""
# Framework provided - return whatever the user provides
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Both in environment -> use PyTorch
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# Both not in environment -> raise error
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
| 12 | 1 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__:
def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = question_encoder
__lowerCamelCase = generator
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
if os.path.isfile(UpperCamelCase_ ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase_ )
self.generator.save_pretrained(UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ )
if config is None:
__lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ )
def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ):
return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ):
return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ):
return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.generator
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ):
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase_ , )
if max_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = labels["""input_ids"""]
return model_inputs
| 12 |
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCAmelCase_ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def lowerCamelCase__ ( A__ : list[list[int]] ):
'''simple docstring'''
__lowerCamelCase = []
for i in range(len(A__ ) ):
__lowerCamelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__lowerCamelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(A__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(A__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(A__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__lowerCamelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(A__ )
return next_generation
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
for _ in range(A__ ):
# Create output image
__lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) )
__lowerCamelCase = img.load()
# Save cells to image
for x in range(len(A__ ) ):
for y in range(len(cells[0] ) ):
__lowerCamelCase = 255 - cells[y][x] * 255
__lowerCamelCase = (colour, colour, colour)
# Save image
images.append(A__ )
__lowerCamelCase = new_generation(A__ )
return images
if __name__ == "__main__":
UpperCAmelCase_ = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 12 | 1 |
def lowerCamelCase__ ( A__ : float , A__ : float ):
'''simple docstring'''
if density <= 0:
raise ValueError("""Impossible fluid density""" )
if bulk_modulus <= 0:
raise ValueError("""Impossible bulk modulus""" )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline
UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ : int = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Union[str, Any] = frozenset([])
def lowerCAmelCase__ ( self: str ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(UpperCamelCase_ )
__lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) )
__lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ )
__lowerCamelCase = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
__lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase__ ( self: int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" )
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 12 | 1 |
import string
from math import logaa
def lowerCamelCase__ ( A__ : str , A__ : str ):
'''simple docstring'''
__lowerCamelCase = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
__lowerCamelCase = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def lowerCamelCase__ ( A__ : str , A__ : str ):
'''simple docstring'''
__lowerCamelCase = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowerCamelCase = corpus_without_punctuation.split("""\n""" )
__lowerCamelCase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(A__ ))
def lowerCamelCase__ ( A__ : int , A__ : int , A__ : Optional[Any]=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def lowerCamelCase__ ( A__ : int , A__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 12 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
UpperCAmelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n'
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) )
__lowerCamelCase = self.transformer_dir
shutil.copy(
os.path.join(UpperCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , )
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = """src/transformers"""
shutil.rmtree(self.transformer_dir )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=None ):
__lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
__lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
__lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
__lowerCamelCase = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ )
__lowerCamelCase = os.path.join(self.transformer_dir , """new_code.py""" )
with open(UpperCamelCase_ , """w""" , newline="""\n""" ) as f:
f.write(UpperCamelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ )
with open(UpperCamelCase_ , """r""" ) as f:
self.assertTrue(f.read() , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
# Base copy consistency
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , UpperCamelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , )
# Copy consistency with a really long name
__lowerCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , UpperCamelCase_ , UpperCamelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , UpperCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , )
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""]
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"""
""" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"""
""" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"""
""" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"""
""" Luong, Quoc V. Le, Christopher D. Manning."""
)
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"""
""" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"""
""" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"""
""" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"""
""" Christopher D. Manning 发布。\n"""
)
__lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md(
UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] )
self.assertFalse(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md(
UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(UpperCamelCase_ )
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."""
)
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"""
""" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
__lowerCamelCase = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
__lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md(
UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] )
# Check if the model link is synchronized.
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ):
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
__lowerCamelCase = model
__lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ )
__lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ )
def __call__( self: Dict , **UpperCamelCase_: Any ):
__lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()}
return self.model.run(UpperCamelCase_ , UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ):
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
__lowerCamelCase = """CPUExecutionProvider"""
return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name )
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ )
if src_path.exists():
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ):
if os.path.isfile(UpperCamelCase_ ):
logger.error(F'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
# saving model weights/files
self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(UpperCamelCase_ ):
__lowerCamelCase = OnnxRuntimeModel.load_model(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
# load model from hub
else:
# download model
__lowerCamelCase = hf_hub_download(
repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , )
__lowerCamelCase = Path(UpperCamelCase_ ).parent
__lowerCamelCase = Path(UpperCamelCase_ ).name
__lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
return cls(model=UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = None
if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2:
__lowerCamelCase, __lowerCamelCase = model_id.split("""@""" )
return cls._from_pretrained(
model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
| 12 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
__lowerCamelCase = 1024
__lowerCamelCase = 4096
__lowerCamelCase = 24
__lowerCamelCase = 16
__lowerCamelCase = [5, 11, 17, 23]
__lowerCamelCase = [256, 512, 1024, 1024]
__lowerCamelCase = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
__lowerCamelCase = 768
__lowerCamelCase = [1, 1, 1, 0.5]
__lowerCamelCase = [256, 512, 768, 768]
__lowerCamelCase = 150
__lowerCamelCase = 16
__lowerCamelCase = (1, 384, 384)
__lowerCamelCase = False
__lowerCamelCase = """project"""
if "ade" in checkpoint_url:
__lowerCamelCase = True
__lowerCamelCase = 768
__lowerCamelCase = [1, 1, 1, 0.5]
__lowerCamelCase = 150
__lowerCamelCase = 16
__lowerCamelCase = """huggingface/label-files"""
__lowerCamelCase = """ade20k-id2label.json"""
__lowerCamelCase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="""dataset""" ) ) , """r""" ) )
__lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()}
__lowerCamelCase = idalabel
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = [1, 150, 480, 480]
return config, expected_shape
def lowerCamelCase__ ( A__ : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def lowerCamelCase__ ( A__ : Optional[Any] ):
'''simple docstring'''
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__lowerCamelCase = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
__lowerCamelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
__lowerCamelCase = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
__lowerCamelCase = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
__lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
__lowerCamelCase = name.replace("""proj""" , """projection""" )
if "blocks" in name:
__lowerCamelCase = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
__lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
__lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
__lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
__lowerCamelCase = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
__lowerCamelCase = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
__lowerCamelCase = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
__lowerCamelCase = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
__lowerCamelCase = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
__lowerCamelCase = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
__lowerCamelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__lowerCamelCase = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
__lowerCamelCase = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
__lowerCamelCase = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
__lowerCamelCase = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
__lowerCamelCase = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
__lowerCamelCase = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
__lowerCamelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
__lowerCamelCase = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
__lowerCamelCase = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
__lowerCamelCase = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
__lowerCamelCase = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
__lowerCamelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
__lowerCamelCase = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
__lowerCamelCase = name.replace("""..""" , """.""" )
if "stem.conv" in name:
__lowerCamelCase = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
__lowerCamelCase = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
__lowerCamelCase = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
__lowerCamelCase = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
__lowerCamelCase = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
__lowerCamelCase = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
__lowerCamelCase = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
__lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__lowerCamelCase = in_proj_weight[: config.hidden_size, :]
__lowerCamelCase = in_proj_bias[: config.hidden_size]
__lowerCamelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowerCamelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowerCamelCase = in_proj_weight[
-config.hidden_size :, :
]
__lowerCamelCase = in_proj_bias[-config.hidden_size :]
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def lowerCamelCase__ ( A__ : Any , A__ : Dict , A__ : Any , A__ : Any , A__ : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase = get_dpt_config(A__ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
__lowerCamelCase = torch.load(A__ , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(A__ )
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(A__ )
__lowerCamelCase = val
# read in qkv matrices
read_in_q_k_v(A__ , A__ )
# load HuggingFace model
__lowerCamelCase = DPTForSemanticSegmentation(A__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(A__ )
model.load_state_dict(A__ )
model.eval()
# Check outputs on an image
__lowerCamelCase = 480 if """ade""" in checkpoint_url else 384
__lowerCamelCase = DPTImageProcessor(size=A__ )
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(A__ , return_tensors="""pt""" )
# forward pass
__lowerCamelCase = model(**A__ ).logits if """ade""" in checkpoint_url else model(**A__ ).predicted_depth
if show_prediction:
__lowerCamelCase = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=A__ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(A__ ).mkdir(exist_ok=A__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(A__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(A__ )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCAmelCase_ = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 12 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = (UnCLIPScheduler,)
def lowerCAmelCase__ ( self: List[Any] , **UpperCamelCase_: Any ):
__lowerCamelCase = {
"""num_train_timesteps""": 10_00,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**UpperCamelCase_ )
return config
def lowerCAmelCase__ ( self: Optional[Any] ):
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] ):
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(variance_type="""fixed_small_log""" )
__lowerCamelCase = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(variance_type="""learned_range""" )
__lowerCamelCase = scheduler_class(**UpperCamelCase_ )
__lowerCamelCase = 0.5
assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(4_87 , predicted_variance=UpperCamelCase_ ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(9_99 , predicted_variance=UpperCamelCase_ ) - -0.001_0011 < 1E-5
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**UpperCamelCase_ )
__lowerCamelCase = scheduler.timesteps
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter
__lowerCamelCase = torch.manual_seed(0 )
for i, t in enumerate(UpperCamelCase_ ):
# 1. predict noise residual
__lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
__lowerCamelCase = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
__lowerCamelCase = pred_prev_sample
__lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) )
__lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(25 )
__lowerCamelCase = scheduler.timesteps
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter
__lowerCamelCase = torch.manual_seed(0 )
for i, t in enumerate(UpperCamelCase_ ):
# 1. predict noise residual
__lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ )
if i + 1 == timesteps.shape[0]:
__lowerCamelCase = None
else:
__lowerCamelCase = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__lowerCamelCase = scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
__lowerCamelCase = pred_prev_sample
__lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) )
__lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def lowerCAmelCase__ ( self: Any ):
pass
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
| 12 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
UpperCAmelCase_ = get_logger(__name__)
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
if accelerator.process_index == 0:
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving model to {ckpt_dir}' )
__lowerCamelCase = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Model saved to {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = (
os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
if f'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading model from {ckpt_dir}' )
__lowerCamelCase = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , )
__lowerCamelCase = state_dict["""model"""]
logger.info(f'Model loaded from {ckpt_dir}' )
model.load_state_dict(A__ )
def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = FSDP.optim_state_dict(A__ , A__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving Optimizer state to {output_optimizer_file}' )
torch.save(A__ , A__ )
logger.info(f'Optimizer state saved in {output_optimizer_file}' )
else:
__lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Optimizer state saved in {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading Optimizer state from {input_optimizer_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Optimizer state loaded from {input_optimizer_file}' )
else:
__lowerCamelCase = (
os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
if f'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading Optimizer from {ckpt_dir}' )
__lowerCamelCase = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , )
__lowerCamelCase = optim_state["""optimizer"""]
logger.info(f'Optimizer loaded from {ckpt_dir}' )
__lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ )
optimizer.load_state_dict(A__ )
| 12 | 1 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=99 , UpperCamelCase_: List[str]=13 , UpperCamelCase_: int=16 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: List[str]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Dict=False , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Any=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: str=30 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Dict=1 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Dict=None , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = d_model
__lowerCamelCase = d_model
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = eos_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = use_cache
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = None
__lowerCamelCase = decoder_seq_length
__lowerCamelCase = 2
__lowerCamelCase = 1
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__lowerCamelCase = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , ):
__lowerCamelCase = True
__lowerCamelCase = TrOCRDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval()
__lowerCamelCase = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
__lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ )
__lowerCamelCase = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 )
__lowerCamelCase = outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(UpperCamelCase_ )["""last_hidden_state"""]
__lowerCamelCase = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )["""last_hidden_state"""]
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
UpperCAmelCase__ : Dict = (TrOCRForCausalLM,) if is_torch_available() else ()
UpperCAmelCase__ : Union[str, Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {}
UpperCAmelCase__ : Union[str, Any] = True
UpperCAmelCase__ : Dict = False
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase_ )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
pass
def lowerCAmelCase__ ( self: List[str] ):
pass
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
def lowerCAmelCase__ ( self: List[str] ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
def wrapper(*A__ : Dict , **A__ : Dict ):
__lowerCamelCase = timeit.default_timer()
__lowerCamelCase = func(*A__ , **A__ )
__lowerCamelCase = timeit.default_timer() - starttime
return delta
__lowerCamelCase = func.__name__
return wrapper
def lowerCamelCase__ ( A__ : dict , A__ : Tuple=100 , A__ : Optional[Any]=None ):
'''simple docstring'''
__lowerCamelCase = []
__lowerCamelCase = seq_shapes or {}
for i in range(A__ ):
__lowerCamelCase = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(A__ , _ArrayXD ):
__lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(A__ , datasets.Value ):
if v.dtype == "string":
__lowerCamelCase = """The small grey turtle was surprisingly fast when challenged."""
else:
__lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(A__ , datasets.Sequence ):
while isinstance(A__ , datasets.Sequence ):
__lowerCamelCase = v.feature
__lowerCamelCase = seq_shapes[k]
__lowerCamelCase = np.random.rand(*A__ ).astype(v.dtype )
__lowerCamelCase = data
dummy_data.append((i, example) )
return dummy_data
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Optional[int]=100 , A__ : int=None ):
'''simple docstring'''
__lowerCamelCase = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ )
with ArrowWriter(features=A__ , path=A__ ) as writer:
for key, record in dummy_data:
__lowerCamelCase = features.encode_example(A__ )
writer.write(A__ )
__lowerCamelCase, __lowerCamelCase = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' )
__lowerCamelCase = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) )
return dataset
| 12 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ):
'''simple docstring'''
__lowerCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowerCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , )
__lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ):
if latents is None:
__lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__lowerCamelCase = latents.to(UpperCamelCase_ )
__lowerCamelCase = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
__lowerCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowerCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ )
# We'll offload the last model manually.
__lowerCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase__ ( self: int ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ):
__lowerCamelCase = self._execution_device
__lowerCamelCase = guidance_scale > 1.0
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
__lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
__lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ )
__lowerCamelCase = self.scheduler.timesteps
__lowerCamelCase = self.movq.config.latent_channels
__lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor )
# create initial latent
__lowerCamelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint}
__lowerCamelCase = self.unet(
sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0]
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
__lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 )
__lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 )
__lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0]
# post-processing
__lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
__lowerCamelCase = image * 0.5 + 0.5
__lowerCamelCase = image.clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 12 | 1 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ ( A__ : List[str] , A__ : Any , A__ : Union[str, Any] , A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = FunnelConfig.from_json_file(A__ )
print(f'Building PyTorch model from configuration: {config}' )
__lowerCamelCase = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(A__ , A__ , A__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , A__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.'
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 12 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
__lowerCamelCase = rescale_embeddings
__lowerCamelCase = attention_type
__lowerCamelCase = use_bias
__lowerCamelCase = block_size
__lowerCamelCase = num_random_blocks
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: Optional[Any] ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[str] ):
super().test_hidden_states_output()
@slow
def lowerCAmelCase__ ( self: Optional[Any] ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ):
return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("""outputs.attentions""" ):
return
else:
super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ):
'''simple docstring'''
__lowerCamelCase = OmegaConf.load(A__ )
if display:
print(yaml.dump(OmegaConf.to_container(A__ ) ) )
return config
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any]=None , A__ : Any=None ):
'''simple docstring'''
if conf_path is None:
__lowerCamelCase = """./model_checkpoints/vqgan_only.yaml"""
__lowerCamelCase = load_config(A__ , display=A__ )
__lowerCamelCase = VQModel(**config.model.params )
if ckpt_path is None:
__lowerCamelCase = """./model_checkpoints/vqgan_only.pt"""
__lowerCamelCase = torch.load(A__ , map_location=A__ )
if ".ckpt" in ckpt_path:
__lowerCamelCase = sd["""state_dict"""]
model.load_state_dict(A__ , strict=A__ )
model.to(A__ )
del sd
return model
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = model.encode(A__ )
print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' )
__lowerCamelCase = model.decode(A__ )
return xrec
def lowerCamelCase__ ( A__ : Tuple , A__ : List[Any]=False ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase = string.rsplit(""".""" , 1 )
if reload:
__lowerCamelCase = importlib.import_module(A__ )
importlib.reload(A__ )
return getattr(importlib.import_module(A__ , package=A__ ) , cls )
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : Dict=True , A__ : int=True ):
'''simple docstring'''
__lowerCamelCase = instantiate_from_config(A__ )
if sd is not None:
model.load_state_dict(A__ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCamelCase__ ( A__ : List[Any] , A__ : str , A__ : Dict , A__ : List[Any] ):
'''simple docstring'''
if ckpt:
__lowerCamelCase = torch.load(A__ , map_location="""cpu""" )
__lowerCamelCase = pl_sd["""global_step"""]
print(f'loaded model from global step {global_step}.' )
else:
__lowerCamelCase = {"""state_dict""": None}
__lowerCamelCase = None
__lowerCamelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=A__ , eval_mode=A__ )["""model"""]
return model, global_step
| 12 |
def lowerCamelCase__ ( A__ : list ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
for _ in range(A__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
UpperCAmelCase_ = list(range(10, 0, -1))
print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
| 12 | 1 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
UpperCAmelCase_ = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
UpperCAmelCase_ = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
UpperCAmelCase_ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_000))
def lowerCamelCase__ ( A__ : str , A__ : str ):
'''simple docstring'''
__lowerCamelCase = len([g for position, g in enumerate(A__ ) if g == main_target[position]] )
return (item, float(A__ ))
def lowerCamelCase__ ( A__ : str , A__ : str ):
'''simple docstring'''
__lowerCamelCase = random.randint(0 , len(A__ ) - 1 )
__lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:]
__lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowerCamelCase__ ( A__ : str , A__ : list[str] ):
'''simple docstring'''
__lowerCamelCase = list(A__ )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
__lowerCamelCase = random.choice(A__ )
return "".join(A__ )
def lowerCamelCase__ ( A__ : tuple[str, float] , A__ : list[tuple[str, float]] , A__ : list[str] , ):
'''simple docstring'''
__lowerCamelCase = []
# Generate more children proportionally to the fitness score.
__lowerCamelCase = int(parent_a[1] * 100 ) + 1
__lowerCamelCase = 10 if child_n >= 10 else child_n
for _ in range(A__ ):
__lowerCamelCase = population_score[random.randint(0 , A__ )][0]
__lowerCamelCase, __lowerCamelCase = crossover(parent_a[0] , A__ )
# Append new string to the population list.
pop.append(mutate(A__ , A__ ) )
pop.append(mutate(A__ , A__ ) )
return pop
def lowerCamelCase__ ( A__ : str , A__ : list[str] , A__ : bool = True ):
'''simple docstring'''
if N_POPULATION < N_SELECTED:
__lowerCamelCase = f'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(A__ )
# Verify that the target contains no genes besides the ones inside genes variable.
__lowerCamelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
__lowerCamelCase = f'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(A__ )
# Generate random starting population.
__lowerCamelCase = []
for _ in range(A__ ):
population.append("""""".join([random.choice(A__ ) for i in range(len(A__ ) )] ) )
# Just some logs to know what the algorithms is doing.
__lowerCamelCase, __lowerCamelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(A__ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
__lowerCamelCase = [evaluate(A__ , A__ ) for item in population]
# Check if there is a matching evolution.
__lowerCamelCase = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'\nGeneration: {generation}'
f'\nTotal Population:{total_population}'
f'\nBest score: {population_score[0][1]}'
f'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
__lowerCamelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(A__ )
# Normalize population score to be between 0 and 1.
__lowerCamelCase = [
(item, score / len(A__ )) for item, score in population_score
]
# This is selection
for i in range(A__ ):
population.extend(select(population_score[int(A__ )] , A__ , A__ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(A__ ) > N_POPULATION:
break
if __name__ == "__main__":
UpperCAmelCase_ = (
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
UpperCAmelCase_ = list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 12 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__:
def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = question_encoder
__lowerCamelCase = generator
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
if os.path.isfile(UpperCamelCase_ ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase_ )
self.generator.save_pretrained(UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ )
if config is None:
__lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ )
def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ):
return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ):
return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ):
return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.generator
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ):
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase_ , )
if max_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = labels["""input_ids"""]
return model_inputs
| 12 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase_ = logging.get_logger(__name__)
# General docstring
UpperCAmelCase_ = 'RegNetConfig'
# Base docstring
UpperCAmelCase_ = 'facebook/regnet-y-040'
UpperCAmelCase_ = [1, 1_088, 7, 7]
# Image classification docstring
UpperCAmelCase_ = 'facebook/regnet-y-040'
UpperCAmelCase_ = 'tabby, tabby cat'
UpperCAmelCase_ = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[str] = "relu" , **UpperCamelCase_: List[str] , ):
super().__init__(**UpperCamelCase_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__lowerCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__lowerCamelCase = tf.keras.layers.ConvaD(
filters=UpperCamelCase_ , kernel_size=UpperCamelCase_ , strides=UpperCamelCase_ , padding="""VALID""" , groups=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" , )
__lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" )
__lowerCamelCase = ACTaFN[activation] if activation is not None else tf.identity
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = self.convolution(self.padding(UpperCamelCase_ ) )
__lowerCamelCase = self.normalization(UpperCamelCase_ )
__lowerCamelCase = self.activation(UpperCamelCase_ )
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Tuple ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = config.num_channels
__lowerCamelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , )
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any ):
__lowerCamelCase = shape_list(UpperCamelCase_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 2, 3, 1) )
__lowerCamelCase = self.embedder(UpperCamelCase_ )
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int = 2 , **UpperCamelCase_: List[Any] ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = tf.keras.layers.ConvaD(
filters=UpperCamelCase_ , kernel_size=1 , strides=UpperCamelCase_ , use_bias=UpperCamelCase_ , name="""convolution""" )
__lowerCamelCase = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" )
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False ):
return self.normalization(self.convolution(UpperCamelCase_ ) , training=UpperCamelCase_ )
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: str , UpperCamelCase_: int , UpperCamelCase_: int , **UpperCamelCase_: str ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" )
__lowerCamelCase = [
tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ),
tf.keras.layers.ConvaD(filters=UpperCamelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ),
]
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__lowerCamelCase = self.pooler(UpperCamelCase_ )
for layer_module in self.attention:
__lowerCamelCase = layer_module(UpperCamelCase_ )
__lowerCamelCase = hidden_state * pooled
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: Any ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = in_channels != out_channels or stride != 1
__lowerCamelCase = max(1 , out_channels // config.groups_width )
__lowerCamelCase = (
TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__lowerCamelCase = [
TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.2""" ),
]
__lowerCamelCase = ACTaFN[config.hidden_act]
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = hidden_state
for layer_module in self.layers:
__lowerCamelCase = layer_module(UpperCamelCase_ )
__lowerCamelCase = self.shortcut(UpperCamelCase_ )
hidden_state += residual
__lowerCamelCase = self.activation(UpperCamelCase_ )
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: Any , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 , **UpperCamelCase_: int ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = in_channels != out_channels or stride != 1
__lowerCamelCase = max(1 , out_channels // config.groups_width )
__lowerCamelCase = (
TFRegNetShortCut(UpperCamelCase_ , stride=UpperCamelCase_ , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
__lowerCamelCase = [
TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetSELayer(UpperCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ),
TFRegNetConvLayer(UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ , name="""layer.3""" ),
]
__lowerCamelCase = ACTaFN[config.hidden_act]
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ):
__lowerCamelCase = hidden_state
for layer_module in self.layers:
__lowerCamelCase = layer_module(UpperCamelCase_ )
__lowerCamelCase = self.shortcut(UpperCamelCase_ )
hidden_state += residual
__lowerCamelCase = self.activation(UpperCamelCase_ )
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: List[str] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , **UpperCamelCase_: Tuple ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer
__lowerCamelCase = [
# downsampling is done in the first layer with stride of 2
layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , name="""layers.0""" ),
*[layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , name=F'layers.{i+1}' ) for i in range(depth - 1 )],
]
def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ):
for layer_module in self.layers:
__lowerCamelCase = layer_module(UpperCamelCase_ )
return hidden_state
class lowerCamelCase__( tf.keras.layers.Layer):
def __init__( self: List[Any] , UpperCamelCase_: RegNetConfig , **UpperCamelCase_: Dict ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
UpperCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) )
__lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(UpperCamelCase_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , depth=UpperCamelCase_ , name=F'stages.{i+1}' ) )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: tf.Tensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True ):
__lowerCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowerCamelCase = hidden_states + (hidden_state,)
__lowerCamelCase = stage_module(UpperCamelCase_ )
if output_hidden_states:
__lowerCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=UpperCamelCase_ , hidden_states=UpperCamelCase_ )
@keras_serializable
class lowerCamelCase__( tf.keras.layers.Layer):
UpperCAmelCase__ : Union[str, Any] = RegNetConfig
def __init__( self: str , UpperCamelCase_: str , **UpperCamelCase_: List[str] ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = config
__lowerCamelCase = TFRegNetEmbeddings(UpperCamelCase_ , name="""embedder""" )
__lowerCamelCase = TFRegNetEncoder(UpperCamelCase_ , name="""encoder""" )
__lowerCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCamelCase_ , name="""pooler""" )
@unpack_inputs
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , ):
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.embedder(UpperCamelCase_ , training=UpperCamelCase_ )
__lowerCamelCase = self.encoder(
UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ )
__lowerCamelCase = encoder_outputs[0]
__lowerCamelCase = self.pooler(UpperCamelCase_ )
# Change to NCHW output format have uniformity in the modules
__lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) )
__lowerCamelCase = tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__lowerCamelCase = tuple([tf.transpose(UpperCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCamelCase_ , pooler_output=UpperCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = RegNetConfig
UpperCAmelCase__ : str = 'regnet'
UpperCAmelCase__ : Union[str, Any] = 'pixel_values'
@property
def lowerCAmelCase__ ( self: Tuple ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )}
UpperCAmelCase_ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
UpperCAmelCase_ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCamelCase , )
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: Optional[Any] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: List[str] , **UpperCamelCase_: Any ):
super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" )
@unpack_inputs
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: tf.Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: int=False , ):
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.regnet(
pixel_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCamelCase , )
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
def __init__( self: Optional[int] , UpperCamelCase_: RegNetConfig , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Dict ):
super().__init__(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = config.num_labels
__lowerCamelCase = TFRegNetMainLayer(UpperCamelCase_ , name="""regnet""" )
# classification head
__lowerCamelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: tf.Tensor = None , UpperCamelCase_: bool = None , UpperCamelCase_: bool = None , UpperCamelCase_: List[str]=False , ):
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.regnet(
UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ , training=UpperCamelCase_ )
__lowerCamelCase = outputs.pooler_output if return_dict else outputs[1]
__lowerCamelCase = self.classifier[0](UpperCamelCase_ )
__lowerCamelCase = self.classifier[1](UpperCamelCase_ )
__lowerCamelCase = None if labels is None else self.hf_compute_loss(labels=UpperCamelCase_ , logits=UpperCamelCase_ )
if not return_dict:
__lowerCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=UpperCamelCase_ , logits=UpperCamelCase_ , hidden_states=outputs.hidden_states )
| 12 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 | 1 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
@register_to_config
def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ):
super().__init__()
__lowerCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
__lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = None
__lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : VQModel
UpperCAmelCase__ : CLIPTextModel
UpperCAmelCase__ : CLIPTokenizer
UpperCAmelCase__ : TransformeraDModel
UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings
UpperCAmelCase__ : VQDiffusionScheduler
def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1
# get prompt text embeddings
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
__lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate text embeddings for each generation per prompt
__lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
__lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
__lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 )
else:
__lowerCamelCase = [""""""] * batch_size
__lowerCamelCase = text_input_ids.shape[-1]
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , )
__lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
__lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase = negative_prompt_embeds.shape[1]
__lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 )
__lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = 1
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = len(UpperCamelCase_ )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' )
__lowerCamelCase = batch_size * num_images_per_prompt
__lowerCamelCase = guidance_scale > 1.0
__lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
# get the initial completely masked latents unless the user supplied it
__lowerCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
__lowerCamelCase = self.transformer.num_vector_embeds - 1
__lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"""Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"""
F' {self.transformer.num_vector_embeds - 1} (inclusive).' )
__lowerCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device )
__lowerCamelCase = self.scheduler.timesteps.to(self.device )
__lowerCamelCase = latents
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the sample if we are doing classifier free guidance
__lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
__lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = model_output.chunk(2 )
__lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ )
__lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
# remove `log(0)`'s (`-inf`s)
__lowerCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.vqvae.config.vq_embed_dim
__lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
__lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ )
__lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ):
__lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ )
__lowerCamelCase = torch.exp(UpperCamelCase_ )
__lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
__lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ )
__lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
__lowerCamelCase = keep_mask[:, :-1, :]
__lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
__lowerCamelCase = log_p_x_0.clone()
__lowerCamelCase = -torch.inf # -inf = log(0)
return rv
| 12 | 1 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase, __lowerCamelCase = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa )
__lowerCamelCase, __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=UpperCamelCase_ , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa )
__lowerCamelCase = controlnet_params
__lowerCamelCase = """bird"""
__lowerCamelCase = jax.device_count()
__lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
__lowerCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(UpperCamelCase_ , jax.device_count() )
__lowerCamelCase = replicate(UpperCamelCase_ )
__lowerCamelCase = shard(UpperCamelCase_ )
__lowerCamelCase = shard(UpperCamelCase_ )
__lowerCamelCase = pipe(
prompt_ids=UpperCamelCase_ , image=UpperCamelCase_ , params=UpperCamelCase_ , prng_seed=UpperCamelCase_ , num_inference_steps=50 , jit=UpperCamelCase_ , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array(
[0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] )
print(F'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase, __lowerCamelCase = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa )
__lowerCamelCase, __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=UpperCamelCase_ , from_pt=UpperCamelCase_ , dtype=jnp.bfloataa )
__lowerCamelCase = controlnet_params
__lowerCamelCase = """Chef in the kitchen"""
__lowerCamelCase = jax.device_count()
__lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
__lowerCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(UpperCamelCase_ , jax.device_count() )
__lowerCamelCase = replicate(UpperCamelCase_ )
__lowerCamelCase = shard(UpperCamelCase_ )
__lowerCamelCase = shard(UpperCamelCase_ )
__lowerCamelCase = pipe(
prompt_ids=UpperCamelCase_ , image=UpperCamelCase_ , params=UpperCamelCase_ , prng_seed=UpperCamelCase_ , num_inference_steps=50 , jit=UpperCamelCase_ , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array(
[[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] )
print(F'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 12 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 | 1 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: Dict , *UpperCamelCase_: List[Any] , **UpperCamelCase_: str ):
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" , UpperCamelCase_ , )
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
| 12 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ = 16
UpperCAmelCase_ = 32
def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained(A__ )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(A__ : int ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
__lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase, __lowerCamelCase = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config["""lr"""]
__lowerCamelCase = int(config["""num_epochs"""] )
__lowerCamelCase = int(config["""seed"""] )
__lowerCamelCase = int(config["""batch_size"""] )
__lowerCamelCase = args.model_name_or_path
set_seed(A__ )
__lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
__lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1]
__lowerCamelCase = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(A__ ) + 1
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
accelerator.print("""resumed checkpoint performance:""" , A__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f:
__lowerCamelCase = json.load(A__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = f'epoch_{epoch}'
__lowerCamelCase = os.path.join(args.output_dir , A__ )
accelerator.save_state(A__ )
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]["""lr"""]
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(f'epoch {epoch}:' , A__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f:
json.dump(A__ , A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , )
parser.add_argument(
"""--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 12 | 1 |
import os
import string
import sys
UpperCAmelCase_ = 1 << 8
UpperCAmelCase_ = {
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
UpperCAmelCase_ = KEYMAP['up']
UpperCAmelCase_ = KEYMAP['left']
if sys.platform == "win32":
UpperCAmelCase_ = []
UpperCAmelCase_ = {
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
UpperCAmelCase_ = ord(str(i))
def lowerCamelCase__ ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
__lowerCamelCase = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(A__ ) == 0:
# Read the keystroke
__lowerCamelCase = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__lowerCamelCase = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__lowerCamelCase = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(A__ )
if ord(A__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
__lowerCamelCase = chr(KEYMAP["""esc"""] )
except KeyError:
__lowerCamelCase = cha[1]
else:
__lowerCamelCase = ch.decode(A__ )
else:
__lowerCamelCase = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__lowerCamelCase = sys.stdin.fileno()
__lowerCamelCase = termios.tcgetattr(A__ )
try:
tty.setraw(A__ )
__lowerCamelCase = sys.stdin.read(1 )
finally:
termios.tcsetattr(A__ , termios.TCSADRAIN , A__ )
return ch
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = get_raw_chars()
if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(A__ ) == KEYMAP["esc"]:
__lowerCamelCase = get_raw_chars()
if ord(A__ ) == KEYMAP["mod_int"]:
__lowerCamelCase = get_raw_chars()
if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(A__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 12 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 1 |
import argparse
import datetime
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
__lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(A__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
__lowerCamelCase = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
__lowerCamelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
__lowerCamelCase = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
__lowerCamelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
__lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
__lowerCamelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) )
# Start math
if m <= 2:
__lowerCamelCase = y - 1
__lowerCamelCase = m + 12
# maths var
__lowerCamelCase = int(str(A__ )[:2] )
__lowerCamelCase = int(str(A__ )[2:] )
__lowerCamelCase = int(2.6 * m - 5.39 )
__lowerCamelCase = int(c / 4 )
__lowerCamelCase = int(k / 4 )
__lowerCamelCase = int(d + k )
__lowerCamelCase = int(t + u + v + x )
__lowerCamelCase = int(z - (2 * c) )
__lowerCamelCase = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
__lowerCamelCase = f'Your date {date_input}, is a {days[str(A__ )]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
UpperCAmelCase_ = parser.parse_args()
zeller(args.date_input)
| 12 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
def lowerCamelCase__ ( A__ : int = 10 , A__ : int = 22 ):
'''simple docstring'''
__lowerCamelCase = range(1 , A__ )
__lowerCamelCase = range(1 , A__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f"""{solution(10, 22) = }""")
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(A__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , )
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
depth_first_search([] , [] , [] , A__ , A__ )
# Print all the boards
for board in boards:
for column in board:
print(A__ )
print("""""" )
print(len(A__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 12 | 1 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = {
"""repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""],
"""path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""],
"""content""": ["""a """ * 20, """a """ * 30, """b """ * 7],
}
__lowerCamelCase = Dataset.from_dict(A__ )
return dataset
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = get_dataset()
__lowerCamelCase = make_duplicate_clusters(UpperCamelCase_ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = get_dataset()
__lowerCamelCase, __lowerCamelCase = deduplicate_dataset(UpperCamelCase_ )
self.assertEqual(len(UpperCamelCase_ ) , 2 )
print(UpperCamelCase_ )
self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 )
self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , UpperCamelCase_ )
| 12 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
UpperCAmelCase_ = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
UpperCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
UpperCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def lowerCamelCase__ ( A__ : tuple ):
'''simple docstring'''
return x[0]
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = get_letter_count(A__ )
__lowerCamelCase = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(A__ )
__lowerCamelCase = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=A__ )
__lowerCamelCase = """""".join(freq_to_letter[freq] )
__lowerCamelCase = list(freq_to_letter_str.items() )
freq_pairs.sort(key=A__ , reverse=A__ )
__lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(A__ )
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = get_frequency_order(A__ )
__lowerCamelCase = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 | 1 |
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json',
# See all BART models at https://huggingface.co/models?filter=bart
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = 'bart'
UpperCAmelCase__ : Dict = ['past_key_values']
UpperCAmelCase__ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self: str , UpperCamelCase_: Any=5_02_65 , UpperCamelCase_: Dict=10_24 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Dict=40_96 , UpperCamelCase_: List[str]=16 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Union[str, Any]=40_96 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: str=0.0 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[Any]=10_24 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: str=0.02 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Dict=False , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Dict=3 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Dict=0 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: List[Any]=2 , **UpperCamelCase_: int , ):
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = d_model
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = classifier_dropout
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase_ ):
__lowerCamelCase = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
class lowerCamelCase__( __lowerCamelCase):
@property
def lowerCAmelCase__ ( self: Tuple ):
if self.task in ["default", "seq2seq-lm"]:
__lowerCamelCase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
__lowerCamelCase = {0: """batch"""}
__lowerCamelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
__lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""}
__lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase_ , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowerCamelCase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
__lowerCamelCase, __lowerCamelCase = self.num_layers
for i in range(UpperCamelCase_ ):
__lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""}
__lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""}
else:
__lowerCamelCase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
def lowerCAmelCase__ ( self: Dict ):
if self.task in ["default", "seq2seq-lm"]:
__lowerCamelCase = super().outputs
else:
__lowerCamelCase = super(UpperCamelCase_ , self ).outputs
if self.use_past:
__lowerCamelCase, __lowerCamelCase = self.num_layers
for i in range(UpperCamelCase_ ):
__lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""}
__lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ):
__lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Generate decoder inputs
__lowerCamelCase = seq_length if not self.use_past else 1
__lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
__lowerCamelCase = dict(**UpperCamelCase_ , **UpperCamelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape
__lowerCamelCase = common_inputs["""decoder_input_ids"""].shape[1]
__lowerCamelCase, __lowerCamelCase = self.num_attention_heads
__lowerCamelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowerCamelCase = decoder_seq_length + 3
__lowerCamelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowerCamelCase = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 )
__lowerCamelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowerCamelCase, __lowerCamelCase = self.num_layers
__lowerCamelCase = min(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers
__lowerCamelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(UpperCamelCase_ ):
common_inputs["past_key_values"].append(
(
torch.zeros(UpperCamelCase_ ),
torch.zeros(UpperCamelCase_ ),
torch.zeros(UpperCamelCase_ ),
torch.zeros(UpperCamelCase_ ),
) )
# TODO: test this.
__lowerCamelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(UpperCamelCase_ , UpperCamelCase_ ):
common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) )
return common_inputs
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ):
__lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCamelCase = seqlen + 2
__lowerCamelCase, __lowerCamelCase = self.num_layers
__lowerCamelCase, __lowerCamelCase = self.num_attention_heads
__lowerCamelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowerCamelCase = common_inputs["""attention_mask"""].dtype
__lowerCamelCase = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 )
__lowerCamelCase = [
(torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ )
]
return common_inputs
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowerCamelCase = compute_effective_axis_dimension(
UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowerCamelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase_ )
__lowerCamelCase = compute_effective_axis_dimension(
UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ )
# Generate dummy inputs according to compute batch and sequence
__lowerCamelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowerCamelCase = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) )
return common_inputs
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ):
if self.task in ["default", "seq2seq-lm"]:
__lowerCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ )
elif self.task == "causal-lm":
__lowerCamelCase = self._generate_dummy_inputs_for_causal_lm(
UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ )
else:
__lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ )
return common_inputs
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple ):
if self.task in ["default", "seq2seq-lm"]:
__lowerCamelCase = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = super(UpperCamelCase_ , self )._flatten_past_key_values_(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ):
'''simple docstring'''
if len(A__ ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(A__ )
or left < -len(A__ )
or right >= len(A__ )
or right < -len(A__ )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
__lowerCamelCase = (left + right) >> 1 # the middle
__lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid]
__lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = SMALL_MODEL_IDENTIFIER
__lowerCamelCase = """pt"""
__lowerCamelCase = """tf"""
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ )
model_tf.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """mock_framework"""
# Framework provided - return whatever the user provides
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Both in environment -> use PyTorch
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# Both not in environment -> raise error
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
| 12 | 1 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = 'https://openaipublic.azureedge.net/jukebox/models/'
UpperCAmelCase_ = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
__lowerCamelCase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
__lowerCamelCase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
__lowerCamelCase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
__lowerCamelCase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
__lowerCamelCase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
__lowerCamelCase = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
__lowerCamelCase = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
__lowerCamelCase = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : Optional[Any] , A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = {}
import re
__lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
__lowerCamelCase = re.compile(
R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
__lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
__lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
__lowerCamelCase = re.compile(
R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
__lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
__lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
__lowerCamelCase = re.compile(
R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
__lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(A__ ):
__lowerCamelCase = re_encoder_block_conv_in.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] )
__lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
__lowerCamelCase = re_encoder_block_conv_in.sub(A__ , A__ )
elif re_encoder_block_resnet.fullmatch(A__ ):
__lowerCamelCase = re_encoder_block_resnet.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] )
__lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]]
__lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
__lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__lowerCamelCase = prefix + resnet_block
__lowerCamelCase = re_encoder_block_resnet.sub(A__ , A__ )
elif re_encoder_block_proj_out.fullmatch(A__ ):
__lowerCamelCase = re_encoder_block_proj_out.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
__lowerCamelCase = re_encoder_block_proj_out.sub(A__ , A__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(A__ ):
__lowerCamelCase = re_decoder_block_conv_out.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
__lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
__lowerCamelCase = re_decoder_block_conv_out.sub(A__ , A__ )
elif re_decoder_block_resnet.fullmatch(A__ ):
__lowerCamelCase = re_decoder_block_resnet.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
__lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]]
__lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
__lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__lowerCamelCase = prefix + resnet_block
__lowerCamelCase = re_decoder_block_resnet.sub(A__ , A__ )
elif re_decoder_block_proj_in.fullmatch(A__ ):
__lowerCamelCase = re_decoder_block_proj_in.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
__lowerCamelCase = re_decoder_block_proj_in.sub(A__ , A__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(A__ ):
__lowerCamelCase = re_prior_cond_conv_out.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
__lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
__lowerCamelCase = re_prior_cond_conv_out.sub(A__ , A__ )
elif re_prior_cond_resnet.fullmatch(A__ ):
__lowerCamelCase = re_prior_cond_resnet.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
__lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]]
__lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.'
__lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
__lowerCamelCase = prefix + resnet_block
__lowerCamelCase = re_prior_cond_resnet.sub(A__ , A__ )
elif re_prior_cond_proj_in.fullmatch(A__ ):
__lowerCamelCase = re_prior_cond_proj_in.match(A__ )
__lowerCamelCase = regex_match.groups()
__lowerCamelCase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
__lowerCamelCase = re_prior_cond_proj_in.sub(A__ , A__ )
# keep original key
else:
__lowerCamelCase = original_key
__lowerCamelCase = replace_key(A__ )
if f'{key_prefix}.{key}' not in model_state_dict or key is None:
print(f'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape:
__lowerCamelCase = model_state_dict[f'{key_prefix}.{key}']
print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
__lowerCamelCase = original_key
__lowerCamelCase = original_key
__lowerCamelCase = value
return new_dict
@torch.no_grad()
def lowerCamelCase__ ( A__ : str=None , A__ : List[Any]=None ):
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
__lowerCamelCase = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ )
os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ )
open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content )
__lowerCamelCase = MODEL_MAPPING[model_name.split("""/""" )[-1]]
__lowerCamelCase = JukeboxConfig.from_pretrained(A__ )
__lowerCamelCase = JukeboxModel(A__ )
__lowerCamelCase = []
__lowerCamelCase = {}
for i, dict_name in enumerate(A__ ):
__lowerCamelCase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""]
__lowerCamelCase = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
__lowerCamelCase = old_dic[k]
elif k.endswith(""".w""" ):
__lowerCamelCase = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
__lowerCamelCase = old_dic[k]
else:
__lowerCamelCase = old_dic[k]
__lowerCamelCase = """vqvae""" if i == 0 else f'priors.{3 - i}'
__lowerCamelCase = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ )
weight_dict.append(A__ )
__lowerCamelCase = weight_dict.pop(0 )
model.vqvae.load_state_dict(A__ )
for i in range(len(A__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(A__ ).mkdir(exist_ok=A__ )
with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile:
json.dump(A__ , A__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(A__ )
return weight_dict
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
UpperCAmelCase_ = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 12 |
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCAmelCase_ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def lowerCamelCase__ ( A__ : list[list[int]] ):
'''simple docstring'''
__lowerCamelCase = []
for i in range(len(A__ ) ):
__lowerCamelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__lowerCamelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(A__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(A__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(A__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__lowerCamelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(A__ )
return next_generation
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
for _ in range(A__ ):
# Create output image
__lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) )
__lowerCamelCase = img.load()
# Save cells to image
for x in range(len(A__ ) ):
for y in range(len(cells[0] ) ):
__lowerCamelCase = 255 - cells[y][x] * 255
__lowerCamelCase = (colour, colour, colour)
# Save image
images.append(A__ )
__lowerCamelCase = new_generation(A__ )
return images
if __name__ == "__main__":
UpperCAmelCase_ = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 12 | 1 |
import numpy
# List of input, output pairs
UpperCAmelCase_ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCAmelCase_ = (((515, 22, 13), 555), ((61, 35, 49), 150))
UpperCAmelCase_ = [2, 4, 1, 5]
UpperCAmelCase_ = len(train_data)
UpperCAmelCase_ = 0.009
def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]="train" ):
'''simple docstring'''
return calculate_hypothesis_value(A__ , A__ ) - output(
A__ , A__ )
def lowerCamelCase__ ( A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = 0
for i in range(len(A__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ):
'''simple docstring'''
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCamelCase__ ( A__ : Dict , A__ : int ):
'''simple docstring'''
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCamelCase__ ( A__ : str , A__ : List[Any]=m ):
'''simple docstring'''
__lowerCamelCase = 0
for i in range(A__ ):
if index == -1:
summation_value += _error(A__ )
else:
summation_value += _error(A__ ) * train_data[i][0][index]
return summation_value
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = summation_of_cost_derivative(A__ , A__ ) / m
return cost_derivative_value
def lowerCamelCase__ ( ):
'''simple docstring'''
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__lowerCamelCase = 0.000_002
__lowerCamelCase = 0
__lowerCamelCase = 0
while True:
j += 1
__lowerCamelCase = [0, 0, 0, 0]
for i in range(0 , len(A__ ) ):
__lowerCamelCase = get_cost_derivative(i - 1 )
__lowerCamelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
A__ , A__ , atol=A__ , rtol=A__ , ):
break
__lowerCamelCase = temp_parameter_vector
print(("""Number of iterations:""", j) )
def lowerCamelCase__ ( ):
'''simple docstring'''
for i in range(len(A__ ) ):
print(("""Actual output value:""", output(A__ , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(A__ , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline
UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ : int = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Union[str, Any] = frozenset([])
def lowerCAmelCase__ ( self: str ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(UpperCamelCase_ )
__lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) )
__lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ )
__lowerCamelCase = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
__lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase__ ( self: int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" )
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 12 | 1 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
UpperCAmelCase_ = re.compile(r'\b(a|an|the)\b', re.UNICODE)
UpperCAmelCase_ = None
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" )
parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" )
parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" )
parser.add_argument(
"""--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" )
parser.add_argument(
"""--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" )
parser.add_argument(
"""--na-prob-thresh""" , """-t""" , type=A__ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , )
parser.add_argument(
"""--out-image-dir""" , """-p""" , metavar="""out_images""" , default=A__ , help="""Save precision-recall curves to directory.""" )
parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def lowerCamelCase__ ( A__ : Any ):
'''simple docstring'''
__lowerCamelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
__lowerCamelCase = bool(qa["""answers"""]["""text"""] )
return qid_to_has_ans
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
def remove_articles(A__ : List[Any] ):
return ARTICLES_REGEX.sub(""" """ , A__ )
def white_space_fix(A__ : List[Any] ):
return " ".join(text.split() )
def remove_punc(A__ : Optional[Any] ):
__lowerCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(A__ : Dict ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) )
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
if not s:
return []
return normalize_answer(A__ ).split()
def lowerCamelCase__ ( A__ : int , A__ : Any ):
'''simple docstring'''
return int(normalize_answer(A__ ) == normalize_answer(A__ ) )
def lowerCamelCase__ ( A__ : Dict , A__ : str ):
'''simple docstring'''
__lowerCamelCase = get_tokens(A__ )
__lowerCamelCase = get_tokens(A__ )
__lowerCamelCase = collections.Counter(A__ ) & collections.Counter(A__ )
__lowerCamelCase = sum(common.values() )
if len(A__ ) == 0 or len(A__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
__lowerCamelCase = 1.0 * num_same / len(A__ )
__lowerCamelCase = 1.0 * num_same / len(A__ )
__lowerCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Dict ):
'''simple docstring'''
__lowerCamelCase = {}
__lowerCamelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
__lowerCamelCase = qa["""id"""]
__lowerCamelCase = [t for t in qa["""answers"""]["""text"""] if normalize_answer(A__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
__lowerCamelCase = [""""""]
if qid not in preds:
print(f'Missing prediction for {qid}' )
continue
__lowerCamelCase = preds[qid]
# Take max over all gold answers
__lowerCamelCase = max(compute_exact(A__ , A__ ) for a in gold_answers )
__lowerCamelCase = max(compute_fa(A__ , A__ ) for a in gold_answers )
return exact_scores, fa_scores
def lowerCamelCase__ ( A__ : Dict , A__ : str , A__ : Dict , A__ : Any ):
'''simple docstring'''
__lowerCamelCase = {}
for qid, s in scores.items():
__lowerCamelCase = na_probs[qid] > na_prob_thresh
if pred_na:
__lowerCamelCase = float(not qid_to_has_ans[qid] )
else:
__lowerCamelCase = s
return new_scores
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Tuple , A__ : str=None ):
'''simple docstring'''
if not qid_list:
__lowerCamelCase = len(A__ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores.values() ) / total),
("""f1""", 100.0 * sum(fa_scores.values() ) / total),
("""total""", total),
] )
else:
__lowerCamelCase = len(A__ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("""total""", total),
] )
def lowerCamelCase__ ( A__ : List[Any] , A__ : Union[str, Any] , A__ : Tuple ):
'''simple docstring'''
for k in new_eval:
__lowerCamelCase = new_eval[k]
def lowerCamelCase__ ( A__ : Tuple , A__ : int , A__ : Dict , A__ : Optional[int] ):
'''simple docstring'''
plt.step(A__ , A__ , color="""b""" , alpha=0.2 , where="""post""" )
plt.fill_between(A__ , A__ , step="""post""" , alpha=0.2 , color="""b""" )
plt.xlabel("""Recall""" )
plt.ylabel("""Precision""" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(A__ )
plt.savefig(A__ )
plt.clf()
def lowerCamelCase__ ( A__ : Dict , A__ : List[str] , A__ : int , A__ : Dict , A__ : Any=None , A__ : Optional[Any]=None ):
'''simple docstring'''
__lowerCamelCase = sorted(A__ , key=lambda A__ : na_probs[k] )
__lowerCamelCase = 0.0
__lowerCamelCase = 1.0
__lowerCamelCase = 0.0
__lowerCamelCase = [1.0]
__lowerCamelCase = [0.0]
__lowerCamelCase = 0.0
for i, qid in enumerate(A__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
__lowerCamelCase = true_pos / float(i + 1 )
__lowerCamelCase = true_pos / float(A__ )
if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(A__ )
recalls.append(A__ )
if out_image:
plot_pr_curve(A__ , A__ , A__ , A__ )
return {"ap": 100.0 * avg_prec}
def lowerCamelCase__ ( A__ : str , A__ : Union[str, Any] , A__ : Optional[int] , A__ : int , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
if out_image_dir and not os.path.exists(A__ ):
os.makedirs(A__ )
__lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
__lowerCamelCase = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , )
__lowerCamelCase = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , )
__lowerCamelCase = {k: float(A__ ) for k, v in qid_to_has_ans.items()}
__lowerCamelCase = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , )
merge_eval(A__ , A__ , """pr_exact""" )
merge_eval(A__ , A__ , """pr_f1""" )
merge_eval(A__ , A__ , """pr_oracle""" )
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : int , A__ : int ):
'''simple docstring'''
if not qid_list:
return
__lowerCamelCase = [na_probs[k] for k in qid_list]
__lowerCamelCase = np.ones_like(A__ ) / float(len(A__ ) )
plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) )
plt.xlabel("""Model probability of no-answer""" )
plt.ylabel("""Proportion of dataset""" )
plt.title(f'Histogram of no-answer probability: {name}' )
plt.savefig(os.path.join(A__ , f'na_prob_hist_{name}.png' ) )
plt.clf()
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Tuple , A__ : int ):
'''simple docstring'''
__lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
__lowerCamelCase = num_no_ans
__lowerCamelCase = cur_score
__lowerCamelCase = 0.0
__lowerCamelCase = sorted(A__ , key=lambda A__ : na_probs[k] )
for i, qid in enumerate(A__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
__lowerCamelCase = scores[qid]
else:
if preds[qid]:
__lowerCamelCase = -1
else:
__lowerCamelCase = 0
cur_score += diff
if cur_score > best_score:
__lowerCamelCase = cur_score
__lowerCamelCase = na_probs[qid]
return 100.0 * best_score / len(A__ ), best_thresh
def lowerCamelCase__ ( A__ : str , A__ : List[str] , A__ : Optional[Any] , A__ : Any , A__ : str , A__ : int ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase = find_best_thresh(A__ , A__ , A__ , A__ )
__lowerCamelCase, __lowerCamelCase = find_best_thresh(A__ , A__ , A__ , A__ )
__lowerCamelCase = best_exact
__lowerCamelCase = exact_thresh
__lowerCamelCase = best_fa
__lowerCamelCase = fa_thresh
def lowerCamelCase__ ( ):
'''simple docstring'''
with open(OPTS.data_file ) as f:
__lowerCamelCase = json.load(A__ )
__lowerCamelCase = dataset_json["""data"""]
with open(OPTS.pred_file ) as f:
__lowerCamelCase = json.load(A__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
__lowerCamelCase = json.load(A__ )
else:
__lowerCamelCase = {k: 0.0 for k in preds}
__lowerCamelCase = make_qid_to_has_ans(A__ ) # maps qid to True/False
__lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v]
__lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v]
__lowerCamelCase, __lowerCamelCase = get_raw_scores(A__ , A__ )
__lowerCamelCase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
__lowerCamelCase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
__lowerCamelCase = make_eval_dict(A__ , A__ )
if has_ans_qids:
__lowerCamelCase = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , """HasAns""" )
if no_ans_qids:
__lowerCamelCase = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , """NoAns""" )
if OPTS.na_prob_file:
find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , """hasAns""" )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , """noAns""" )
if OPTS.out_file:
with open(OPTS.out_file , """w""" ) as f:
json.dump(A__ , A__ )
else:
print(json.dumps(A__ , indent=2 ) )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 12 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
UpperCAmelCase_ = 'true'
def lowerCamelCase__ ( A__ : Any , A__ : List[str]=82 , A__ : int=16 ):
'''simple docstring'''
set_seed(42 )
__lowerCamelCase = RegressionModel()
__lowerCamelCase = deepcopy(A__ )
__lowerCamelCase = RegressionDataset(length=A__ )
__lowerCamelCase = DataLoader(A__ , batch_size=A__ )
model.to(accelerator.device )
__lowerCamelCase, __lowerCamelCase = accelerator.prepare(A__ , A__ )
return model, ddp_model, dataloader
def lowerCamelCase__ ( A__ : Accelerator , A__ : List[Any]=False ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" , split="""validation""" )
def tokenize_function(A__ : str ):
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
with accelerator.main_process_first():
__lowerCamelCase = dataset.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : List[str] ):
if use_longest:
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return DataLoader(A__ , shuffle=A__ , collate_fn=A__ , batch_size=16 )
def lowerCamelCase__ ( A__ : int , A__ : List[Any] ):
'''simple docstring'''
__lowerCamelCase = Accelerator(dispatch_batches=A__ , split_batches=A__ )
__lowerCamelCase = get_dataloader(A__ , not dispatch_batches )
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""" , return_dict=A__ )
__lowerCamelCase, __lowerCamelCase = accelerator.prepare(A__ , A__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def lowerCamelCase__ ( A__ : Any , A__ : List[Any] , A__ : List[str] ):
'''simple docstring'''
__lowerCamelCase = []
for batch in dataloader:
__lowerCamelCase, __lowerCamelCase = batch.values()
with torch.no_grad():
__lowerCamelCase = model(A__ )
__lowerCamelCase, __lowerCamelCase = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
__lowerCamelCase, __lowerCamelCase = [], []
for logit, targ in logits_and_targets:
logits.append(A__ )
targs.append(A__ )
__lowerCamelCase, __lowerCamelCase = torch.cat(A__ ), torch.cat(A__ )
return logits, targs
def lowerCamelCase__ ( A__ : Accelerator , A__ : List[Any]=82 , A__ : List[Any]=False , A__ : str=False , A__ : Union[str, Any]=16 ):
'''simple docstring'''
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = get_basic_setup(A__ , A__ , A__ )
__lowerCamelCase, __lowerCamelCase = generate_predictions(A__ , A__ , A__ )
assert (
len(A__ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A__ )}'
def lowerCamelCase__ ( A__ : bool = False , A__ : bool = False ):
'''simple docstring'''
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase, __lowerCamelCase = get_mrpc_setup(A__ , A__ )
# First do baseline
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = setup["""no"""]
model.to(A__ )
model.eval()
for batch in dataloader:
batch.to(A__ )
with torch.inference_mode():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=A__ , references=batch["""labels"""] )
__lowerCamelCase = metric.compute()
# Then do distributed
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
__lowerCamelCase = batch["""labels"""]
__lowerCamelCase, __lowerCamelCase = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=A__ , references=A__ )
__lowerCamelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(A__ , A__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCamelCase = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(A__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
__lowerCamelCase = Accelerator()
test_torch_metrics(A__ , 512 )
accelerator.state._reset_state()
def lowerCamelCase__ ( A__ : Tuple ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 12 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCamelCase__:
def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ):
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
__lowerCamelCase = model
__lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ )
__lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ )
def __call__( self: Dict , **UpperCamelCase_: Any ):
__lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()}
return self.model.run(UpperCamelCase_ , UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ):
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
__lowerCamelCase = """CPUExecutionProvider"""
return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ )
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name )
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ )
if src_path.exists():
__lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ):
if os.path.isfile(UpperCamelCase_ ):
logger.error(F'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
# saving model weights/files
self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(UpperCamelCase_ ):
__lowerCamelCase = OnnxRuntimeModel.load_model(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
# load model from hub
else:
# download model
__lowerCamelCase = hf_hub_download(
repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , )
__lowerCamelCase = Path(UpperCamelCase_ ).parent
__lowerCamelCase = Path(UpperCamelCase_ ).name
__lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
return cls(model=UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ):
__lowerCamelCase = None
if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2:
__lowerCamelCase, __lowerCamelCase = model_id.split("""@""" )
return cls._from_pretrained(
model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
| 12 | 1 |
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger()
def lowerCamelCase__ ( A__ : int , A__ : str , A__ : LevitConfig , A__ : Path , A__ : bool = True ):
'''simple docstring'''
print(f'Converting {name}...' )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
__lowerCamelCase = timm.create_model("""levit_128s""" , pretrained=A__ )
else:
__lowerCamelCase = timm.create_model("""levit_128""" , pretrained=A__ )
if hidden_sizes == 192:
__lowerCamelCase = timm.create_model("""levit_192""" , pretrained=A__ )
if hidden_sizes == 256:
__lowerCamelCase = timm.create_model("""levit_256""" , pretrained=A__ )
if hidden_sizes == 384:
__lowerCamelCase = timm.create_model("""levit_384""" , pretrained=A__ )
from_model.eval()
__lowerCamelCase = LevitForImageClassificationWithTeacher(A__ ).eval()
__lowerCamelCase = OrderedDict()
__lowerCamelCase = from_model.state_dict()
__lowerCamelCase = list(from_model.state_dict().keys() )
__lowerCamelCase = list(our_model.state_dict().keys() )
print(len(A__ ) , len(A__ ) )
for i in range(len(A__ ) ):
__lowerCamelCase = weights[og_keys[i]]
our_model.load_state_dict(A__ )
__lowerCamelCase = torch.randn((2, 3, 224, 224) )
__lowerCamelCase = from_model(A__ )
__lowerCamelCase = our_model(A__ ).logits
assert torch.allclose(A__ , A__ ), "The model logits don't match the original one."
__lowerCamelCase = name
print(A__ )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
__lowerCamelCase = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f'Pushed {checkpoint_name}' )
def lowerCamelCase__ ( A__ : Path , A__ : str = None , A__ : bool = True ):
'''simple docstring'''
__lowerCamelCase = """imagenet-1k-id2label.json"""
__lowerCamelCase = 1000
__lowerCamelCase = (1, num_labels)
__lowerCamelCase = """huggingface/label-files"""
__lowerCamelCase = num_labels
__lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) )
__lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()}
__lowerCamelCase = idalabel
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ )
__lowerCamelCase = {
"""levit-128S""": 128,
"""levit-128""": 128,
"""levit-192""": 192,
"""levit-256""": 256,
"""levit-384""": 384,
}
__lowerCamelCase = {
"""levit-128S""": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"""levit-128""": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"""levit-192""": ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"""levit-256""": ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"""levit-384""": ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ )
return config, expected_shape
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='levit-dump-folder/',
type=Path,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 12 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['VisionEncoderDecoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['TFVisionEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 12 | 1 |
from ..utils import DummyObject, requires_backends
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: str , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: str , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = ['sentencepiece']
def __init__( self: List[str] , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : List[Any] = ['sentencepiece']
def __init__( self: Optional[Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Dict = ['sentencepiece']
def __init__( self: Any , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = ['sentencepiece']
def __init__( self: Any , *UpperCamelCase_: int , **UpperCamelCase_: Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: Optional[int] , *UpperCamelCase_: Any , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: Dict , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = ['sentencepiece']
def __init__( self: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: List[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Dict = ['sentencepiece']
def __init__( self: List[str] , *UpperCamelCase_: int , **UpperCamelCase_: Dict ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Any = ['sentencepiece']
def __init__( self: Dict , *UpperCamelCase_: int , **UpperCamelCase_: Any ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = ['sentencepiece']
def __init__( self: int , *UpperCamelCase_: Any , **UpperCamelCase_: Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: int , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: Optional[Any] , *UpperCamelCase_: Any , **UpperCamelCase_: Union[str, Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Any = ['sentencepiece']
def __init__( self: Optional[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : str = ['sentencepiece']
def __init__( self: Tuple , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[Any] = ['sentencepiece']
def __init__( self: List[str] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: str , *UpperCamelCase_: Any , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: List[str] , *UpperCamelCase_: int , **UpperCamelCase_: Dict ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: List[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Any ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Any = ['sentencepiece']
def __init__( self: Dict , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Union[str, Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Any = ['sentencepiece']
def __init__( self: Optional[int] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Tuple ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : List[Any] = ['sentencepiece']
def __init__( self: str , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : int = ['sentencepiece']
def __init__( self: Union[str, Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Any ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : str = ['sentencepiece']
def __init__( self: Union[str, Any] , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : int = ['sentencepiece']
def __init__( self: Optional[int] , *UpperCamelCase_: Tuple , **UpperCamelCase_: str ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : int = ['sentencepiece']
def __init__( self: Dict , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Tuple = ['sentencepiece']
def __init__( self: Dict , *UpperCamelCase_: int , **UpperCamelCase_: int ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : Optional[int] = ['sentencepiece']
def __init__( self: List[str] , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Union[str, Any] ):
requires_backends(self , ["""sentencepiece"""] )
class lowerCamelCase__( metaclass=__lowerCamelCase):
UpperCAmelCase__ : int = ['sentencepiece']
def __init__( self: Optional[Any] , *UpperCamelCase_: List[str] , **UpperCamelCase_: int ):
requires_backends(self , ["""sentencepiece"""] )
| 12 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
UpperCAmelCase_ = get_logger(__name__)
def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
if accelerator.process_index == 0:
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving model to {output_model_file}' )
torch.save(A__ , A__ )
logger.info(f'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving model to {ckpt_dir}' )
__lowerCamelCase = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Model saved to {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(A__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
__lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin'
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__lowerCamelCase = (
f'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading model from {input_model_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__lowerCamelCase = (
os.path.join(A__ , f'{MODEL_NAME}_{model_index}' )
if f'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading model from {ckpt_dir}' )
__lowerCamelCase = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , )
__lowerCamelCase = state_dict["""model"""]
logger.info(f'Model loaded from {ckpt_dir}' )
model.load_state_dict(A__ )
def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ):
'''simple docstring'''
os.makedirs(A__ , exist_ok=A__ )
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
__lowerCamelCase = FSDP.optim_state_dict(A__ , A__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Saving Optimizer state to {output_optimizer_file}' )
torch.save(A__ , A__ )
logger.info(f'Optimizer state saved in {output_optimizer_file}' )
else:
__lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(A__ , exist_ok=A__ )
logger.info(f'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , )
logger.info(f'Optimizer state saved in {ckpt_dir}' )
def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__lowerCamelCase = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__lowerCamelCase = (
f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
__lowerCamelCase = os.path.join(A__ , A__ )
logger.info(f'Loading Optimizer state from {input_optimizer_file}' )
__lowerCamelCase = torch.load(A__ )
logger.info(f'Optimizer state loaded from {input_optimizer_file}' )
else:
__lowerCamelCase = (
os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' )
if f'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(f'Loading Optimizer from {ckpt_dir}' )
__lowerCamelCase = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , )
__lowerCamelCase = optim_state["""optimizer"""]
logger.info(f'Optimizer loaded from {ckpt_dir}' )
__lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ )
optimizer.load_state_dict(A__ )
| 12 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase_ = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase_ = {
'distilbert-base-uncased': 512,
'distilbert-base-uncased-distilled-squad': 512,
'distilbert-base-cased': 512,
'distilbert-base-cased-distilled-squad': 512,
'distilbert-base-german-cased': 512,
'distilbert-base-multilingual-cased': 512,
}
UpperCAmelCase_ = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : Dict = ['input_ids', 'attention_mask']
UpperCAmelCase__ : Union[str, Any] = DistilBertTokenizer
def __init__( self: str , UpperCamelCase_: Dict=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Any="[UNK]" , UpperCamelCase_: Optional[int]="[SEP]" , UpperCamelCase_: Any="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: Dict="[MASK]" , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=None , **UpperCamelCase_: Union[str, Any] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCamelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase_ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop("""type""" ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**UpperCamelCase_ )
__lowerCamelCase = do_lower_case
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None ):
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ):
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ):
__lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 12 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline
UpperCAmelCase__ : Optional[Any] = ['image']
UpperCAmelCase__ : int = ['image']
UpperCAmelCase__ : Any = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
UpperCAmelCase__ : int = False
@property
def lowerCAmelCase__ ( self: int ):
return 32
@property
def lowerCAmelCase__ ( self: List[str] ):
return 32
@property
def lowerCAmelCase__ ( self: Any ):
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: Dict ):
return 8
@property
def lowerCAmelCase__ ( self: int ):
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowerCAmelCase__ ( self: Tuple ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__lowerCamelCase = PriorTransformer(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self: List[Any] ):
torch.manual_seed(0 )
__lowerCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**UpperCamelCase_ )
return model
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , )
__lowerCamelCase = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ):
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """cpu"""
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: List[str] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = torch_device == """cpu"""
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**UpperCamelCase_ )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
__lowerCamelCase = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
__lowerCamelCase = pipe(
UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import copy
import random
from transformers import CLIPTokenizer
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: List[str] ):
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = {}
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[int] , *UpperCamelCase_: Dict , **UpperCamelCase_: Tuple ):
__lowerCamelCase = super().add_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
if num_added_tokens == 0:
raise ValueError(
F'The tokenizer already contains the token {placeholder_token}. Please pass a different'
""" `placeholder_token` that is not already in the tokenizer.""" )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , *UpperCamelCase_: Any , UpperCamelCase_: Optional[Any]=1 , **UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = []
if num_vec_per_token == 1:
self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
output.append(UpperCamelCase_ )
else:
__lowerCamelCase = []
for i in range(UpperCamelCase_ ):
__lowerCamelCase = placeholder_token + F'_{i}'
self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
output.append(UpperCamelCase_ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F'The tokenizer already has placeholder token {token} that can get confused with'
F' {placeholder_token}keep placeholder tokens independent' )
__lowerCamelCase = output
def lowerCAmelCase__ ( self: int , UpperCamelCase_: str , UpperCamelCase_: List[str]=False , UpperCamelCase_: Optional[Any]=1.0 ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = []
for i in range(len(UpperCamelCase_ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase_ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
__lowerCamelCase = self.token_map[placeholder_token]
__lowerCamelCase = tokens[: 1 + int(len(UpperCamelCase_ ) * prop_tokens_to_load )]
if vector_shuffle:
__lowerCamelCase = copy.copy(UpperCamelCase_ )
random.shuffle(UpperCamelCase_ )
__lowerCamelCase = text.replace(UpperCamelCase_ , """ """.join(UpperCamelCase_ ) )
return text
def __call__( self: str , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str]=False , UpperCamelCase_: List[str]=1.0 , **UpperCamelCase_: Tuple ):
return super().__call__(
self.replace_placeholder_tokens_in_text(
UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[Any] , *UpperCamelCase_: Optional[int] , UpperCamelCase_: str=False , UpperCamelCase_: int=1.0 , **UpperCamelCase_: List[Any] ):
return super().encode(
self.replace_placeholder_tokens_in_text(
UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , )
| 12 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ):
'''simple docstring'''
__lowerCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowerCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , )
__lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ):
if latents is None:
__lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__lowerCamelCase = latents.to(UpperCamelCase_ )
__lowerCamelCase = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
__lowerCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowerCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ )
# We'll offload the last model manually.
__lowerCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase__ ( self: int ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ):
__lowerCamelCase = self._execution_device
__lowerCamelCase = guidance_scale > 1.0
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
__lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
__lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ )
__lowerCamelCase = self.scheduler.timesteps
__lowerCamelCase = self.movq.config.latent_channels
__lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor )
# create initial latent
__lowerCamelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint}
__lowerCamelCase = self.unet(
sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0]
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
__lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 )
__lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 )
__lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0]
# post-processing
__lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
__lowerCamelCase = image * 0.5 + 0.5
__lowerCamelCase = image.clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 12 | 1 |
def lowerCamelCase__ ( A__ : dict ):
'''simple docstring'''
__lowerCamelCase = set()
# edges = list of graph's edges
__lowerCamelCase = get_edges(A__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__lowerCamelCase, __lowerCamelCase = edges.pop()
chosen_vertices.add(A__ )
chosen_vertices.add(A__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(A__ )
return chosen_vertices
def lowerCamelCase__ ( A__ : dict ):
'''simple docstring'''
__lowerCamelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 12 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCamelCase__( unittest.TestCase):
def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
__lowerCamelCase = rescale_embeddings
__lowerCamelCase = attention_type
__lowerCamelCase = use_bias
__lowerCamelCase = block_size
__lowerCamelCase = num_random_blocks
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs
__lowerCamelCase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCamelCase__( __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : Optional[int] = False
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: Optional[Any] ):
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[str] ):
super().test_hidden_states_output()
@slow
def lowerCAmelCase__ ( self: Optional[Any] ):
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Dict ):
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ):
return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest("""JIT Enabled""" ):
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ):
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("""outputs.attentions""" ):
return
else:
super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Union[str, Any] = 'swin2sr'
UpperCAmelCase__ : List[Any] = {
'hidden_size': 'embed_dim',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self: List[str] , UpperCamelCase_: List[str]=64 , UpperCamelCase_: str=1 , UpperCamelCase_: int=3 , UpperCamelCase_: Any=1_80 , UpperCamelCase_: Optional[Any]=[6, 6, 6, 6, 6, 6] , UpperCamelCase_: Optional[int]=[6, 6, 6, 6, 6, 6] , UpperCamelCase_: Union[str, Any]=8 , UpperCamelCase_: Union[str, Any]=2.0 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: str=2 , UpperCamelCase_: int=1.0 , UpperCamelCase_: str="1conv" , UpperCamelCase_: Any="pixelshuffle" , **UpperCamelCase_: Optional[Any] , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = embed_dim
__lowerCamelCase = depths
__lowerCamelCase = len(UpperCamelCase_ )
__lowerCamelCase = num_heads
__lowerCamelCase = window_size
__lowerCamelCase = mlp_ratio
__lowerCamelCase = qkv_bias
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = drop_path_rate
__lowerCamelCase = hidden_act
__lowerCamelCase = use_absolute_embeddings
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = upscale
__lowerCamelCase = img_range
__lowerCamelCase = resi_connection
__lowerCamelCase = upsampler
| 12 |
def lowerCamelCase__ ( A__ : list ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
for _ in range(A__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
__lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
UpperCAmelCase_ = list(range(10, 0, -1))
print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
| 12 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def lowerCamelCase__ ( A__ : List[Any] , A__ : Union[str, Any] , A__ : Any=None , A__ : List[str]=None ):
'''simple docstring'''
if attention_mask is None:
__lowerCamelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class lowerCamelCase__:
UpperCAmelCase__ : Tuple = OPTConfig
UpperCAmelCase__ : Optional[Any] = {}
UpperCAmelCase__ : int = 'gelu'
def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple=13 , UpperCamelCase_: str=7 , UpperCamelCase_: Tuple=True , UpperCamelCase_: int=False , UpperCamelCase_: str=99 , UpperCamelCase_: List[Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Dict=4 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: List[Any]=20 , UpperCamelCase_: str=2 , UpperCamelCase_: Tuple=1 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: List[str]=16 , ):
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = embed_dim
__lowerCamelCase = word_embed_proj_dim
__lowerCamelCase = False
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowerCamelCase = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCamelCase_ , **self.config_updates , )
__lowerCamelCase = prepare_opt_inputs_dict(UpperCamelCase_ , UpperCamelCase_ )
return config, inputs_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str ):
__lowerCamelCase = TFOPTModel(config=UpperCamelCase_ )
__lowerCamelCase = inputs_dict["""input_ids"""]
__lowerCamelCase = input_ids[:1, :]
__lowerCamelCase = inputs_dict["""attention_mask"""][:1, :]
__lowerCamelCase = 1
# first forward pass
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ )
__lowerCamelCase, __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0]
__lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__lowerCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 )
@require_tf
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
UpperCAmelCase__ : Tuple = (TFOPTForCausalLM,) if is_tf_available() else ()
UpperCAmelCase__ : str = (
{'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase__ : List[Any] = False
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : int = False
UpperCAmelCase__ : Any = 10
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = TFOPTModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(UpperCamelCase_: Tuple , UpperCamelCase_: Tuple ):
if hasattr(UpperCamelCase_ , """weight""" ):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(UpperCamelCase_ , """weight""" ):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
__lowerCamelCase = model_class(config=UpperCamelCase_ )
__lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_input_embeddings() )
__lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_output_embeddings() )
# reshape the embeddings
model.resize_token_embeddings(UpperCamelCase_ )
__lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_input_embeddings() )
__lowerCamelCase = _get_word_embedding_weight(UpperCamelCase_ , model.get_output_embeddings() )
# check that the resized embeddings size matches the desired size.
__lowerCamelCase = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , UpperCamelCase_ )
# check that weights remain the same after resizing
__lowerCamelCase = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__lowerCamelCase = False
self.assertTrue(UpperCamelCase_ )
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , UpperCamelCase_ )
__lowerCamelCase = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ):
if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0:
__lowerCamelCase = False
self.assertTrue(UpperCamelCase_ )
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
return tf.constant(A__ , dtype=tf.intaa )
@require_tf
class lowerCamelCase__( unittest.TestCase):
UpperCAmelCase__ : Dict = 99
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2
__lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 )
__lowerCamelCase = input_ids.shape[0]
__lowerCamelCase = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class lowerCamelCase__( unittest.TestCase):
@slow
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" )
__lowerCamelCase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__lowerCamelCase = tf.not_equal(UpperCamelCase_ , model.config.pad_token_id )
with tf.GradientTape():
__lowerCamelCase = model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ).last_hidden_state
__lowerCamelCase = (1, 11, 5_12)
self.assertEqual(output.shape , UpperCamelCase_ )
__lowerCamelCase = tf.constant(
[[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] )
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=4E-3 ) )
__lowerCamelCase = tf.function(UpperCamelCase_ , jit_compile=UpperCamelCase_ )
__lowerCamelCase = xla_generate(UpperCamelCase_ , UpperCamelCase_ )[0]
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=4E-2 ) )
@require_tf
@slow
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[Any] ):
super().setUp()
__lowerCamelCase = """facebook/opt-350m"""
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model )
__lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model )
__lowerCamelCase = [
"""Today is a beautiful day and I want to""",
"""In the city of""",
"""Paris is the capital of France and""",
"""Computers and mobile phones have taken""",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" , padding=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
__lowerCamelCase = tf.constant(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
] )
self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-4 ) )
__lowerCamelCase = tf.function(UpperCamelCase_ , jit_compile=UpperCamelCase_ )
__lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 )
self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-4 ) )
@require_tf
@slow
class lowerCamelCase__( unittest.TestCase):
@property
def lowerCAmelCase__ ( self: int ):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """facebook/opt-125m"""
__lowerCamelCase = [
"""Today is a beautiful day and I want to""",
"""In the city of New York, the city""",
"""Paris is the capital of France and the capital""",
"""Computers and mobile phones have taken over the""",
]
__lowerCamelCase = []
__lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ )
for prompt in self.prompts:
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" ).input_ids
__lowerCamelCase = model.generate(UpperCamelCase_ , max_length=10 )
__lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
predicted_outputs += generated_string
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] ):
__lowerCamelCase = """facebook/opt-350m"""
__lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = """left"""
# use different length sentences to test batching
__lowerCamelCase = [
"""Hello, my dog is a little""",
"""Today, I""",
]
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" , padding=UpperCamelCase_ )
__lowerCamelCase = inputs["""input_ids"""]
__lowerCamelCase = model.generate(input_ids=UpperCamelCase_ , attention_mask=inputs["""attention_mask"""] )
__lowerCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
__lowerCamelCase = model.generate(input_ids=UpperCamelCase_ )
__lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) )
__lowerCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
__lowerCamelCase = model.generate(input_ids=UpperCamelCase_ , max_length=model.config.max_length - num_paddings )
__lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase_ )
__lowerCamelCase = [
"""Hello, my dog is a little bit of a dork.\nI'm a little bit""",
"""Today, I was in the middle of a conversation with a friend about the""",
]
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , [non_padded_sentence, padded_sentence] )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """facebook/opt-350m"""
__lowerCamelCase = [
"""Today is a beautiful day and I want to""",
"""In the city of San Francisco, the city""",
"""Paris is the capital of France and the capital""",
"""Computers and mobile phones have taken over the""",
]
__lowerCamelCase = []
__lowerCamelCase = GPTaTokenizer.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = TFOPTForCausalLM.from_pretrained(UpperCamelCase_ )
for prompt in self.prompts:
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""tf""" ).input_ids
__lowerCamelCase = model.generate(UpperCamelCase_ , max_length=10 )
__lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
predicted_outputs += generated_string
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__:
def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ):
__lowerCamelCase = question_encoder
__lowerCamelCase = generator
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ):
if os.path.isfile(UpperCamelCase_ ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" )
__lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" )
self.question_encoder.save_pretrained(UpperCamelCase_ )
self.generator.save_pretrained(UpperCamelCase_ )
@classmethod
def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ )
if config is None:
__lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
__lowerCamelCase = AutoTokenizer.from_pretrained(
UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ )
def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ):
return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ):
return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ):
return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.question_encoder
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.generator
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ):
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , UpperCamelCase_ , )
if max_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__lowerCamelCase = self.current_tokenizer.model_max_length
__lowerCamelCase = self(
text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , )
__lowerCamelCase = labels["""input_ids"""]
return model_inputs
| 12 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = ['image_processor', 'tokenizer']
UpperCAmelCase__ : Dict = 'CLIPImageProcessor'
UpperCAmelCase__ : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCamelCase_ , )
__lowerCamelCase = kwargs.pop("""feature_extractor""" )
__lowerCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(UpperCamelCase_ , UpperCamelCase_ )
def __call__( self: List[str] , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if images is not None:
__lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if text is not None and images is not None:
__lowerCamelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: int ):
return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Tuple ):
return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
@property
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.tokenizer.model_input_names
__lowerCamelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase_ , )
return self.image_processor_class
@property
def lowerCAmelCase__ ( self: List[str] ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase_ , )
return self.image_processor
| 12 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 | 1 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase):
@register_to_config
def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ):
super().__init__()
__lowerCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
__lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ )
else:
__lowerCamelCase = None
__lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : VQModel
UpperCAmelCase__ : CLIPTextModel
UpperCAmelCase__ : CLIPTokenizer
UpperCAmelCase__ : TransformeraDModel
UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings
UpperCAmelCase__ : VQDiffusionScheduler
def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ):
__lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1
# get prompt text embeddings
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__lowerCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
__lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate text embeddings for each generation per prompt
__lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
__lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
__lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 )
else:
__lowerCamelCase = [""""""] * batch_size
__lowerCamelCase = text_input_ids.shape[-1]
__lowerCamelCase = self.tokenizer(
UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , )
__lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
__lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase = negative_prompt_embeds.shape[1]
__lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 )
__lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = 1
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = len(UpperCamelCase_ )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' )
__lowerCamelCase = batch_size * num_images_per_prompt
__lowerCamelCase = guidance_scale > 1.0
__lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(UpperCamelCase_ )}.' )
# get the initial completely masked latents unless the user supplied it
__lowerCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
__lowerCamelCase = self.transformer.num_vector_embeds - 1
__lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"""Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"""
F' {self.transformer.num_vector_embeds - 1} (inclusive).' )
__lowerCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device )
__lowerCamelCase = self.scheduler.timesteps.to(self.device )
__lowerCamelCase = latents
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the sample if we are doing classifier free guidance
__lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
__lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = model_output.chunk(2 )
__lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ )
__lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
# remove `log(0)`'s (`-inf`s)
__lowerCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.vqvae.config.vq_embed_dim
__lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
__lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ )
__lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ):
__lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ )
__lowerCamelCase = torch.exp(UpperCamelCase_ )
__lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
__lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ )
__lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
__lowerCamelCase = keep_mask[:, :-1, :]
__lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
__lowerCamelCase = log_p_x_0.clone()
__lowerCamelCase = -torch.inf # -inf = log(0)
return rv
| 12 | 1 |
from math import factorial
class lowerCamelCase__:
def __init__( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: int ):
__lowerCamelCase = real
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [1] * rank
else:
__lowerCamelCase = rank
def __repr__( self: List[Any] ):
return (
F'{self.real}+'
F'{"+".join(str(UpperCamelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}'
)
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , UpperCamelCase_ )
def __add__( self: int , UpperCamelCase_: Tuple ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return Dual(self.real + other , self.duals )
__lowerCamelCase = self.duals.copy()
__lowerCamelCase = other.duals.copy()
if len(UpperCamelCase_ ) > len(UpperCamelCase_ ):
o_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) )
elif len(UpperCamelCase_ ) < len(UpperCamelCase_ ):
s_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) )
__lowerCamelCase = []
for i in range(len(UpperCamelCase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , UpperCamelCase_ )
UpperCAmelCase__ : Dict = __add__
def __sub__( self: List[str] , UpperCamelCase_: Dict ):
return self + other * -1
def __mul__( self: Any , UpperCamelCase_: Optional[Any] ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , UpperCamelCase_ )
__lowerCamelCase = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , UpperCamelCase_ )
UpperCAmelCase__ : Optional[int] = __mul__
def __truediv__( self: Dict , UpperCamelCase_: Tuple ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , UpperCamelCase_ )
raise ValueError
def __floordiv__( self: int , UpperCamelCase_: int ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , UpperCamelCase_ )
raise ValueError
def __pow__( self: Tuple , UpperCamelCase_: str ):
if n < 0 or isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
__lowerCamelCase = self
for _ in range(n - 1 ):
x *= self
return x
def lowerCamelCase__ ( A__ : List[str] , A__ : str , A__ : str ):
'''simple docstring'''
if not callable(A__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(A__ , (float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(A__ , A__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
__lowerCamelCase = Dual(A__ , 1 )
__lowerCamelCase = func(A__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 12 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Dict = DistilBertTokenizer
UpperCAmelCase__ : Dict = DistilBertTokenizerFast
UpperCAmelCase__ : Tuple = True
@slow
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
__lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 12 | 1 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCAmelCase_ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
UpperCAmelCase_ = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
UpperCAmelCase_ = 0
for log in Path().glob('*.log'):
UpperCAmelCase_ = 0
with open(log, 'r') as f:
for line in f:
UpperCAmelCase_ = json.loads(line)
if line.get('nodeid', '') != "":
UpperCAmelCase_ = line['nodeid']
if line.get('duration', None) is not None:
UpperCAmelCase_ = f"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCAmelCase_ = []
log.unlink()
UpperCAmelCase_ = ''
UpperCAmelCase_ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
for test in failed_tests:
UpperCAmelCase_ = test[0].split('::')
UpperCAmelCase_ = data[0].split('/')[-1]
if data[0] not in filesafailed:
UpperCAmelCase_ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCAmelCase_ = [test[0] for test in failed_table]
UpperCAmelCase_ = list(set(files))
# Count number of instances in failed_tests
UpperCAmelCase_ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCAmelCase_ = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.'
UpperCAmelCase_ = len(err) + 10
UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
UpperCAmelCase_ = 'No failed tests! 🤗'
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
UpperCAmelCase_ = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
UpperCAmelCase_ = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCAmelCase_ = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCAmelCase_ = row[0]
else:
UpperCAmelCase_ = ''
UpperCAmelCase_ = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 12 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ = 16
UpperCAmelCase_ = 32
def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ):
'''simple docstring'''
__lowerCamelCase = AutoTokenizer.from_pretrained(A__ )
__lowerCamelCase = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(A__ : int ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowerCamelCase = datasets.map(
A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(A__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
__lowerCamelCase = DataLoader(
tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
__lowerCamelCase = DataLoader(
tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ):
'''simple docstring'''
model.eval()
__lowerCamelCase = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__lowerCamelCase, __lowerCamelCase = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A__ ) - 1:
__lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A__ , references=A__ , )
__lowerCamelCase = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ):
'''simple docstring'''
__lowerCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase = config["""lr"""]
__lowerCamelCase = int(config["""num_epochs"""] )
__lowerCamelCase = int(config["""seed"""] )
__lowerCamelCase = int(config["""batch_size"""] )
__lowerCamelCase = args.model_name_or_path
set_seed(A__ )
__lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
__lowerCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
__lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
__lowerCamelCase = 1
__lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowerCamelCase = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
__lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
__lowerCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowerCamelCase = 0
__lowerCamelCase = evaluate.load("""glue""" , """mrpc""" )
__lowerCamelCase = num_epochs
if args.partial_train_epoch is not None:
__lowerCamelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1]
__lowerCamelCase = """"""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__lowerCamelCase = int(A__ ) + 1
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
accelerator.print("""resumed checkpoint performance:""" , A__ )
accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] )
accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f:
__lowerCamelCase = json.load(A__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__lowerCamelCase = {}
for epoch in range(A__ , A__ ):
model.train()
for step, batch in enumerate(A__ ):
__lowerCamelCase = model(**A__ )
__lowerCamelCase = outputs.loss
__lowerCamelCase = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__lowerCamelCase = f'epoch_{epoch}'
__lowerCamelCase = os.path.join(args.output_dir , A__ )
accelerator.save_state(A__ )
__lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ )
__lowerCamelCase = accuracy
__lowerCamelCase = lr_scheduler.get_lr()[0]
__lowerCamelCase = optimizer.param_groups[0]["""lr"""]
__lowerCamelCase = epoch
__lowerCamelCase = overall_step
accelerator.print(f'epoch {epoch}:' , A__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f:
json.dump(A__ , A__ )
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , )
parser.add_argument(
"""--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , )
parser.add_argument(
"""--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 12 | 1 |
from __future__ import annotations
import bisect
def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ):
'''simple docstring'''
if hi < 0:
__lowerCamelCase = len(A__ )
while lo < hi:
__lowerCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowerCamelCase = mid + 1
else:
__lowerCamelCase = mid
return lo
def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ):
'''simple docstring'''
if hi < 0:
__lowerCamelCase = len(A__ )
while lo < hi:
__lowerCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowerCamelCase = mid + 1
else:
__lowerCamelCase = mid
return lo
def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ):
'''simple docstring'''
sorted_collection.insert(bisect_left(A__ , A__ , A__ , A__ ) , A__ )
def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ):
'''simple docstring'''
sorted_collection.insert(bisect_right(A__ , A__ , A__ , A__ ) , A__ )
def lowerCamelCase__ ( A__ : list[int] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = 0
__lowerCamelCase = len(A__ ) - 1
while left <= right:
__lowerCamelCase = left + (right - left) // 2
__lowerCamelCase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowerCamelCase = midpoint - 1
else:
__lowerCamelCase = midpoint + 1
return None
def lowerCamelCase__ ( A__ : list[int] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = bisect.bisect_left(A__ , A__ )
if index != len(A__ ) and sorted_collection[index] == item:
return index
return None
def lowerCamelCase__ ( A__ : list[int] , A__ : int , A__ : int , A__ : int ):
'''simple docstring'''
if right < left:
return None
__lowerCamelCase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(A__ , A__ , A__ , midpoint - 1 )
else:
return binary_search_by_recursion(A__ , A__ , midpoint + 1 , A__ )
if __name__ == "__main__":
UpperCAmelCase_ = input('Enter numbers separated by comma:\n').strip()
UpperCAmelCase_ = sorted(int(item) for item in user_input.split(','))
UpperCAmelCase_ = int(input('Enter a single number to be found in the list:\n'))
UpperCAmelCase_ = binary_search(collection, target)
if result is None:
print(f"""{target} was not found in {collection}.""")
else:
print(f"""{target} was found at position {result} in {collection}.""")
| 12 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir('fixtures')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json')
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = 0
def lowerCAmelCase__ ( self: List[str] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
__lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ )
# save in new folder
model_config.save_pretrained(UpperCamelCase_ )
config.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
# make sure private variable is not incorrectly saved
__lowerCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
with self.assertRaisesRegex(
UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCAmelCase__ ( self: Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" )
def lowerCAmelCase__ ( self: Optional[Any] ):
with self.assertRaisesRegex(
UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCAmelCase__ ( self: Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCAmelCase__ ( self: Any ):
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase_ )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self: Dict ):
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : str = True
try:
AutoConfig.register("""custom""" , UpperCamelCase_ )
AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ )
# If remote code is not set, the default is to use local
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__lowerCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 12 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : int = 'upernet'
def __init__( self: str , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: Optional[Any]=[1, 2, 3, 6] , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: int=0.4 , UpperCamelCase_: Optional[Any]=3_84 , UpperCamelCase_: int=2_56 , UpperCamelCase_: int=1 , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: int=2_55 , **UpperCamelCase_: int , ):
super().__init__(**UpperCamelCase_ )
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__lowerCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = backbone_config.get("""model_type""" )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(UpperCamelCase_ )
__lowerCamelCase = backbone_config
__lowerCamelCase = hidden_size
__lowerCamelCase = initializer_range
__lowerCamelCase = pool_scales
__lowerCamelCase = use_auxiliary_head
__lowerCamelCase = auxiliary_loss_weight
__lowerCamelCase = auxiliary_in_channels
__lowerCamelCase = auxiliary_channels
__lowerCamelCase = auxiliary_num_convs
__lowerCamelCase = auxiliary_concat_input
__lowerCamelCase = loss_ignore_index
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 12 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCAmelCase_ = get_logger(__name__)
class lowerCamelCase__:
UpperCAmelCase__ : List[Any] = 'dummy_data'
UpperCAmelCase__ : str = 'datasets'
UpperCAmelCase__ : Tuple = False
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ):
__lowerCamelCase = 0
__lowerCamelCase = dataset_name
__lowerCamelCase = cache_dir
__lowerCamelCase = use_local_dummy_data
__lowerCamelCase = config
# download_callbacks take a single url as input
__lowerCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase = str(UpperCamelCase_ )
# to be downloaded
__lowerCamelCase = None
__lowerCamelCase = None
@property
def lowerCAmelCase__ ( self: List[Any] ):
if self._dummy_file is None:
__lowerCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def lowerCAmelCase__ ( self: str ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase = cached_path(
UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ )
return os.path.join(UpperCamelCase_ , self.dummy_file_name )
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowerCAmelCase__ ( self: Tuple ):
if self._bucket_url is None:
__lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def lowerCAmelCase__ ( self: str ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ )
else:
return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ):
return self.download_and_extract(UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ):
return path
def lowerCAmelCase__ ( self: Dict ):
return {}
def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
for single_url in single_urls:
download_callback(UpperCamelCase_ )
else:
__lowerCamelCase = single_urls
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase = single_urls
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) )
__lowerCamelCase = value
# make sure that values are unique
if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ):
__lowerCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url )
__lowerCamelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(UpperCamelCase_ )
return dummy_data_list
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ):
for download_callback in self.download_callbacks:
download_callback(UpperCamelCase_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowerCAmelCase__ ( self: Optional[Any] ):
pass
def lowerCAmelCase__ ( self: List[Any] ):
pass
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ):
def _iter_archive_members(UpperCamelCase_: Any ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase = Path(self.dummy_file ).parent
__lowerCamelCase = path.relative_to(UpperCamelCase_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(UpperCamelCase_ )
__lowerCamelCase = Path(UpperCamelCase_ )
__lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = [paths]
for path in paths:
if os.path.isfile(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ):
if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(UpperCamelCase_ ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
| 12 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase):
UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline
UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ : int = frozenset(
[]) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Union[str, Any] = frozenset([])
def lowerCAmelCase__ ( self: str ):
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , )
__lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(UpperCamelCase_ )
__lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) )
__lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(UpperCamelCase_ ).startswith("""mps""" ):
__lowerCamelCase = torch.manual_seed(UpperCamelCase_ )
else:
__lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowerCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ )
__lowerCamelCase = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ )
__lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase__ ( self: int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , )
__lowerCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowerCAmelCase__ ( self: int ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
__lowerCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
__lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
__lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" )
__lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = pipe(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , )
__lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ):
'''simple docstring'''
__lowerCamelCase = len(A__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(A__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , )
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
depth_first_search([] , [] , [] , A__ , A__ )
# Print all the boards
for board in boards:
for column in board:
print(A__ )
print("""""" )
print(len(A__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 12 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowerCamelCase__( unittest.TestCase):
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
__lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
__lowerCamelCase = {"""unk_token""": """<unk>"""}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase_ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase_ ) )
__lowerCamelCase = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073],
"""image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , UpperCamelCase_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: str ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: str ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , **UpperCamelCase_: List[str] ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase__ ( self: int ):
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ )
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__lowerCamelCase = self.get_image_processor(do_normalize=UpperCamelCase_ )
__lowerCamelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase_ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""np""" )
__lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase__ ( self: Dict ):
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
__lowerCamelCase = """lower newer"""
__lowerCamelCase = processor(text=UpperCamelCase_ , return_tensors="""np""" )
__lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""np""" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
__lowerCamelCase = """lower newer"""
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCAmelCase__ ( self: Optional[Any] ):
__lowerCamelCase = """google/owlvit-base-patch32"""
__lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = ["""cat""", """nasa badge"""]
__lowerCamelCase = processor(text=UpperCamelCase_ )
__lowerCamelCase = 16
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = """google/owlvit-base-patch32"""
__lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = [["""cat""", """nasa badge"""], ["""person"""]]
__lowerCamelCase = processor(text=UpperCamelCase_ )
__lowerCamelCase = 16
__lowerCamelCase = len(UpperCamelCase_ )
__lowerCamelCase = max([len(UpperCamelCase_ ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = """google/owlvit-base-patch32"""
__lowerCamelCase = OwlViTProcessor.from_pretrained(UpperCamelCase_ )
__lowerCamelCase = ["""cat""", """nasa badge"""]
__lowerCamelCase = processor(text=UpperCamelCase_ )
__lowerCamelCase = 16
__lowerCamelCase = inputs["""input_ids"""]
__lowerCamelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] )
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCAmelCase__ ( self: str ):
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(UpperCamelCase_ )
__lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
| 12 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase__:
UpperCAmelCase__ : int
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase__ : TreeNode | None = None
UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess')
def lowerCamelCase__ ( A__ : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A__ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A__ ) != count_coins(A__ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.left )
__lowerCamelCase, __lowerCamelCase = get_distrib(node.right )
__lowerCamelCase = 1 - left_distrib_excess
__lowerCamelCase = 1 - right_distrib_excess
__lowerCamelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A__ )
+ abs(A__ )
)
__lowerCamelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A__ , A__ )
return get_distrib(A__ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
def lowerCamelCase__ ( A__ : int ):
'''simple docstring'''
if number > 0:
raise ValueError("""input must be a negative integer""" )
__lowerCamelCase = len(bin(A__ )[3:] )
__lowerCamelCase = bin(abs(A__ ) - (1 << binary_number_length) )[3:]
__lowerCamelCase = (
(
"""1"""
+ """0""" * (binary_number_length - len(A__ ))
+ twos_complement_number
)
if number < 0
else """0"""
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 | 1 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ ( A__ : Union[str, Any] ):
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase__( nn.Module):
def __init__( self: List[str] , UpperCamelCase_: nn.Module , UpperCamelCase_: int ):
super().__init__()
__lowerCamelCase = module
__lowerCamelCase = nn.Sequential(
nn.Linear(module.in_features , UpperCamelCase_ , bias=UpperCamelCase_ ) , nn.Linear(UpperCamelCase_ , module.out_features , bias=UpperCamelCase_ ) , )
__lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=UpperCamelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , *UpperCamelCase_: str , **UpperCamelCase_: List[str] ):
return self.module(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) + self.adapter(UpperCamelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase__( unittest.TestCase):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
UpperCAmelCase__ : Any = 'bigscience/bloom-1b7'
# Constant values
UpperCAmelCase__ : Union[str, Any] = 2.1_09_65_95_52_69_25_74
UpperCAmelCase__ : List[Any] = 'Hello my name is'
UpperCAmelCase__ : Tuple = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I')
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n')
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University')
UpperCAmelCase__ : Any = 10
def lowerCAmelCase__ ( self: Optional[Any] ):
# Models and tokenizer
__lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[str] ):
super().setUp()
# Models and tokenizer
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
def lowerCAmelCase__ ( self: Union[str, Any] ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.model_abit.config
self.assertTrue(hasattr(UpperCamelCase_ , """quantization_config""" ) )
__lowerCamelCase = config.to_dict()
__lowerCamelCase = config.to_diff_dict()
__lowerCamelCase = config.to_json_string()
def lowerCAmelCase__ ( self: Dict ):
from bitsandbytes.nn import Paramsabit
__lowerCamelCase = self.model_fpaa.get_memory_footprint()
__lowerCamelCase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowerCamelCase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowerCAmelCase__ ( self: List[str] ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(UpperCamelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" )
__lowerCamelCase = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = BitsAndBytesConfig()
__lowerCamelCase = True
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=UpperCamelCase_ , device_map="""auto""" )
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" )
__lowerCamelCase = model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
def lowerCAmelCase__ ( self: Dict ):
with self.assertRaises(UpperCamelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = BitsAndBytesConfig()
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowerCAmelCase__ ( self: Dict ):
with self.assertRaises(UpperCamelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" )
__lowerCamelCase = self.model_fpaa.to(torch.floataa )
__lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowerCamelCase = self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
__lowerCamelCase = self.model_fpaa.half()
# Check this does not throw an error
__lowerCamelCase = self.model_fpaa.float()
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase__( unittest.TestCase):
@classmethod
def lowerCAmelCase__ ( cls: List[Any] ):
__lowerCamelCase = """t5-small"""
__lowerCamelCase = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
__lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name )
__lowerCamelCase = """Translate in German: Hello, my dog is cute"""
def lowerCAmelCase__ ( self: Dict ):
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Any ):
from transformers import TaForConditionalGeneration
__lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowerCamelCase = None
# test with `t5-small`
__lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
__lowerCamelCase = model.generate(**UpperCamelCase_ )
# test with `flan-t5-small`
__lowerCamelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
__lowerCamelCase = model.generate(**UpperCamelCase_ )
__lowerCamelCase = modules
def lowerCAmelCase__ ( self: Optional[Any] ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
__lowerCamelCase = model.generate(**UpperCamelCase_ )
# test with `flan-t5-small`
__lowerCamelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
__lowerCamelCase = model.generate(**UpperCamelCase_ )
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: Dict ):
super().setUp()
# model_name
__lowerCamelCase = """bigscience/bloom-560m"""
__lowerCamelCase = """t5-small"""
# Different types of model
__lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
# Sequence classification model
__lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
# CausalLM model
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
# Seq2seq model
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=UpperCamelCase_ , device_map="""auto""" )
def lowerCAmelCase__ ( self: int ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Optional[Any] ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: Union[str, Any] ):
super().setUp()
def lowerCAmelCase__ ( self: Union[str, Any] ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: Optional[Any] ):
__lowerCamelCase = pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowerCamelCase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: Tuple ):
super().setUp()
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=UpperCamelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowerCamelCase = self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
__lowerCamelCase = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: Tuple ):
__lowerCamelCase = """facebook/opt-350m"""
super().setUp()
def lowerCAmelCase__ ( self: int ):
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
__lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowerCamelCase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowerCamelCase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(UpperCamelCase_ ) ):
__lowerCamelCase = LoRALayer(module.q_proj , rank=16 )
__lowerCamelCase = LoRALayer(module.k_proj , rank=16 )
__lowerCamelCase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowerCamelCase = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowerCamelCase = model.forward(**UpperCamelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(UpperCamelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = 'gpt2-xl'
UpperCAmelCase__ : Union[str, Any] = 3.31_91_85_48_54_15_21_87
| 12 |
from __future__ import annotations
def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ):
'''simple docstring'''
if len(A__ ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(A__ )
or left < -len(A__ )
or right >= len(A__ )
or right < -len(A__ )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
__lowerCamelCase = (left + right) >> 1 # the middle
__lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid]
__lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 12 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
class lowerCamelCase__( __lowerCamelCase):
pass
def lowerCamelCase__ ( A__ : List[str] ):
'''simple docstring'''
for shard in shards:
for i in range(A__ ):
yield {"i": i, "shard": shard}
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = int(os.environ["""RANK"""] )
__lowerCamelCase = int(os.environ["""WORLD_SIZE"""] )
__lowerCamelCase = ArgumentParser()
parser.add_argument("""--streaming""" , type=A__ )
parser.add_argument("""--local_rank""" , type=A__ )
parser.add_argument("""--num_workers""" , type=A__ , default=0 )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = args.streaming
__lowerCamelCase = args.num_workers
__lowerCamelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(A__ )]}
__lowerCamelCase = IterableDataset.from_generator(A__ , gen_kwargs=A__ )
if not streaming:
__lowerCamelCase = Dataset.from_list(list(A__ ) )
__lowerCamelCase = split_dataset_by_node(A__ , rank=A__ , world_size=A__ )
__lowerCamelCase = torch.utils.data.DataLoader(A__ , num_workers=A__ )
__lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__lowerCamelCase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__lowerCamelCase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 12 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowerCamelCase__( __lowerCamelCase):
def lowerCAmelCase__ ( self: List[Any] ):
__lowerCamelCase = SMALL_MODEL_IDENTIFIER
__lowerCamelCase = """pt"""
__lowerCamelCase = """tf"""
def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ):
__lowerCamelCase = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ):
__lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ )
model_tf.save_pretrained(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] ):
__lowerCamelCase = """mock_framework"""
# Framework provided - return whatever the user provides
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: int ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(UpperCamelCase_ )
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ )
def lowerCAmelCase__ ( self: Optional[int] ):
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_tf )
# Both in environment -> use PyTorch
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(UpperCamelCase_ , self.framework_pt )
# Both not in environment -> raise error
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
__lowerCamelCase = MagicMock(return_value=UpperCamelCase_ )
with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch(
"""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ):
with self.assertRaises(UpperCamelCase_ ):
__lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
| 12 | 1 |
import os
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = os.path.dirname(os.path.realpath(A__ ) )
__lowerCamelCase = os.path.join(A__ , """triangle.txt""" )
with open(A__ ) as f:
__lowerCamelCase = f.readlines()
__lowerCamelCase = []
for line in triangle:
__lowerCamelCase = []
for number in line.strip().split(""" """ ):
numbers_from_line.append(int(A__ ) )
a.append(A__ )
for i in range(1 , len(A__ ) ):
for j in range(len(a[i] ) ):
__lowerCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0
__lowerCamelCase = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(A__ , A__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 12 |
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCAmelCase_ = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def lowerCamelCase__ ( A__ : list[list[int]] ):
'''simple docstring'''
__lowerCamelCase = []
for i in range(len(A__ ) ):
__lowerCamelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
__lowerCamelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(A__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(A__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(A__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
__lowerCamelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(A__ )
return next_generation
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ):
'''simple docstring'''
__lowerCamelCase = []
for _ in range(A__ ):
# Create output image
__lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) )
__lowerCamelCase = img.load()
# Save cells to image
for x in range(len(A__ ) ):
for y in range(len(cells[0] ) ):
__lowerCamelCase = 255 - cells[y][x] * 255
__lowerCamelCase = (colour, colour, colour)
# Save image
images.append(A__ )
__lowerCamelCase = new_generation(A__ )
return images
if __name__ == "__main__":
UpperCAmelCase_ = generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 12 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.