code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = len(lowerCamelCase_) UpperCamelCase__ : Optional[int] = int(math.floor(math.sqrt(lowerCamelCase_))) UpperCamelCase__ : List[str] = 0 while arr[min(lowerCamelCase_ , lowerCamelCase_) - 1] < x: UpperCamelCase__ : Tuple = step step += int(math.floor(math.sqrt(lowerCamelCase_))) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase__ : int = prev + 1 if prev == min(lowerCamelCase_ , lowerCamelCase_): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] lowerCAmelCase__ = int(input('Enter the number to be searched:\n')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'''Number {x} is at index {res}''')
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('T') class __lowercase (Generic[T] ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : T): UpperCamelCase__ : Tuple = data UpperCamelCase__ : Node[T] | None = None def __str__( self : str): return F'{self.data}' class __lowercase (Generic[T] ): def __init__( self : Tuple): UpperCamelCase__ : Node[T] | None = None def __iter__( self : Any): UpperCamelCase__ : List[Any] = self.top while node: yield node.data UpperCamelCase__ : Union[str, Any] = node.next def __str__( self : int): return "->".join([str(UpperCAmelCase_) for item in self]) def __len__( self : Optional[Any]): return len(tuple(iter(self))) def __UpperCamelCase ( self : Optional[Any]): return self.top is None def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : T): UpperCamelCase__ : Tuple = Node(UpperCAmelCase_) if not self.is_empty(): UpperCamelCase__ : Optional[int] = self.top UpperCamelCase__ : List[Any] = node def __UpperCamelCase ( self : int): if self.is_empty(): raise IndexError('pop from empty stack') assert isinstance(self.top , UpperCAmelCase_) UpperCamelCase__ : str = self.top UpperCamelCase__ : Dict = self.top.next return pop_node.data def __UpperCamelCase ( self : Optional[Any]): if self.is_empty(): raise IndexError('peek from empty stack') assert self.top is not None return self.top.data def __UpperCamelCase ( self : Any): UpperCamelCase__ : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_) -> None: create_state_space_tree(lowerCamelCase_ , [] , 0 , [0 for i in range(len(lowerCamelCase_))]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> None: if index == len(lowerCamelCase_): print(lowerCamelCase_) return for i in range(len(lowerCamelCase_)): if not index_used[i]: current_sequence.append(sequence[i]) UpperCamelCase__ : List[str] = True create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_) current_sequence.pop() UpperCamelCase__ : Dict = False lowerCAmelCase__ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase__ = ["A", "B", "C"] generate_all_permutations(sequence_a)
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ = 600_851_475_143) -> int: try: UpperCamelCase__ : Dict = int(lowerCamelCase_) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.') if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.') UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Union[str, Any] = 2 while i * i <= n: while n % i == 0: UpperCamelCase__ : List[str] = i n //= i i += 1 if n > 1: UpperCamelCase__ : str = n return int(lowerCamelCase_) if __name__ == "__main__": print(f'''{solution() = }''')
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 class __lowercase (__lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase_ : Tuple[int] = (64,) , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "silu" , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : float = 0.1_82_15 , UpperCAmelCase_ : str = "group" , ): super().__init__() # pass init params to Encoder UpperCamelCase__ : List[Any] = Encoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , down_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , double_z=UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase__ : str = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1) UpperCamelCase__ : Tuple = VectorQuantizer(UpperCAmelCase_ , UpperCAmelCase_ , beta=0.25 , remap=UpperCAmelCase_ , sane_index_shape=UpperCAmelCase_) UpperCamelCase__ : Any = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1) # pass init params to Decoder UpperCamelCase__ : List[str] = Decoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , up_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , norm_type=UpperCAmelCase_ , ) @apply_forward_hook def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True): UpperCamelCase__ : Dict = self.encoder(UpperCAmelCase_) UpperCamelCase__ : Dict = self.quant_conv(UpperCAmelCase_) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase_) @apply_forward_hook def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True): # also go through quantization layer if not force_not_quantize: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = self.quantize(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = h UpperCamelCase__ : Union[str, Any] = self.post_quant_conv(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.decoder(UpperCAmelCase_ , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True): UpperCamelCase__ : str = sample UpperCamelCase__ : int = self.encode(UpperCAmelCase_).latents UpperCamelCase__ : Union[str, Any] = self.decode(UpperCAmelCase_).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_)
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' from typing import Any def __UpperCAmelCase ( lowerCamelCase_) -> list[Any]: if not input_list: return [] UpperCamelCase__ : Dict = [input_list.count(lowerCamelCase_) for value in input_list] UpperCamelCase__ : Optional[Any] = max(lowerCamelCase_) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCamelCase_) if value == y}) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase__ : Tuple = mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = max( mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , j - wt[i - 1]) + val[i - 1] , ) UpperCamelCase__ : List[str] = val return f[i][j] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Any = [[0] * (w + 1) for _ in range(n + 1)] for i in range(1 , n + 1): for w_ in range(1 , w + 1): if wt[i - 1] <= w_: UpperCamelCase__ : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_]) else: UpperCamelCase__ : str = dp[i - 1][w_] return dp[n][w_], dp def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: if not (isinstance(lowerCamelCase_ , (list, tuple)) and isinstance(lowerCamelCase_ , (list, tuple))): raise ValueError( 'Both the weights and values vectors must be either lists or tuples') UpperCamelCase__ : Tuple = len(lowerCamelCase_) if num_items != len(lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = ( 'The number of weights must be the same as the number of values.\n' f'But got {num_items} weights and {len(lowerCamelCase_)} values' ) raise ValueError(lowerCamelCase_) for i in range(lowerCamelCase_): if not isinstance(wt[i] , lowerCamelCase_): UpperCamelCase__ : str = ( 'All weights must be integers but got weight of ' f'type {type(wt[i])} at index {i}' ) raise TypeError(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : List[Any] = knapsack(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : set = set() _construct_solution(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) return optimal_val, example_optional_set def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , lowerCamelCase_ , lowerCamelCase_) else: optimal_set.add(lowerCamelCase_) _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , j - wt[i - 1] , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = [3, 2, 4, 4] lowerCAmelCase__ = [4, 3, 2, 3] lowerCAmelCase__ = 4 lowerCAmelCase__ = 6 lowerCAmelCase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase__ , lowerCAmelCase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase__ , lowerCAmelCase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '▁' lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase__ = { 'facebook/s2t-small-librispeech-asr': 1024, } lowerCAmelCase__ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase__ = {'mustc': MUSTC_LANGS} class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = MAX_MODEL_INPUT_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = [] def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_upper_case=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , lang_codes=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = do_upper_case UpperCamelCase__ : Any = do_lower_case UpperCamelCase__ : Dict = load_json(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : int = spm_file UpperCamelCase__ : List[str] = load_spm(UpperCAmelCase_ , self.sp_model_kwargs) if lang_codes is not None: UpperCamelCase__ : Union[str, Any] = lang_codes UpperCamelCase__ : List[Any] = LANGUAGES[lang_codes] UpperCamelCase__ : List[Any] = [F'<lang:{lang}>' for lang in self.langs] UpperCamelCase__ : Union[str, Any] = {lang: self.sp_model.PieceToId(F'<lang:{lang}>') for lang in self.langs} UpperCamelCase__ : int = self.lang_tokens UpperCamelCase__ : List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: UpperCamelCase__ : int = {} @property def __UpperCamelCase ( self : List[Any]): return len(self.encoder) @property def __UpperCamelCase ( self : Any): return self._tgt_lang @tgt_lang.setter def __UpperCamelCase ( self : str , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = self.lang_code_to_id[tgt_lang] UpperCamelCase__ : Optional[int] = [lang_code_id] def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder[self.unk_token]) def __UpperCamelCase ( self : str , UpperCAmelCase_ : int): return self.decoder.get(UpperCAmelCase_ , self.unk_token) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[str]): UpperCamelCase__ : str = [] UpperCamelCase__ : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase__ : int = self.sp_model.decode(UpperCAmelCase_) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.sp_model.decode(UpperCAmelCase_) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = [1] * len(self.prefix_tokens) UpperCamelCase__ : str = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_)) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_)) + ([0] * len(UpperCAmelCase_)) + suffix_ones def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): UpperCamelCase__ : int = self.__dict__.copy() UpperCamelCase__ : Tuple = None return state def __setstate__( self : int , UpperCAmelCase_ : Dict): UpperCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): UpperCamelCase__ : Union[str, Any] = {} UpperCamelCase__ : Any = load_spm(self.spm_file , self.sp_model_kwargs) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): UpperCamelCase__ : List[Any] = Path(UpperCAmelCase_) assert save_dir.is_dir(), F'{save_directory} should be a directory' UpperCamelCase__ : Dict = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) UpperCamelCase__ : str = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , UpperCAmelCase_) if os.path.abspath(self.spm_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.spm_file): copyfile(self.spm_file , UpperCAmelCase_) elif not os.path.isfile(self.spm_file): with open(UpperCAmelCase_ , 'wb') as fi: UpperCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (str(UpperCAmelCase_), str(UpperCAmelCase_)) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> sentencepiece.SentencePieceProcessor: UpperCamelCase__ : Any = sentencepiece.SentencePieceProcessor(**lowerCamelCase_) spm.Load(str(lowerCamelCase_)) return spm def __UpperCAmelCase ( lowerCamelCase_) -> Union[Dict, List]: with open(lowerCamelCase_ , 'r') as f: return json.load(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: with open(lowerCamelCase_ , 'w') as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=2)
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : Any = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[Any] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : str): UpperCamelCase__ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : int): # pass variant but use the non-variant filenames UpperCamelCase__ : Any = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] UpperCamelCase__ : Tuple = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Tuple = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] UpperCamelCase__ : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : List[Any]): # pass variant but use the non-variant filenames UpperCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_))
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Optional[Any] = model.config UpperCamelCase__ : Optional[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCamelCase__ : Optional[Any] = MBartConfig( is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer) , scale_embedding=lowerCamelCase_ , add_final_layer_norm=lowerCamelCase_ , ) return encoder_config, decoder_config def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: if "encoder.model" in name: UpperCamelCase__ : Any = name.replace('encoder.model' , 'encoder') if "decoder.model" in name: UpperCamelCase__ : str = name.replace('decoder.model' , 'decoder') if "patch_embed.proj" in name: UpperCamelCase__ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection') if "patch_embed.norm" in name: UpperCamelCase__ : int = name.replace('patch_embed.norm' , 'embeddings.norm') if name.startswith('encoder'): if "layers" in name: UpperCamelCase__ : int = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense') if "attn" in name and "mask" not in name: UpperCamelCase__ : Any = name.replace('attn' , 'attention.self') if "norm1" in name: UpperCamelCase__ : Tuple = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : Union[str, Any] = name.replace('norm2' , 'layernorm_after') if "mlp.fc1" in name: UpperCamelCase__ : List[str] = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense') if name == "encoder.norm.weight": UpperCamelCase__ : Optional[int] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": UpperCamelCase__ : Tuple = 'encoder.layernorm.bias' return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: for key in orig_state_dict.copy().keys(): UpperCamelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_) if "qkv" in key: UpperCamelCase__ : List[Any] = key.split('.') UpperCamelCase__ : Optional[Any] = int(key_split[3]) UpperCamelCase__ : Any = int(key_split[5]) UpperCamelCase__ : List[str] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ : Any = val[:dim, :] UpperCamelCase__ : List[Any] = val[dim : dim * 2, :] UpperCamelCase__ : Optional[Any] = val[-dim:, :] else: UpperCamelCase__ : Dict = val[:dim] UpperCamelCase__ : List[str] = val[dim : dim * 2] UpperCamelCase__ : str = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCamelCase__ : Tuple = val return orig_state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False) -> Dict: # load original model UpperCamelCase__ : str = DonutModel.from_pretrained(lowerCamelCase_).eval() # load HuggingFace model UpperCamelCase__, UpperCamelCase__ : Optional[Any] = get_configs(lowerCamelCase_) UpperCamelCase__ : int = DonutSwinModel(lowerCamelCase_) UpperCamelCase__ : str = MBartForCausalLM(lowerCamelCase_) UpperCamelCase__ : List[Any] = VisionEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_) model.eval() UpperCamelCase__ : List[str] = original_model.state_dict() UpperCamelCase__ : str = convert_state_dict(lowerCamelCase_ , lowerCamelCase_) model.load_state_dict(lowerCamelCase_) # verify results on scanned document UpperCamelCase__ : Dict = load_dataset('hf-internal-testing/example-documents') UpperCamelCase__ : int = dataset['test'][0]['image'].convert('RGB') UpperCamelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase_ , from_slow=lowerCamelCase_) UpperCamelCase__ : int = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1]) UpperCamelCase__ : Any = DonutProcessor(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = processor(lowerCamelCase_ , return_tensors='pt').pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCamelCase__ : int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCamelCase__ : List[str] = 'When is the coffee break?' UpperCamelCase__ : Optional[int] = task_prompt.replace('{user_input}' , lowerCamelCase_) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCamelCase__ : Any = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCamelCase__ : Dict = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCamelCase__ : Optional[int] = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCamelCase__ : Optional[int] = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCamelCase__ : Union[str, Any] = 'hello world' else: raise ValueError('Model name not supported') UpperCamelCase__ : Optional[int] = original_model.decoder.tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors='pt')[ 'input_ids' ] UpperCamelCase__ : Union[str, Any] = original_model.encoder.model.patch_embed(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Any = model.encoder.embeddings(lowerCamelCase_) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3) # verify encoder hidden states UpperCamelCase__ : int = original_model.encoder(lowerCamelCase_) UpperCamelCase__ : Tuple = model.encoder(lowerCamelCase_).last_hidden_state assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2) # verify decoder hidden states UpperCamelCase__ : Optional[int] = original_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).logits UpperCamelCase__ : Optional[int] = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_).logits assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3) print('Looks ok!') if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/')[-1] , commit_message='Update model') processor.push_to_hub('nielsr/' + model_name.split('/')[-1] , commit_message='Update model') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCAmelCase__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: # Return True if there is node that has not iterated. UpperCamelCase__ : Any = [False] * len(lowerCamelCase_) UpperCamelCase__ : List[str] = [s] UpperCamelCase__ : Any = True while queue: UpperCamelCase__ : int = queue.pop(0) for ind in range(len(graph[u])): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_) UpperCamelCase__ : int = True UpperCamelCase__ : Union[str, Any] = u return visited[t] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Union[str, Any] = [-1] * (len(lowerCamelCase_)) UpperCamelCase__ : int = 0 UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : List[str] = float('Inf') UpperCamelCase__ : List[Any] = sink while s != source: # Find the minimum value in select path UpperCamelCase__ : Optional[Any] = min(lowerCamelCase_ , graph[parent[s]][s]) UpperCamelCase__ : str = parent[s] max_flow += path_flow UpperCamelCase__ : int = sink while v != source: UpperCamelCase__ : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase__ : Optional[Any] = parent[v] for i in range(len(lowerCamelCase_)): for j in range(len(graph[0])): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j)) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __UpperCAmelCase ( lowerCamelCase_) -> Dict: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: if args.student_type == "roberta": UpperCamelCase__ : int = False elif args.student_type == "gpt2": UpperCamelCase__ : int = False def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: if args.student_type == "roberta": UpperCamelCase__ : Tuple = False def __UpperCAmelCase ( ) -> Any: UpperCamelCase__ : List[Any] = argparse.ArgumentParser(description='Training') parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.') parser.add_argument( '--dump_path' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory (log, checkpoints, parameters, etc.)') parser.add_argument( '--data_file' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=lowerCamelCase_ , choices=['distilbert', 'roberta', 'gpt2'] , required=lowerCamelCase_ , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to the student configuration.') parser.add_argument( '--student_pretrained_weights' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Load student initialization checkpoint.') parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=lowerCamelCase_ , help='Teacher type (BERT, RoBERTa).') parser.add_argument('--teacher_name' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The teacher model.') parser.add_argument('--temperature' , default=2.0 , type=lowerCamelCase_ , help='Temperature for the softmax temperature.') parser.add_argument( '--alpha_ce' , default=0.5 , type=lowerCamelCase_ , help='Linear weight for the distillation loss. Must be >=0.') parser.add_argument( '--alpha_mlm' , default=0.0 , type=lowerCamelCase_ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=lowerCamelCase_ , help='Linear weight for the CLM loss. Must be >=0.') parser.add_argument('--alpha_mse' , default=0.0 , type=lowerCamelCase_ , help='Linear weight of the MSE loss. Must be >=0.') parser.add_argument( '--alpha_cos' , default=0.0 , type=lowerCamelCase_ , help='Linear weight of the cosine embedding loss. Must be >=0.') parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.') parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=lowerCamelCase_ , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=lowerCamelCase_ , help='Proportion of tokens to mask out.') parser.add_argument('--word_keep' , default=0.1 , type=lowerCamelCase_ , help='Proportion of tokens to keep.') parser.add_argument('--word_rand' , default=0.1 , type=lowerCamelCase_ , help='Proportion of tokens to randomly replace.') parser.add_argument( '--mlm_smoothing' , default=0.7 , type=lowerCamelCase_ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=lowerCamelCase_ , help='The token counts in the data_file for MLM.') parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=lowerCamelCase_ , default=3 , help='Number of pass on the whole dataset.') parser.add_argument('--batch_size' , type=lowerCamelCase_ , default=5 , help='Batch size (for each process).') parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=lowerCamelCase_ , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=lowerCamelCase_ , help='Linear warmup proportion.') parser.add_argument('--weight_decay' , default=0.0 , type=lowerCamelCase_ , help='Weight decay if we apply some.') parser.add_argument('--learning_rate' , default=5e-4 , type=lowerCamelCase_ , help='The initial learning rate for Adam.') parser.add_argument('--adam_epsilon' , default=1e-6 , type=lowerCamelCase_ , help='Epsilon for Adam optimizer.') parser.add_argument('--max_grad_norm' , default=5.0 , type=lowerCamelCase_ , help='Max gradient norm.') parser.add_argument('--initializer_range' , default=0.02 , type=lowerCamelCase_ , help='Random initialization range.') parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCamelCase_ , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=lowerCamelCase_ , default=1 , help='Number of GPUs in the node.') parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='Distributed training - Local rank') parser.add_argument('--seed' , type=lowerCamelCase_ , default=56 , help='Random seed') parser.add_argument('--log_interval' , type=lowerCamelCase_ , default=500 , help='Tensorboard logging interval.') parser.add_argument('--checkpoint_interval' , type=lowerCamelCase_ , default=4_000 , help='Checkpoint interval.') UpperCamelCase__ : Tuple = parser.parse_args() sanity_checks(lowerCamelCase_) # ARGS # init_gpu_params(lowerCamelCase_) set_seed(lowerCamelCase_) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(f'Experiment will be dumped and logged in {args.dump_path}') # SAVE PARAMS # logger.info(f'Param: {args}') with open(os.path.join(args.dump_path , 'parameters.json') , 'w') as f: json.dump(vars(lowerCamelCase_) , lowerCamelCase_ , indent=4) git_log(args.dump_path) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = MODEL_CLASSES[args.student_type] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase__ : Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name) UpperCamelCase__ : Dict = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase__ : List[Any] = tokenizer.all_special_tokens.index(lowerCamelCase_) UpperCamelCase__ : Dict = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}') UpperCamelCase__ : int = special_tok_ids UpperCamelCase__ : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}') with open(args.data_file , 'rb') as fp: UpperCamelCase__ : Optional[int] = pickle.load(lowerCamelCase_) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)') with open(args.token_counts , 'rb') as fp: UpperCamelCase__ : List[Any] = pickle.load(lowerCamelCase_) UpperCamelCase__ : List[Any] = np.maximum(lowerCamelCase_ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase__ : str = 0.0 # do not predict special tokens UpperCamelCase__ : Tuple = torch.from_numpy(lowerCamelCase_) else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Union[str, Any] = LmSeqsDataset(params=lowerCamelCase_ , data=lowerCamelCase_) logger.info('Data loader created.') # STUDENT # logger.info(f'Loading student config from {args.student_config}') UpperCamelCase__ : int = student_config_class.from_pretrained(args.student_config) UpperCamelCase__ : Optional[Any] = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}') UpperCamelCase__ : Dict = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCamelCase_) else: UpperCamelCase__ : str = student_model_class(lowerCamelCase_) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}') logger.info('Student loaded.') # TEACHER # UpperCamelCase__ : Union[str, Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCamelCase_) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}') logger.info(f'Teacher loaded from {args.teacher_name}.') # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCamelCase_ , lowerCamelCase_) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCamelCase_ , lowerCamelCase_) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase__ : Dict = Distiller( params=lowerCamelCase_ , dataset=lowerCamelCase_ , token_probs=lowerCamelCase_ , student=lowerCamelCase_ , teacher=lowerCamelCase_) distiller.train() logger.info('Let\'s go get some drinks.') if __name__ == "__main__": main()
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: if "xprophetnet" in prophetnet_checkpoint_path: UpperCamelCase__ : Optional[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase_ , output_loading_info=lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase_ , output_loading_info=lowerCamelCase_) UpperCamelCase__ : str = ['key_proj', 'value_proj', 'query_proj'] UpperCamelCase__ : Dict = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: UpperCamelCase__ : Dict = key.split('.') if attributes[0] == "lm_head": UpperCamelCase__ : int = prophet UpperCamelCase__ : Any = prophet_old else: UpperCamelCase__ : int = prophet.prophetnet UpperCamelCase__ : Tuple = prophet_old.model UpperCamelCase__ : str = False for attribute in attributes: if attribute in mapping: UpperCamelCase__ : List[Any] = mapping[attribute] if not hasattr(lowerCamelCase_ , lowerCamelCase_) and len(lowerCamelCase_) > 0: UpperCamelCase__ : List[Any] = attribute elif hasattr(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCamelCase__ : Any = old_model.weight logger.info(f'{attribute} is initialized.') UpperCamelCase__ : str = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCamelCase__ : str = old_model.bias logger.info(f'{attribute} is initialized') UpperCamelCase__ : List[str] = True break elif attribute in special_keys and hasattr(lowerCamelCase_ , 'in_proj_weight'): UpperCamelCase__ : Dict = old_model.in_proj_weight.shape[0] // 3 UpperCamelCase__ : Optional[int] = getattr(lowerCamelCase_ , lowerCamelCase_) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCamelCase__ : Any = nn.Parameter(old_model.in_proj_weight[:embed_dim, :]) UpperCamelCase__ : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim]) elif attribute == "key_proj": UpperCamelCase__ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :]) UpperCamelCase__ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim]) elif attribute == "value_proj": UpperCamelCase__ : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :]) UpperCamelCase__ : List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :]) UpperCamelCase__ : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCamelCase__ : List[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :]) UpperCamelCase__ : Dict = True break if attribute.isdigit(): UpperCamelCase__ : Union[str, Any] = model[int(lowerCamelCase_)] UpperCamelCase__ : List[Any] = old_model[int(lowerCamelCase_)] else: UpperCamelCase__ : Optional[int] = getattr(lowerCamelCase_ , lowerCamelCase_) if old_attribute == "": UpperCamelCase__ : List[Any] = old_model else: if not hasattr(lowerCamelCase_ , lowerCamelCase_): raise ValueError(f'{old_model} does not have {old_attribute}') UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!') print(f'Saving model to {pytorch_dump_folder_path}') prophet.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> bool: UpperCamelCase__ : Dict = len(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) UpperCamelCase__ : Dict = [[False for _ in range(m + 1)] for _ in range(n + 1)] UpperCamelCase__ : List[Any] = True for i in range(lowerCamelCase_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase__ : Tuple = True if a[i].islower(): UpperCamelCase__ : Any = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''BlipImageProcessor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple): super().__init__(UpperCAmelCase_ , UpperCAmelCase_) # add QFormer tokenizer UpperCamelCase__ : Tuple = qformer_tokenizer def __call__( self : List[Any] , UpperCAmelCase_ : ImageInput = None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.') UpperCamelCase__ : Tuple = BatchFeature() if text is not None: UpperCamelCase__ : List[str] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) encoding.update(UpperCAmelCase_) UpperCamelCase__ : int = self.qformer_tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = qformer_text_encoding.pop('input_ids') UpperCamelCase__ : Any = qformer_text_encoding.pop('attention_mask') if images is not None: UpperCamelCase__ : Optional[int] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_) encoding.update(UpperCAmelCase_) return encoding def __UpperCamelCase ( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : int = self.tokenizer.model_input_names UpperCamelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): if os.path.isfile(UpperCAmelCase_): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = os.path.join(UpperCAmelCase_ , 'qformer_tokenizer') self.qformer_tokenizer.save_pretrained(UpperCAmelCase_) return super().save_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : Dict , UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ , subfolder='qformer_tokenizer') UpperCamelCase__ : Union[str, Any] = cls._get_arguments_from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) args.append(UpperCAmelCase_) return cls(*UpperCAmelCase_)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> set: UpperCamelCase__ : List[str] = set() # edges = list of graph's edges UpperCamelCase__ : Optional[int] = get_edges(lowerCamelCase_) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCamelCase__, UpperCamelCase__ : List[str] = edges.pop() chosen_vertices.add(lowerCamelCase_) chosen_vertices.add(lowerCamelCase_) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase_) return chosen_vertices def __UpperCAmelCase ( lowerCamelCase_) -> set: UpperCamelCase__ : Optional[int] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0522, type=int) lowerCAmelCase__ = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: lowerCAmelCase__ = pickle.load(fp) logger.info('Counting occurrences for MLM.') lowerCAmelCase__ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase__ = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase__ = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = None def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=False , **UpperCAmelCase_ : int , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space: UpperCamelCase__ : List[str] = getattr(UpperCAmelCase_ , pre_tok_state.pop('type')) UpperCamelCase__ : int = add_prefix_space UpperCamelCase__ : List[str] = pre_tok_class(**UpperCAmelCase_) UpperCamelCase__ : List[str] = add_prefix_space def __UpperCamelCase ( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): UpperCamelCase__ : int = kwargs.get('is_split_into_words' , UpperCAmelCase_) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ' pretokenized inputs.') return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict): UpperCamelCase__ : Any = kwargs.get('is_split_into_words' , UpperCAmelCase_) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ' pretokenized inputs.') return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): UpperCamelCase__ : Any = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id]) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Tuple = input_ids[-self.model_max_length :] return input_ids
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase__ : Any = get_sagemaker_input() else: UpperCamelCase__ : Optional[Any] = get_cluster_input() return config def __UpperCAmelCase ( lowerCamelCase_=None) -> int: if subparsers is not None: UpperCamelCase__ : Tuple = subparsers.add_parser('config' , description=lowerCamelCase_) else: UpperCamelCase__ : Tuple = argparse.ArgumentParser('Accelerate config command' , description=lowerCamelCase_) parser.add_argument( '--config_file' , default=lowerCamelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_) return parser def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Optional[Any] = get_user_input() if args.config_file is not None: UpperCamelCase__ : int = args.config_file else: if not os.path.isdir(lowerCamelCase_): os.makedirs(lowerCamelCase_) UpperCamelCase__ : Tuple = default_yaml_config_file if config_file.endswith('.json'): config.to_json_file(lowerCamelCase_) else: config.to_yaml_file(lowerCamelCase_) print(f'accelerate configuration saved at {config_file}') def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : Dict = config_command_parser() UpperCamelCase__ : Optional[Any] = parser.parse_args() config_command(lowerCamelCase_) if __name__ == "__main__": main()
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase__ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if ' ' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if '-' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') lowerCAmelCase__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') lowerCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' class __lowercase : def __init__( self : str): UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Any = 0 UpperCamelCase__ : int = {} def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : int): if vertex not in self.adjacency: UpperCamelCase__ : Tuple = {} self.num_vertices += 1 def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple): self.add_vertex(UpperCAmelCase_) self.add_vertex(UpperCAmelCase_) if head == tail: return UpperCamelCase__ : Tuple = weight UpperCamelCase__ : Optional[int] = weight def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.get_edges() for edge in edges: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = edge edges.remove((tail, head, weight)) for i in range(len(UpperCAmelCase_)): UpperCamelCase__ : Any = list(edges[i]) edges.sort(key=lambda UpperCAmelCase_: e[2]) for i in range(len(UpperCAmelCase_) - 1): if edges[i][2] >= edges[i + 1][2]: UpperCamelCase__ : Optional[int] = edges[i][2] + 1 for edge in edges: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = edge UpperCamelCase__ : Dict = weight UpperCamelCase__ : List[Any] = weight def __str__( self : Any): UpperCamelCase__ : List[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: UpperCamelCase__ : Union[str, Any] = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip('\n') def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Optional[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __UpperCamelCase ( self : List[str]): return self.adjacency.keys() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None): UpperCamelCase__ : Tuple = Graph() if vertices is None: UpperCamelCase__ : Tuple = [] if edges is None: UpperCamelCase__ : List[str] = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_) for edge in edges: g.add_edge(*UpperCAmelCase_) return g class __lowercase : def __init__( self : Tuple): UpperCamelCase__ : int = {} UpperCamelCase__ : List[str] = {} def __len__( self : Any): return len(self.parent) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): if item in self.parent: return self.find(UpperCAmelCase_) UpperCamelCase__ : List[Any] = item UpperCamelCase__ : Dict = 0 return item def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int]): if item not in self.parent: return self.make_set(UpperCAmelCase_) if item != self.parent[item]: UpperCamelCase__ : List[str] = self.find(self.parent[item]) return self.parent[item] def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = self.find(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.find(UpperCAmelCase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCamelCase__ : Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: UpperCamelCase__ : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCamelCase__ : Dict = roota return roota return None @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Optional[Any] = graph.num_vertices UpperCamelCase__ : Tuple = Graph.UnionFind() UpperCamelCase__ : Optional[int] = [] while num_components > 1: UpperCamelCase__ : Tuple = {} for vertex in graph.get_vertices(): UpperCamelCase__ : Optional[Any] = -1 UpperCamelCase__ : int = graph.get_edges() for edge in edges: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = edge edges.remove((tail, head, weight)) for edge in edges: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[Any] = edge UpperCamelCase__ : Union[str, Any] = union_find.find(UpperCAmelCase_) UpperCamelCase__ : List[Any] = union_find.find(UpperCAmelCase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ : Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = cheap_edge[vertex] if union_find.find(UpperCAmelCase_) != union_find.find(UpperCAmelCase_): union_find.union(UpperCAmelCase_ , UpperCAmelCase_) mst_edges.append(cheap_edge[vertex]) UpperCamelCase__ : int = num_components - 1 UpperCamelCase__ : Dict = Graph.build(edges=UpperCAmelCase_) return mst
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __lowercase (unittest.TestCase ): @classmethod def __UpperCamelCase ( cls : Any): UpperCamelCase__ : str = TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : List[str]): try: delete_repo(token=cls._token , repo_id='test-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config') except HTTPError: pass def __UpperCamelCase ( self : str): UpperCamelCase__ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('test-config' , use_auth_token=self._token) UpperCamelCase__ : List[str] = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id='test-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id='test-config' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) UpperCamelCase__ : List[Any] = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token) UpperCamelCase__ : Any = BertConfig.from_pretrained('valid_org/test-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) UpperCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def __UpperCamelCase ( self : Any): CustomConfig.register_for_auto_class() UpperCamelCase__ : Dict = CustomConfig(attribute=42) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'}) UpperCamelCase__ : Tuple = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig') self.assertEqual(new_config.attribute , 42) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase__ : int = c.n_embd + 1 # int UpperCamelCase__ : List[str] = c.resid_pdrop + 1.0 # float UpperCamelCase__ : List[Any] = not c.scale_attn_weights # bool UpperCamelCase__ : Dict = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}') self.assertEqual(UpperCAmelCase_ , c.n_embd , 'mismatch for key: n_embd') self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop') self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights') self.assertEqual(UpperCAmelCase_ , c.summary_type , 'mismatch for key: summary_type') def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Any = PretrainedConfig() UpperCamelCase__ : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version']) UpperCamelCase__ : Union[str, Any] = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_)] if len(UpperCAmelCase_) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(UpperCAmelCase_)}.') def __UpperCamelCase ( self : Optional[Any]): with self.assertRaises(UpperCAmelCase_): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder') UpperCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert') self.assertIsNotNone(UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): # A mock response for an HTTP head request to emulate server down UpperCamelCase__ : Any = mock.Mock() UpperCamelCase__ : int = 500 UpperCamelCase__ : str = {} UpperCamelCase__ : Optional[Any] = HTTPError UpperCamelCase__ : Optional[int] = {} # Download this model to make sure it's in the cache. UpperCamelCase__ : Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase_) as mock_head: UpperCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Union[str, Any]): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json') def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained('bert-base-cased') UpperCamelCase__ : Tuple = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , 'config.4.0.0.json') , 'w')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase__ : List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase__ : Dict = ['config.42.0.0.json'] UpperCamelCase__ : Optional[Any] = 768 configuration.save_pretrained(UpperCAmelCase_) shutil.move(os.path.join(UpperCAmelCase_ , 'config.4.0.0.json') , os.path.join(UpperCAmelCase_ , 'config.42.0.0.json')) UpperCamelCase__ : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 768) def __UpperCamelCase ( self : List[str]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers UpperCamelCase__ : int = 'v4.0.0' UpperCamelCase__, UpperCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase__ : Optional[Any] = 'v3.0.0' UpperCamelCase__ : List[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(old_configuration.hidden_size , 768)
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase__ = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowerCAmelCase__ = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowerCAmelCase__ = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Union[str, Any]: if label_map is not None: for old_id, new_id in label_map.items(): UpperCamelCase__ : Optional[Any] = new_id # turn into Numpy arrays UpperCamelCase__ : str = np.array(lowerCamelCase_) UpperCamelCase__ : Dict = np.array(lowerCamelCase_) if reduce_labels: UpperCamelCase__ : List[str] = 255 UpperCamelCase__ : Union[str, Any] = label - 1 UpperCamelCase__ : Optional[Any] = 255 UpperCamelCase__ : Dict = label != ignore_index UpperCamelCase__ : List[Any] = np.not_equal(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : int = pred_label[mask] UpperCamelCase__ : Optional[Any] = np.array(lowerCamelCase_)[mask] UpperCamelCase__ : Union[str, Any] = pred_label[pred_label == label] UpperCamelCase__ : int = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0] UpperCamelCase__ : Optional[int] = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0] UpperCamelCase__ : Optional[int] = np.histogram(lowerCamelCase_ , bins=lowerCamelCase_ , range=(0, num_labels - 1))[0] UpperCamelCase__ : int = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> List[Any]: UpperCamelCase__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa) UpperCamelCase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa) UpperCamelCase__ : int = np.zeros((num_labels,) , dtype=np.floataa) UpperCamelCase__ : Tuple = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = intersect_and_union( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Optional[Any]: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = total_intersect_and_union( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # compute metrics UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : List[Any] = total_area_intersect.sum() / total_area_label.sum() UpperCamelCase__ : Tuple = total_area_intersect / total_area_union UpperCamelCase__ : str = total_area_intersect / total_area_label UpperCamelCase__ : Union[str, Any] = np.nanmean(lowerCamelCase_) UpperCamelCase__ : List[Any] = np.nanmean(lowerCamelCase_) UpperCamelCase__ : Any = all_acc UpperCamelCase__ : Optional[int] = iou UpperCamelCase__ : Union[str, Any] = acc if nan_to_num is not None: UpperCamelCase__ : Optional[int] = {metric: np.nan_to_num(lowerCamelCase_ , nan=lowerCamelCase_) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def __UpperCamelCase ( self : Optional[int]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16'))), }) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): UpperCamelCase__ : Tuple = mean_iou( results=UpperCAmelCase_ , gt_seg_maps=UpperCAmelCase_ , num_labels=UpperCAmelCase_ , ignore_index=UpperCAmelCase_ , nan_to_num=UpperCAmelCase_ , label_map=UpperCAmelCase_ , reduce_labels=UpperCAmelCase_ , ) return iou_result
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=100 , lowerCamelCase_=" ") -> List[str]: UpperCamelCase__ : Optional[int] = text.split(lowerCamelCase_) return [character.join(text[i : i + n]).strip() for i in range(0 , len(lowerCamelCase_) , lowerCamelCase_)] def __UpperCAmelCase ( lowerCamelCase_) -> dict: UpperCamelCase__, UpperCamelCase__ : Any = [], [] for title, text in zip(documents['title'] , documents['text']): if text is not None: for passage in split_text(lowerCamelCase_): titles.append(title if title is not None else '') texts.append(lowerCamelCase_) return {"title": titles, "text": texts} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> dict: UpperCamelCase__ : str = ctx_tokenizer( documents['title'] , documents['text'] , truncation=lowerCamelCase_ , padding='longest' , return_tensors='pt')['input_ids'] UpperCamelCase__ : Dict = ctx_encoder(input_ids.to(device=lowerCamelCase_) , return_dict=lowerCamelCase_).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int: ###################################### logger.info('Step 1 - Create the dataset') ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCamelCase__ : Union[str, Any] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text']) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCamelCase__ : str = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=processing_args.num_proc) # And compute the embeddings UpperCamelCase__ : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=lowerCamelCase_) UpperCamelCase__ : str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) UpperCamelCase__ : str = Features( {'text': Value('string'), 'title': Value('string'), 'embeddings': Sequence(Value('float32'))}) # optional, save as float32 instead of float64 to save space UpperCamelCase__ : List[Any] = dataset.map( partial(lowerCamelCase_ , ctx_encoder=lowerCamelCase_ , ctx_tokenizer=lowerCamelCase_) , batched=lowerCamelCase_ , batch_size=processing_args.batch_size , features=lowerCamelCase_ , ) # And finally save your dataset UpperCamelCase__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset') dataset.save_to_disk(lowerCamelCase_) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset') ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCamelCase__ : List[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index('embeddings' , custom_index=lowerCamelCase_) # And save the index UpperCamelCase__ : int = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss') dataset.get_index('embeddings').save(lowerCamelCase_) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __lowercase : _lowerCamelCase = field( default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCamelCase = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCamelCase = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCamelCase = field( default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class __lowercase : _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCamelCase = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class __lowercase : _lowerCamelCase = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from scipy.stats import pearsonr import datasets lowerCAmelCase__ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowerCAmelCase__ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowerCAmelCase__ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def __UpperCamelCase ( self : Tuple): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __UpperCamelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=False): if return_pvalue: UpperCamelCase__ : Dict = pearsonr(UpperCAmelCase_ , UpperCAmelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase_ , UpperCAmelCase_)[0])}
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''dpr''' def __init__( self : str , UpperCAmelCase_ : List[Any]=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[int]=1e-12 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : str="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : Any , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : List[str] = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Optional[Any] = projection_dim UpperCamelCase__ : Union[str, Any] = position_embedding_type
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : str=1_000 , UpperCAmelCase_ : Any=[3, 3, 6, 4] , UpperCAmelCase_ : Tuple=[48, 56, 112, 220] , ): UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : List[str] = is_training UpperCamelCase__ : Optional[Any] = use_labels UpperCamelCase__ : Tuple = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = num_labels UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : str = layer_depths UpperCamelCase__ : str = embed_dims def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : str = None if self.use_labels: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels) UpperCamelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCAmelCase_ , layer_scale_init_value=1e-5 , ) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Dict = SwiftFormerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7)) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Dict = self.num_labels UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : str = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self : List[str]): ((UpperCamelCase__), (UpperCamelCase__), (UpperCamelCase__)) : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _lowerCamelCase = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Any): UpperCamelCase__ : Union[str, Any] = SwiftFormerModelTester(self) UpperCamelCase__ : Optional[int] = ConfigTester( self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __UpperCamelCase ( self : Optional[int]): self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds') def __UpperCamelCase ( self : int): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : Tuple): UpperCamelCase__, UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) UpperCamelCase__ : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def __UpperCamelCase ( self : List[Any]): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = SwiftFormerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skip(reason='SwiftFormer does not output attentions') def __UpperCamelCase ( self : Optional[Any]): pass def __UpperCamelCase ( self : Union[str, Any]): def check_hidden_states_output(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict): UpperCamelCase__ : Optional[int] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): UpperCamelCase__ : Any = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : List[Any] = outputs.hidden_states UpperCamelCase__ : Any = 8 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(UpperCAmelCase_)): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ]) , ) UpperCamelCase__, UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : str = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : Optional[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): def _config_zero_init(UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = copy.deepcopy(UpperCAmelCase_) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(UpperCAmelCase_ , UpperCAmelCase_ , 1e-10) if isinstance(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = _config_zero_init(getattr(UpperCAmelCase_ , UpperCAmelCase_)) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return configs_no_init UpperCamelCase__, UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Dict = _config_zero_init(UpperCAmelCase_) for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(config=UpperCAmelCase_) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : List[str]): pass def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[Any]): return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None @slow def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(UpperCAmelCase_) UpperCamelCase__ : Any = self.default_image_processor UpperCamelCase__ : Tuple = prepare_img() UpperCamelCase__ : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) # verify the logits UpperCamelCase__ : Dict = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import sys import turtle def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_) , get_mid(lowerCamelCase_ , lowerCamelCase_) , depth - 1) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_) , get_mid(lowerCamelCase_ , lowerCamelCase_) , depth - 1) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_) , get_mid(lowerCamelCase_ , lowerCamelCase_) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) lowerCAmelCase__ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') lowerCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = 'ZinengTang/tvlt-base' UpperCamelCase__ : Optional[int] = tempfile.mkdtemp() def __UpperCamelCase ( self : Tuple , **UpperCAmelCase_ : Any): return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : int): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def __UpperCamelCase ( self : Dict): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase__ : Any = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : Tuple = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) UpperCamelCase__ : List[str] = np.ones([12_000]) UpperCamelCase__ : Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[Any] = processor(audio=UpperCAmelCase_ , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : int = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) UpperCamelCase__ : Dict = np.ones([3, 224, 224]) UpperCamelCase__ : str = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Any = processor(images=UpperCAmelCase_ , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.get_image_processor() UpperCamelCase__ : List[Any] = self.get_feature_extractor() UpperCamelCase__ : Tuple = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) UpperCamelCase__ : int = np.ones([12_000]) UpperCamelCase__ : Optional[Any] = np.ones([3, 224, 224]) UpperCamelCase__ : str = processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = self.get_image_processor() UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : Dict = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowercase (__lowerCamelCase ): def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Tuple = params UpperCamelCase__ : str = np.array(UpperCAmelCase_) UpperCamelCase__ : Tuple = np.array([len(UpperCAmelCase_) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : int , UpperCAmelCase_ : List[Any]): return (self.token_ids[index], self.lengths[index]) def __len__( self : Any): return len(self.lengths) def __UpperCamelCase ( self : Union[str, Any]): assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : str = self.params.max_model_input_size UpperCamelCase__ : List[Any] = self.lengths > max_len logger.info(F'Splitting {sum(UpperCAmelCase_)} too long sequences.') def divide_chunks(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase_) , UpperCAmelCase_)] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Tuple = [] if self.params.mlm: UpperCamelCase__, UpperCamelCase__ : int = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: UpperCamelCase__ : Union[str, Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: UpperCamelCase__ : str = np.insert(UpperCAmelCase_ , 0 , UpperCAmelCase_) if sub_s[-1] != sep_id: UpperCamelCase__ : Dict = np.insert(UpperCAmelCase_ , len(UpperCAmelCase_) , UpperCAmelCase_) assert len(UpperCAmelCase_) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_) new_tok_ids.extend(UpperCAmelCase_) new_lengths.extend([len(UpperCAmelCase_) for l in sub_seqs]) UpperCamelCase__ : List[Any] = np.array(UpperCAmelCase_) UpperCamelCase__ : Dict = np.array(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = len(self) UpperCamelCase__ : Union[str, Any] = self.lengths > 11 UpperCamelCase__ : List[Any] = self.token_ids[indices] UpperCamelCase__ : str = self.lengths[indices] UpperCamelCase__ : Optional[int] = len(self) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.') def __UpperCamelCase ( self : Optional[Any]): if "unk_token" not in self.params.special_tok_ids: return else: UpperCamelCase__ : Optional[int] = self.params.special_tok_ids['unk_token'] UpperCamelCase__ : Optional[int] = len(self) UpperCamelCase__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) UpperCamelCase__ : Optional[int] = (unk_occs / self.lengths) < 0.5 UpperCamelCase__ : Union[str, Any] = self.token_ids[indices] UpperCamelCase__ : str = self.lengths[indices] UpperCamelCase__ : Optional[Any] = len(self) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).') def __UpperCamelCase ( self : Any): if not self.params.is_master: return logger.info(F'{len(self)} sequences') # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __UpperCamelCase ( self : str , UpperCAmelCase_ : Dict): UpperCamelCase__ : Optional[Any] = [t[0] for t in batch] UpperCamelCase__ : Optional[int] = [t[1] for t in batch] assert len(UpperCAmelCase_) == len(UpperCAmelCase_) # Max for paddings UpperCamelCase__ : List[str] = max(UpperCAmelCase_) # Pad token ids if self.params.mlm: UpperCamelCase__ : Union[str, Any] = self.params.special_tok_ids['pad_token'] else: UpperCamelCase__ : List[Any] = self.params.special_tok_ids['unk_token'] UpperCamelCase__ : Union[str, Any] = [list(t.astype(UpperCAmelCase_)) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_)) for t in token_ids] assert len(tk_) == len(UpperCAmelCase_) assert all(len(UpperCAmelCase_) == max_seq_len_ for t in tk_) UpperCamelCase__ : List[str] = torch.tensor(tk_) # (bs, max_seq_len_) UpperCamelCase__ : Union[str, Any] = torch.tensor(UpperCAmelCase_) # (bs) return tk_t, lg_t
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : str = 0 while b > 0: if b & 1: UpperCamelCase__ : Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "https://www.worldometers.info/coronavirus") -> dict: UpperCamelCase__ : List[str] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Dict = soup.findAll('h1') UpperCamelCase__ : Dict = soup.findAll('div' , {'class': 'maincounter-number'}) keys += soup.findAll('span' , {'class': 'panel-title'}) values += soup.findAll('div' , {'class': 'number-table-main'}) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase_ , lowerCamelCase_)} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Dict = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : int = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : str = processor(images=UpperCAmelCase_ , return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) @require_torch def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : str = [torch.ones((1, 3, 5, 5))] UpperCamelCase__ : List[Any] = [[1_764, 2_646]] UpperCamelCase__ : Optional[int] = [[683, 1_024]] UpperCamelCase__ : int = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Tuple = processor.post_process_masks( UpperCAmelCase_ , torch.tensor(UpperCAmelCase_) , torch.tensor(UpperCAmelCase_)) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) # should also work with np UpperCamelCase__ : Union[str, Any] = [np.ones((1, 3, 5, 5))] UpperCamelCase__ : Optional[int] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_)) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : List[Any] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_)) @require_vision @require_tf class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Tuple = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Tuple = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Optional[Any] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[Any] = processor(images=UpperCAmelCase_ , return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) @require_tf def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Tuple = self.get_image_processor() UpperCamelCase__ : Optional[int] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [tf.ones((1, 3, 5, 5))] UpperCamelCase__ : Optional[int] = [[1_764, 2_646]] UpperCamelCase__ : Optional[int] = [[683, 1_024]] UpperCamelCase__ : Optional[Any] = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf') self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : int = processor.post_process_masks( UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_) , tf.convert_to_tensor(UpperCAmelCase_) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) # should also work with np UpperCamelCase__ : List[Any] = [np.ones((1, 3, 5, 5))] UpperCamelCase__ : int = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_) , return_tensors='tf') self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError): UpperCamelCase__ : List[Any] = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_) , return_tensors='tf') @require_vision @require_torchvision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): UpperCamelCase__ : str = tempfile.mkdtemp() UpperCamelCase__ : Union[str, Any] = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : List[str] , **UpperCAmelCase_ : List[str]): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : Dict): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : int = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5)).astype(np.floataa) UpperCamelCase__ : List[Any] = [tf.convert_to_tensor(UpperCAmelCase_)] UpperCamelCase__ : str = [torch.tensor(UpperCAmelCase_)] UpperCamelCase__ : List[Any] = [[1_764, 2_646]] UpperCamelCase__ : List[Any] = [[683, 1_024]] UpperCamelCase__ : Any = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf') UpperCamelCase__ : Tuple = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt') self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy())) @is_pt_tf_cross_test def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Any = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='pt')['pixel_values'].numpy() UpperCamelCase__ : Tuple = processor(images=UpperCAmelCase_ , return_tensors='pt')['pixel_values'].numpy() UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='tf')['pixel_values'].numpy() UpperCamelCase__ : Dict = processor(images=UpperCAmelCase_ , return_tensors='tf')['pixel_values'].numpy() self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_))
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowercase (__lowerCamelCase ): def __get__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') UpperCamelCase__ : List[str] = '__cached_' + self.fget.__name__ UpperCamelCase__ : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if cached is None: UpperCamelCase__ : Union[str, Any] = self.fget(UpperCAmelCase_) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return cached def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if is_torch_fx_proxy(lowerCamelCase_): return True if is_torch_available(): import torch if isinstance(lowerCamelCase_ , torch.Tensor): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCamelCase_ , tf.Tensor): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCamelCase_ , (jnp.ndarray, Tracer)): return True return isinstance(lowerCamelCase_ , np.ndarray) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: return isinstance(lowerCamelCase_ , np.ndarray) def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: return _is_numpy(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: import torch return isinstance(lowerCamelCase_ , torch.Tensor) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return False if not is_torch_available() else _is_torch(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: import torch return isinstance(lowerCamelCase_ , torch.device) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: return False if not is_torch_available() else _is_torch_device(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Any: import torch if isinstance(lowerCamelCase_ , lowerCamelCase_): if hasattr(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) else: return False return isinstance(lowerCamelCase_ , torch.dtype) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: return False if not is_torch_available() else _is_torch_dtype(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: import tensorflow as tf return isinstance(lowerCamelCase_ , tf.Tensor) def __UpperCAmelCase ( lowerCamelCase_) -> int: return False if not is_tf_available() else _is_tensorflow(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCamelCase_ , 'is_symbolic_tensor'): return tf.is_symbolic_tensor(lowerCamelCase_) return type(lowerCamelCase_) == tf.Tensor def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCamelCase_ , jnp.ndarray) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return False if not is_flax_available() else _is_jax(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if isinstance(lowerCamelCase_ , (dict, UserDict)): return {k: to_py_obj(lowerCamelCase_) for k, v in obj.items()} elif isinstance(lowerCamelCase_ , (list, tuple)): return [to_py_obj(lowerCamelCase_) for o in obj] elif is_tf_tensor(lowerCamelCase_): return obj.numpy().tolist() elif is_torch_tensor(lowerCamelCase_): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCamelCase_): return np.asarray(lowerCamelCase_).tolist() elif isinstance(lowerCamelCase_ , (np.ndarray, np.number)): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __UpperCAmelCase ( lowerCamelCase_) -> int: if isinstance(lowerCamelCase_ , (dict, UserDict)): return {k: to_numpy(lowerCamelCase_) for k, v in obj.items()} elif isinstance(lowerCamelCase_ , (list, tuple)): return np.array(lowerCamelCase_) elif is_tf_tensor(lowerCamelCase_): return obj.numpy() elif is_torch_tensor(lowerCamelCase_): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCamelCase_): return np.asarray(lowerCamelCase_) else: return obj class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = fields(self) # Safety and consistency checks if not len(UpperCAmelCase_): raise ValueError(F'{self.__class__.__name__} has no fields.') if not all(field.default is None for field in class_fields[1:]): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.') UpperCamelCase__ : Optional[int] = getattr(self , class_fields[0].name) UpperCamelCase__ : Dict = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(UpperCAmelCase_): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Tuple = first_field.items() UpperCamelCase__ : Tuple = True else: try: UpperCamelCase__ : List[str] = iter(UpperCAmelCase_) UpperCamelCase__ : List[Any] = True except TypeError: UpperCamelCase__ : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase_): if ( not isinstance(UpperCAmelCase_ , (list, tuple)) or not len(UpperCAmelCase_) == 2 or not isinstance(element[0] , UpperCAmelCase_) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCamelCase__ : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).') break setattr(self , element[0] , element[1]) if element[1] is not None: UpperCamelCase__ : Optional[int] = element[1] elif first_field is not None: UpperCamelCase__ : Optional[int] = first_field else: for field in class_fields: UpperCamelCase__ : List[str] = getattr(self , field.name) if v is not None: UpperCamelCase__ : List[str] = v def __delitem__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') def __UpperCamelCase ( self : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.') def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str]): raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.') def __getitem__( self : Any , UpperCAmelCase_ : str): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_) super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_) def __setitem__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]): # Will raise a KeyException if needed super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): return tuple(self[k] for k in self.keys()) class __lowercase (__lowerCamelCase , __lowerCamelCase ): @classmethod def __UpperCamelCase ( cls : Union[str, Any] , UpperCAmelCase_ : Dict): raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}') class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''longest''' _lowerCamelCase = '''max_length''' _lowerCamelCase = '''do_not_pad''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''pt''' _lowerCamelCase = '''tf''' _lowerCamelCase = '''np''' _lowerCamelCase = '''jax''' class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : List[ContextManager]): UpperCamelCase__ : Optional[Any] = context_managers UpperCamelCase__ : List[str] = ExitStack() def __enter__( self : int): for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase_) def __exit__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int]): self.stack.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Dict = infer_framework(lowerCamelCase_) if framework == "tf": UpperCamelCase__ : Union[str, Any] = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": UpperCamelCase__ : Dict = inspect.signature(model_class.forward) # PyTorch models else: UpperCamelCase__ : Optional[int] = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Dict = model_class.__name__ UpperCamelCase__ : Union[str, Any] = infer_framework(lowerCamelCase_) if framework == "tf": UpperCamelCase__ : Optional[Any] = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": UpperCamelCase__ : Tuple = inspect.signature(model_class.forward) # PyTorch models else: UpperCamelCase__ : Tuple = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "" , lowerCamelCase_ = ".") -> Optional[Any]: def _flatten_dict(lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_="."): for k, v in d.items(): UpperCamelCase__ : Any = str(lowerCamelCase_) + delimiter + str(lowerCamelCase_) if parent_key else k if v and isinstance(lowerCamelCase_ , lowerCamelCase_): yield from flatten_dict(lowerCamelCase_ , lowerCamelCase_ , delimiter=lowerCamelCase_).items() else: yield key, v return dict(_flatten_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)) @contextmanager def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = False) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> str: if is_numpy_array(lowerCamelCase_): return np.transpose(lowerCamelCase_ , axes=lowerCamelCase_) elif is_torch_tensor(lowerCamelCase_): return array.T if axes is None else array.permute(*lowerCamelCase_) elif is_tf_tensor(lowerCamelCase_): import tensorflow as tf return tf.transpose(lowerCamelCase_ , perm=lowerCamelCase_) elif is_jax_tensor(lowerCamelCase_): return jnp.transpose(lowerCamelCase_ , axes=lowerCamelCase_) else: raise ValueError(f'Type not supported for transpose: {type(lowerCamelCase_)}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: if is_numpy_array(lowerCamelCase_): return np.reshape(lowerCamelCase_ , lowerCamelCase_) elif is_torch_tensor(lowerCamelCase_): return array.reshape(*lowerCamelCase_) elif is_tf_tensor(lowerCamelCase_): import tensorflow as tf return tf.reshape(lowerCamelCase_ , lowerCamelCase_) elif is_jax_tensor(lowerCamelCase_): return jnp.reshape(lowerCamelCase_ , lowerCamelCase_) else: raise ValueError(f'Type not supported for reshape: {type(lowerCamelCase_)}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> str: if is_numpy_array(lowerCamelCase_): return np.squeeze(lowerCamelCase_ , axis=lowerCamelCase_) elif is_torch_tensor(lowerCamelCase_): return array.squeeze() if axis is None else array.squeeze(dim=lowerCamelCase_) elif is_tf_tensor(lowerCamelCase_): import tensorflow as tf return tf.squeeze(lowerCamelCase_ , axis=lowerCamelCase_) elif is_jax_tensor(lowerCamelCase_): return jnp.squeeze(lowerCamelCase_ , axis=lowerCamelCase_) else: raise ValueError(f'Type not supported for squeeze: {type(lowerCamelCase_)}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: if is_numpy_array(lowerCamelCase_): return np.expand_dims(lowerCamelCase_ , lowerCamelCase_) elif is_torch_tensor(lowerCamelCase_): return array.unsqueeze(dim=lowerCamelCase_) elif is_tf_tensor(lowerCamelCase_): import tensorflow as tf return tf.expand_dims(lowerCamelCase_ , axis=lowerCamelCase_) elif is_jax_tensor(lowerCamelCase_): return jnp.expand_dims(lowerCamelCase_ , axis=lowerCamelCase_) else: raise ValueError(f'Type not supported for expand_dims: {type(lowerCamelCase_)}.') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: if is_numpy_array(lowerCamelCase_): return np.size(lowerCamelCase_) elif is_torch_tensor(lowerCamelCase_): return array.numel() elif is_tf_tensor(lowerCamelCase_): import tensorflow as tf return tf.size(lowerCamelCase_) elif is_jax_tensor(lowerCamelCase_): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(lowerCamelCase_)}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for key, value in auto_map.items(): if isinstance(lowerCamelCase_ , (tuple, list)): UpperCamelCase__ : Tuple = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCamelCase__ : Optional[Any] = f'{repo_id}--{value}' return auto_map def __UpperCAmelCase ( lowerCamelCase_) -> Any: for base_class in inspect.getmro(lowerCamelCase_): UpperCamelCase__ : Optional[Any] = base_class.__module__ UpperCamelCase__ : Optional[int] = base_class.__name__ if module.startswith('tensorflow') or module.startswith('keras') or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch') or name == "PreTrainedModel": return "pt" elif module.startswith('flax') or module.startswith('jax') or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.')
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''imagegpt''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , UpperCAmelCase_ : Dict=512 + 1 , UpperCAmelCase_ : int=32 * 32 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[Any]=24 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]="quick_gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=1e-5 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Any=False , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : int = vocab_size UpperCamelCase__ : int = n_positions UpperCamelCase__ : List[str] = n_embd UpperCamelCase__ : Tuple = n_layer UpperCamelCase__ : Dict = n_head UpperCamelCase__ : Any = n_inner UpperCamelCase__ : Union[str, Any] = activation_function UpperCamelCase__ : Tuple = resid_pdrop UpperCamelCase__ : str = embd_pdrop UpperCamelCase__ : List[Any] = attn_pdrop UpperCamelCase__ : str = layer_norm_epsilon UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Dict = scale_attn_weights UpperCamelCase__ : Dict = use_cache UpperCamelCase__ : Union[str, Any] = scale_attn_by_inverse_layer_idx UpperCamelCase__ : int = reorder_and_upcast_attn UpperCamelCase__ : List[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_) class __lowercase (__lowerCamelCase ): @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ]) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : "FeatureExtractionMixin" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , ): UpperCamelCase__ : str = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[str] = dict(preprocessor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return inputs
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa _lowerCamelCase = True def __UpperCamelCase ( self : Optional[Any]): super().setup() UpperCamelCase__ : int = nn.Dense(5 , dtype=self.dtype) def __call__( self : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict): UpperCamelCase__ : str = super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __lowercase (__lowerCamelCase ): _lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: def cross_entropy(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None): UpperCamelCase__ : Tuple = logits.shape[-1] UpperCamelCase__ : Any = (labels[..., None] == jnp.arange(lowerCamelCase_)[None]).astype('f4') UpperCamelCase__ : Tuple = jax.nn.log_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase__ : List[str] = -jnp.sum(labels * logits , axis=-1) if reduction is not None: UpperCamelCase__ : List[str] = reduction(lowerCamelCase_) return loss UpperCamelCase__ : int = partial(lowerCamelCase_ , reduction=jnp.mean) UpperCamelCase__ : int = cross_entropy(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = cross_entropy(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Dict = cross_entropy(lowerCamelCase_ , lowerCamelCase_) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowercase : _lowerCamelCase = "google/bigbird-roberta-base" _lowerCamelCase = 3000 _lowerCamelCase = 10500 _lowerCamelCase = 128 _lowerCamelCase = 3 _lowerCamelCase = 1 _lowerCamelCase = 5 # tx_args _lowerCamelCase = 3E-5 _lowerCamelCase = 0.0 _lowerCamelCase = 20000 _lowerCamelCase = 0.0095 _lowerCamelCase = "bigbird-roberta-natural-questions" _lowerCamelCase = "training-expt" _lowerCamelCase = "data/nq-training.jsonl" _lowerCamelCase = "data/nq-validation.jsonl" def __UpperCamelCase ( self : List[Any]): os.makedirs(self.base_dir , exist_ok=UpperCAmelCase_) UpperCamelCase__ : str = os.path.join(self.base_dir , self.save_dir) UpperCamelCase__ : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 4096 # no dynamic padding on TPUs def __call__( self : Dict , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = self.collate_fn(UpperCAmelCase_) UpperCamelCase__ : Tuple = jax.tree_util.tree_map(UpperCAmelCase_ , UpperCAmelCase_) return batch def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__, UpperCamelCase__ : List[Any] = self.fetch_inputs(features['input_ids']) UpperCamelCase__ : Union[str, Any] = { 'input_ids': jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), 'attention_mask': jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : list): UpperCamelCase__ : int = [self._fetch_inputs(UpperCAmelCase_) for ids in input_ids] return zip(*UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list): UpperCamelCase__ : Dict = [1 for _ in range(len(UpperCAmelCase_))] while len(UpperCAmelCase_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if seed is not None: UpperCamelCase__ : str = dataset.shuffle(seed=lowerCamelCase_) for i in range(len(lowerCamelCase_) // batch_size): UpperCamelCase__ : Any = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase_) @partial(jax.pmap , axis_name='batch') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: def loss_fn(lowerCamelCase_): UpperCamelCase__ : List[Any] = model_inputs.pop('start_labels') UpperCamelCase__ : Any = model_inputs.pop('end_labels') UpperCamelCase__ : Optional[Any] = model_inputs.pop('pooled_labels') UpperCamelCase__ : int = state.apply_fn(**lowerCamelCase_ , params=lowerCamelCase_ , dropout_rng=lowerCamelCase_ , train=lowerCamelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Any = outputs return state.loss_fn( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__, UpperCamelCase__ : str = jax.random.split(lowerCamelCase_) UpperCamelCase__ : str = jax.value_and_grad(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Any = grad_fn(state.params) UpperCamelCase__ : Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch') UpperCamelCase__ : Optional[Any] = jax.lax.pmean(lowerCamelCase_ , 'batch') UpperCamelCase__ : List[Any] = state.apply_gradients(grads=lowerCamelCase_) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch') def __UpperCAmelCase ( lowerCamelCase_ , **lowerCamelCase_) -> Dict: UpperCamelCase__ : Tuple = model_inputs.pop('start_labels') UpperCamelCase__ : Dict = model_inputs.pop('end_labels') UpperCamelCase__ : Any = model_inputs.pop('pooled_labels') UpperCamelCase__ : Optional[Any] = state.apply_fn(**lowerCamelCase_ , params=state.params , train=lowerCamelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = outputs UpperCamelCase__ : str = state.loss_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = jax.lax.pmean({'loss': loss} , axis_name='batch') return metrics class __lowercase (train_state.TrainState ): _lowerCamelCase = struct.field(pytree_node=__lowerCamelCase ) @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=None): UpperCamelCase__ : Any = model.params UpperCamelCase__ : str = TrainState.create( apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , loss_fn=UpperCAmelCase_ , ) if ckpt_dir is not None: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = restore_checkpoint(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } UpperCamelCase__, UpperCamelCase__ : Optional[Any] = build_tx(**UpperCAmelCase_) UpperCamelCase__ : List[Any] = train_state.TrainState( step=UpperCAmelCase_ , apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , opt_state=UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = args UpperCamelCase__ : Optional[Any] = data_collator UpperCamelCase__ : str = lr UpperCamelCase__ : Any = params UpperCamelCase__ : Any = jax_utils.replicate(UpperCAmelCase_) return state def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str): UpperCamelCase__ : int = self.args UpperCamelCase__ : str = len(UpperCAmelCase_) // args.batch_size UpperCamelCase__ : Tuple = jax.random.PRNGKey(0) UpperCamelCase__ : Optional[Any] = jax.random.split(UpperCAmelCase_ , jax.device_count()) for epoch in range(args.max_epochs): UpperCamelCase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) UpperCamelCase__ : Optional[int] = get_batched_dataset(UpperCAmelCase_ , args.batch_size , seed=UpperCAmelCase_) UpperCamelCase__ : Dict = 0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc=F'Running EPOCH-{epoch}'): UpperCamelCase__ : str = self.data_collator(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = self.train_step_fn(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: UpperCamelCase__ : Optional[Any] = jax_utils.unreplicate(state.step) UpperCamelCase__ : List[Any] = running_loss.item() / i UpperCamelCase__ : Optional[Any] = self.scheduler_fn(state_step - 1) UpperCamelCase__ : List[str] = self.evaluate(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(UpperCAmelCase_)) self.logger.log(UpperCAmelCase_ , commit=UpperCAmelCase_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int): UpperCamelCase__ : str = get_batched_dataset(UpperCAmelCase_ , self.args.batch_size) UpperCamelCase__ : Any = len(UpperCAmelCase_) // self.args.batch_size UpperCamelCase__ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa) UpperCamelCase__ : Optional[Any] = 0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc='Evaluating ... '): UpperCamelCase__ : Optional[Any] = self.data_collator(UpperCAmelCase_) UpperCamelCase__ : str = self.val_step_fn(UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Union[str, Any] = jax_utils.unreplicate(UpperCAmelCase_) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(UpperCAmelCase_ , params=state.params) with open(os.path.join(UpperCAmelCase_ , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCAmelCase_ , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(UpperCAmelCase_ , 'data_collator.joblib')) with open(os.path.join(UpperCAmelCase_ , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , UpperCAmelCase_) print('DONE') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ') with open(os.path.join(lowerCamelCase_ , 'flax_model.msgpack') , 'rb') as f: UpperCamelCase__ : Optional[Any] = from_bytes(state.params , f.read()) with open(os.path.join(lowerCamelCase_ , 'opt_state.msgpack') , 'rb') as f: UpperCamelCase__ : Any = from_bytes(state.opt_state , f.read()) UpperCamelCase__ : Union[str, Any] = joblib.load(os.path.join(lowerCamelCase_ , 'args.joblib')) UpperCamelCase__ : int = joblib.load(os.path.join(lowerCamelCase_ , 'data_collator.joblib')) with open(os.path.join(lowerCamelCase_ , 'training_state.json') , 'r') as f: UpperCamelCase__ : str = json.load(lowerCamelCase_) UpperCamelCase__ : Optional[int] = training_state['step'] print('DONE') return params, opt_state, step, args, data_collator def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : List[str] = num_train_steps - warmup_steps UpperCamelCase__ : List[Any] = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=lowerCamelCase_ , transition_steps=lowerCamelCase_) UpperCamelCase__ : Dict = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=1e-7 , transition_steps=lowerCamelCase_) UpperCamelCase__ : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps]) return lr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: def weight_decay_mask(lowerCamelCase_): UpperCamelCase__ : int = traverse_util.flatten_dict(lowerCamelCase_) UpperCamelCase__ : Dict = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase_) UpperCamelCase__ : str = scheduler_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = optax.adamw(learning_rate=lowerCamelCase_ , weight_decay=lowerCamelCase_ , mask=lowerCamelCase_) return tx, lr
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCAmelCase__ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCAmelCase__ = concatenate_datasets lowerCAmelCase__ = DownloadConfig lowerCAmelCase__ = DownloadManager lowerCAmelCase__ = DownloadMode lowerCAmelCase__ = DownloadConfig lowerCAmelCase__ = DownloadMode lowerCAmelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : int , UpperCAmelCase_ : str): with open(UpperCAmelCase_ , encoding='utf-8') as input_file: UpperCamelCase__ : List[Any] = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)') UpperCamelCase__ : Dict = input_file.read() UpperCamelCase__ : Dict = regexp.search(UpperCAmelCase_) return match def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): with open(UpperCAmelCase_ , encoding='utf-8') as input_file: UpperCamelCase__ : Tuple = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL) UpperCamelCase__ : List[str] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Union[str, Any] = regexp.finditer(UpperCAmelCase_) UpperCamelCase__ : Tuple = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = Path('./datasets') UpperCamelCase__ : List[str] = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_)): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}') def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Optional[Any] = Path('./datasets') UpperCamelCase__ : str = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_)): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.')
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: # Initialise PyTorch model UpperCamelCase__ : int = FunnelConfig.from_json_file(lowerCamelCase_) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : Tuple = FunnelBaseModel(lowerCamelCase_) if base_model else FunnelModel(lowerCamelCase_) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class __lowercase : _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __lowercase : _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _lowerCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __UpperCAmelCase ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCamelCase_) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ : List[Any] = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_) datasets.utils.logging.set_verbosity(lowerCamelCase_) transformers.utils.logging.set_verbosity(lowerCamelCase_) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}') logger.info(f'Training/evaluation parameters {training_args}') # Detecting last checkpoint. UpperCamelCase__ : List[str] = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ : int = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.') elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.') # Set seed before initializing model. set_seed(training_args.seed) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCamelCase__ : Any = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCamelCase__ : str = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : str = train_dataset.features['label'].names if training_args.do_eval: UpperCamelCase__ : Tuple = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : Tuple = eval_dataset.features['label'].names if training_args.do_predict: UpperCamelCase__ : Optional[int] = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : int = predict_dataset.features['label'].names # Labels UpperCamelCase__ : Tuple = len(lowerCamelCase_) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel={str(lowerCamelCase_): label for i, label in enumerate(lowerCamelCase_)} , labelaid={label: i for i, label in enumerate(lowerCamelCase_)} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : Dict = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCamelCase__ : Tuple = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCamelCase__ : List[Any] = False def preprocess_function(lowerCamelCase_): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCamelCase_ , max_length=data_args.max_seq_length , truncation=lowerCamelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ : List[str] = min(len(lowerCamelCase_) , data_args.max_train_samples) UpperCamelCase__ : List[str] = train_dataset.select(range(lowerCamelCase_)) with training_args.main_process_first(desc='train dataset map pre-processing'): UpperCamelCase__ : Tuple = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase_)) , 3): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.') if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ : Dict = min(len(lowerCamelCase_) , data_args.max_eval_samples) UpperCamelCase__ : Any = eval_dataset.select(range(lowerCamelCase_)) with training_args.main_process_first(desc='validation dataset map pre-processing'): UpperCamelCase__ : str = eval_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCamelCase__ : Dict = min(len(lowerCamelCase_) , data_args.max_predict_samples) UpperCamelCase__ : Any = predict_dataset.select(range(lowerCamelCase_)) with training_args.main_process_first(desc='prediction dataset map pre-processing'): UpperCamelCase__ : Any = predict_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function UpperCamelCase__ : str = evaluate.load('xnli') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_): UpperCamelCase__ : Tuple = p.predictions[0] if isinstance(p.predictions , lowerCamelCase_) else p.predictions UpperCamelCase__ : Any = np.argmax(lowerCamelCase_ , axis=1) return metric.compute(predictions=lowerCamelCase_ , references=p.label_ids) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCamelCase__ : str = default_data_collator elif training_args.fpaa: UpperCamelCase__ : Optional[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8) else: UpperCamelCase__ : int = None # Initialize our Trainer UpperCamelCase__ : Any = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: UpperCamelCase__ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ : Any = last_checkpoint UpperCamelCase__ : Dict = trainer.train(resume_from_checkpoint=lowerCamelCase_) UpperCamelCase__ : Optional[int] = train_result.metrics UpperCamelCase__ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_) ) UpperCamelCase__ : str = min(lowerCamelCase_ , len(lowerCamelCase_)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCamelCase_) trainer.save_metrics('train' , lowerCamelCase_) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***') UpperCamelCase__ : Optional[int] = trainer.evaluate(eval_dataset=lowerCamelCase_) UpperCamelCase__ : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_) UpperCamelCase__ : str = min(lowerCamelCase_ , len(lowerCamelCase_)) trainer.log_metrics('eval' , lowerCamelCase_) trainer.save_metrics('eval' , lowerCamelCase_) # Prediction if training_args.do_predict: logger.info('*** Predict ***') UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = trainer.predict(lowerCamelCase_ , metric_key_prefix='predict') UpperCamelCase__ : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase_) ) UpperCamelCase__ : str = min(lowerCamelCase_ , len(lowerCamelCase_)) trainer.log_metrics('predict' , lowerCamelCase_) trainer.save_metrics('predict' , lowerCamelCase_) UpperCamelCase__ : Optional[int] = np.argmax(lowerCamelCase_ , axis=1) UpperCamelCase__ : Optional[int] = os.path.join(training_args.output_dir , 'predictions.txt') if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w') as writer: writer.write('index\tprediction\n') for index, item in enumerate(lowerCamelCase_): UpperCamelCase__ : str = label_list[item] writer.write(f'{index}\t{item}\n') if __name__ == "__main__": main()
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } lowerCAmelCase__ = '▁' class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = BigBirdTokenizer _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = [] def __init__( self : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[MASK]" , UpperCAmelCase_ : Any="[CLS]" , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : Optional[int] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token UpperCamelCase__ : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : int = vocab_file UpperCamelCase__ : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Dict = [self.sep_token_id] UpperCamelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_): copyfile(self.vocab_file , UpperCAmelCase_) return (out_vocab_file,)
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 class __lowercase (nn.Module ): def __init__( self : Any , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Union[str, Any]=("DownEncoderBlock2D",) , UpperCAmelCase_ : int=(64,) , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Any="silu" , UpperCAmelCase_ : Any=True , ): super().__init__() UpperCamelCase__ : Tuple = layers_per_block UpperCamelCase__ : str = torch.nn.Convad( UpperCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase__ : str = None UpperCamelCase__ : List[str] = nn.ModuleList([]) # down UpperCamelCase__ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase_): UpperCamelCase__ : str = output_channel UpperCamelCase__ : Any = block_out_channels[i] UpperCamelCase__ : Any = i == len(UpperCAmelCase_) - 1 UpperCamelCase__ : int = get_down_block( UpperCAmelCase_ , num_layers=self.layers_per_block , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) self.down_blocks.append(UpperCAmelCase_) # mid UpperCamelCase__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # out UpperCamelCase__ : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase_ , eps=1e-6) UpperCamelCase__ : Dict = nn.SiLU() UpperCamelCase__ : str = 2 * out_channels if double_z else out_channels UpperCamelCase__ : List[Any] = nn.Convad(block_out_channels[-1] , UpperCAmelCase_ , 3 , padding=1) UpperCamelCase__ : Dict = False def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[str]): UpperCamelCase__ : List[Any] = x UpperCamelCase__ : Union[str, Any] = self.conv_in(UpperCAmelCase_) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : Tuple): def custom_forward(*UpperCAmelCase_ : Optional[Any]): return module(*UpperCAmelCase_) return custom_forward # down if is_torch_version('>=' , '1.11.0'): for down_block in self.down_blocks: UpperCamelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_) # middle UpperCamelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_) else: for down_block in self.down_blocks: UpperCamelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_) , UpperCAmelCase_) # middle UpperCamelCase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , UpperCAmelCase_) else: # down for down_block in self.down_blocks: UpperCamelCase__ : Optional[Any] = down_block(UpperCAmelCase_) # middle UpperCamelCase__ : str = self.mid_block(UpperCAmelCase_) # post-process UpperCamelCase__ : Optional[int] = self.conv_norm_out(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.conv_act(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.conv_out(UpperCAmelCase_) return sample class __lowercase (nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=("UpDecoderBlock2D",) , UpperCAmelCase_ : str=(64,) , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Optional[Any]="silu" , UpperCAmelCase_ : Any="group" , ): super().__init__() UpperCamelCase__ : List[str] = layers_per_block UpperCamelCase__ : int = nn.Convad( UpperCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Dict = nn.ModuleList([]) UpperCamelCase__ : Any = in_channels if norm_type == 'spatial' else None # mid UpperCamelCase__ : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , ) # up UpperCamelCase__ : Dict = list(reversed(UpperCAmelCase_)) UpperCamelCase__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_): UpperCamelCase__ : List[str] = output_channel UpperCamelCase__ : Optional[Any] = reversed_block_out_channels[i] UpperCamelCase__ : Tuple = i == len(UpperCAmelCase_) - 1 UpperCamelCase__ : List[Any] = get_up_block( UpperCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , prev_output_channel=UpperCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase_ , resnet_groups=UpperCAmelCase_ , attention_head_dim=UpperCAmelCase_ , temb_channels=UpperCAmelCase_ , resnet_time_scale_shift=UpperCAmelCase_ , ) self.up_blocks.append(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = output_channel # out if norm_type == "spatial": UpperCamelCase__ : Any = SpatialNorm(block_out_channels[0] , UpperCAmelCase_) else: UpperCamelCase__ : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase_ , eps=1e-6) UpperCamelCase__ : str = nn.SiLU() UpperCamelCase__ : List[Any] = nn.Convad(block_out_channels[0] , UpperCAmelCase_ , 3 , padding=1) UpperCamelCase__ : Optional[int] = False def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str=None): UpperCamelCase__ : str = z UpperCamelCase__ : str = self.conv_in(UpperCAmelCase_) UpperCamelCase__ : List[str] = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase_ : Optional[int]): def custom_forward(*UpperCAmelCase_ : Tuple): return module(*UpperCAmelCase_) return custom_forward if is_torch_version('>=' , '1.11.0'): # middle UpperCamelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_) UpperCamelCase__ : str = sample.to(UpperCAmelCase_) # up for up_block in self.up_blocks: UpperCamelCase__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , use_reentrant=UpperCAmelCase_) else: # middle UpperCamelCase__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = sample.to(UpperCAmelCase_) # up for up_block in self.up_blocks: UpperCamelCase__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_) else: # middle UpperCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = sample.to(UpperCAmelCase_) # up for up_block in self.up_blocks: UpperCamelCase__ : Dict = up_block(UpperCAmelCase_ , UpperCAmelCase_) # post-process if latent_embeds is None: UpperCamelCase__ : str = self.conv_norm_out(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.conv_norm_out(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[str] = self.conv_act(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.conv_out(UpperCAmelCase_) return sample class __lowercase (nn.Module ): def __init__( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]="random" , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[Any]=True): super().__init__() UpperCamelCase__ : int = n_e UpperCamelCase__ : Any = vq_embed_dim UpperCamelCase__ : List[Any] = beta UpperCamelCase__ : str = legacy UpperCamelCase__ : Any = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) UpperCamelCase__ : List[str] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap))) UpperCamelCase__ : Union[str, Any] = self.used.shape[0] UpperCamelCase__ : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase__ : List[str] = self.re_embed UpperCamelCase__ : Optional[int] = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.') else: UpperCamelCase__ : List[str] = n_e UpperCamelCase__ : Dict = sane_index_shape def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = inds.shape assert len(UpperCAmelCase_) > 1 UpperCamelCase__ : int = inds.reshape(ishape[0] , -1) UpperCamelCase__ : List[Any] = self.used.to(UpperCAmelCase_) UpperCamelCase__ : List[Any] = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase__ : Union[str, Any] = match.argmax(-1) UpperCamelCase__ : Tuple = match.sum(2) < 1 if self.unknown_index == "random": UpperCamelCase__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: UpperCamelCase__ : Optional[Any] = self.unknown_index return new.reshape(UpperCAmelCase_) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Dict): UpperCamelCase__ : Tuple = inds.shape assert len(UpperCAmelCase_) > 1 UpperCamelCase__ : Any = inds.reshape(ishape[0] , -1) UpperCamelCase__ : Optional[Any] = self.used.to(UpperCAmelCase_) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase__ : Union[str, Any] = 0 # simply set to zero UpperCamelCase__ : Dict = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase_) return back.reshape(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int]): # reshape z -> (batch, height, width, channel) and flatten UpperCamelCase__ : str = z.permute(0 , 2 , 3 , 1).contiguous() UpperCamelCase__ : Any = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase__ : str = torch.argmin(torch.cdist(UpperCAmelCase_ , self.embedding.weight) , dim=1) UpperCamelCase__ : Optional[int] = self.embedding(UpperCAmelCase_).view(z.shape) UpperCamelCase__ : int = None UpperCamelCase__ : Optional[Any] = None # compute loss for embedding if not self.legacy: UpperCamelCase__ : Union[str, Any] = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: UpperCamelCase__ : Optional[int] = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients UpperCamelCase__ : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase__ : Optional[Any] = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: UpperCamelCase__ : Union[str, Any] = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis UpperCamelCase__ : List[str] = self.remap_to_used(UpperCAmelCase_) UpperCamelCase__ : Tuple = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: UpperCamelCase__ : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any): # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCamelCase__ : Any = indices.reshape(shape[0] , -1) # add batch axis UpperCamelCase__ : Dict = self.unmap_to_all(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = indices.reshape(-1) # flatten again # get quantized latent vectors UpperCamelCase__ : int = self.embedding(UpperCAmelCase_) if shape is not None: UpperCamelCase__ : Optional[Any] = z_q.view(UpperCAmelCase_) # reshape back to match original input shape UpperCamelCase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class __lowercase (__lowerCamelCase ): def __init__( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False): UpperCamelCase__ : Optional[Any] = parameters UpperCamelCase__, UpperCamelCase__ : Optional[int] = torch.chunk(UpperCAmelCase_ , 2 , dim=1) UpperCamelCase__ : str = torch.clamp(self.logvar , -30.0 , 20.0) UpperCamelCase__ : List[Any] = deterministic UpperCamelCase__ : Tuple = torch.exp(0.5 * self.logvar) UpperCamelCase__ : str = torch.exp(self.logvar) if self.deterministic: UpperCamelCase__ : int = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.Generator] = None): # make sure sample is on the same device as the parameters and has same dtype UpperCamelCase__ : List[Any] = randn_tensor( self.mean.shape , generator=UpperCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype) UpperCamelCase__ : List[str] = self.mean + self.std * sample return x def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Dict=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) UpperCamelCase__ : int = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): return self.mean
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''linear''' _lowerCamelCase = '''cosine''' _lowerCamelCase = '''cosine_with_restarts''' _lowerCamelCase = '''polynomial''' _lowerCamelCase = '''constant''' _lowerCamelCase = '''constant_with_warmup''' _lowerCamelCase = '''piecewise_constant''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = -1) -> int: return LambdaLR(lowerCamelCase_ , lambda lowerCamelCase_: 1 , last_epoch=lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = -1) -> int: def lr_lambda(lowerCamelCase_): if current_step < num_warmup_steps: return float(lowerCamelCase_) / float(max(1.0 , lowerCamelCase_)) return 1.0 return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = -1) -> Union[str, Any]: UpperCamelCase__ : Union[str, Any] = {} UpperCamelCase__ : List[str] = step_rules.split(',') for rule_str in rule_list[:-1]: UpperCamelCase__, UpperCamelCase__ : str = rule_str.split(':') UpperCamelCase__ : Optional[int] = int(lowerCamelCase_) UpperCamelCase__ : Optional[int] = float(lowerCamelCase_) UpperCamelCase__ : Optional[int] = value UpperCamelCase__ : str = float(rule_list[-1]) def create_rules_function(lowerCamelCase_ , lowerCamelCase_): def rule_func(lowerCamelCase_) -> float: UpperCamelCase__ : Dict = sorted(rules_dict.keys()) for i, sorted_step in enumerate(lowerCamelCase_): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCamelCase__ : str = create_rules_function(lowerCamelCase_ , lowerCamelCase_) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=-1) -> Optional[Any]: def lr_lambda(lowerCamelCase_): if current_step < num_warmup_steps: return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_)) return max( 0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps))) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.5 , lowerCamelCase_ = -1) -> Any: def lr_lambda(lowerCamelCase_): if current_step < num_warmup_steps: return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_)) UpperCamelCase__ : List[Any] = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase_) * 2.0 * progress))) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 , lowerCamelCase_ = -1) -> List[Any]: def lr_lambda(lowerCamelCase_): if current_step < num_warmup_steps: return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_)) UpperCamelCase__ : str = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase_) * progress) % 1.0)))) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1e-7 , lowerCamelCase_=1.0 , lowerCamelCase_=-1) -> Optional[int]: UpperCamelCase__ : Dict = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})') def lr_lambda(lowerCamelCase_): if current_step < num_warmup_steps: return float(lowerCamelCase_) / float(max(1 , lowerCamelCase_)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCamelCase__ : Union[str, Any] = lr_init - lr_end UpperCamelCase__ : int = num_training_steps - num_warmup_steps UpperCamelCase__ : str = 1 - (current_step - num_warmup_steps) / decay_steps UpperCamelCase__ : Dict = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) lowerCAmelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = 1.0 , lowerCamelCase_ = -1 , ) -> Optional[Any]: UpperCamelCase__ : Union[str, Any] = SchedulerType(lowerCamelCase_) UpperCamelCase__ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase_ , last_epoch=lowerCamelCase_) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase_ , step_rules=lowerCamelCase_ , last_epoch=lowerCamelCase_) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.') if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.') if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , num_cycles=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , power=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_)
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' import os def __UpperCAmelCase ( lowerCamelCase_ = "input.txt") -> int: with open(os.path.join(os.path.dirname(lowerCamelCase_) , lowerCamelCase_)) as input_file: UpperCamelCase__ : Tuple = [ [int(lowerCamelCase_) for element in line.split(',')] for line in input_file.readlines() ] UpperCamelCase__ : Union[str, Any] = len(lowerCamelCase_) UpperCamelCase__ : str = len(matrix[0]) UpperCamelCase__ : str = [[-1 for _ in range(lowerCamelCase_)] for _ in range(lowerCamelCase_)] for i in range(lowerCamelCase_): UpperCamelCase__ : Dict = matrix[i][0] for j in range(1 , lowerCamelCase_): for i in range(lowerCamelCase_): UpperCamelCase__ : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase_): UpperCamelCase__ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j]) for i in range(rows - 2 , -1 , -1): UpperCamelCase__ : List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j]) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums) if __name__ == "__main__": print(f'''{solution() = }''')
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> list: UpperCamelCase__ : Tuple = len(lowerCamelCase_) UpperCamelCase__ : int = [[0] * n for i in range(lowerCamelCase_)] for i in range(lowerCamelCase_): UpperCamelCase__ : Dict = y_points[i] for i in range(2 , lowerCamelCase_): for j in range(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''tapas''' def __init__( self : Any , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : Dict=[3, 256, 256, 2, 256, 256, 10] , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : List[Any]=10.0 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=1.0 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]="ratio" , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Dict , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : str = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : Tuple = type_vocab_sizes UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Optional[int] = layer_norm_eps # Fine-tuning task hyperparameters UpperCamelCase__ : Optional[int] = positive_label_weight UpperCamelCase__ : str = num_aggregation_labels UpperCamelCase__ : Union[str, Any] = aggregation_loss_weight UpperCamelCase__ : List[str] = use_answer_as_supervision UpperCamelCase__ : List[str] = answer_loss_importance UpperCamelCase__ : Tuple = use_normalized_answer_loss UpperCamelCase__ : Optional[int] = huber_loss_delta UpperCamelCase__ : Any = temperature UpperCamelCase__ : int = aggregation_temperature UpperCamelCase__ : str = use_gumbel_for_cells UpperCamelCase__ : Dict = use_gumbel_for_aggregation UpperCamelCase__ : List[Any] = average_approximation_function UpperCamelCase__ : Dict = cell_selection_preference UpperCamelCase__ : Any = answer_loss_cutoff UpperCamelCase__ : str = max_num_rows UpperCamelCase__ : Optional[Any] = max_num_columns UpperCamelCase__ : Tuple = average_logits_per_cell UpperCamelCase__ : Optional[int] = select_one_column UpperCamelCase__ : Union[str, Any] = allow_empty_column_selection UpperCamelCase__ : Tuple = init_cell_selection_weights_to_zero UpperCamelCase__ : Dict = reset_position_index_per_cell UpperCamelCase__ : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters UpperCamelCase__ : Dict = aggregation_labels UpperCamelCase__ : Optional[int] = no_aggregation_label_index if isinstance(self.aggregation_labels , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = {int(UpperCAmelCase_): v for k, v in aggregation_labels.items()}
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 42 class __lowercase : def __init__( self : Any , UpperCAmelCase_ : int): UpperCamelCase__ : list[list[Edge]] = [[] for _ in range(UpperCAmelCase_)] UpperCamelCase__ : Dict = size def __getitem__( self : Any , UpperCAmelCase_ : int): return iter(self._graph[vertex]) @property def __UpperCamelCase ( self : List[Any]): return self._size def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).') self._graph[from_vertex].append(Edge(UpperCAmelCase_ , UpperCAmelCase_)) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[int] = deque([start_vertex]) UpperCamelCase__ : list[int | None] = [None] * self.size UpperCamelCase__ : Union[str, Any] = 0 while queue: UpperCamelCase__ : Dict = queue.popleft() UpperCamelCase__ : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase__ : Optional[int] = current_distance + edge.weight UpperCamelCase__ : Tuple = distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase_ , UpperCAmelCase_) and new_distance >= dest_vertex_distance ): continue UpperCamelCase__ : Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase__ = ['gpt2'] lowerCAmelCase__ = 'gpt2' if is_tf_available(): class __lowercase (tf.Module ): def __init__( self : int , UpperCAmelCase_ : int): super().__init__() UpperCamelCase__ : Any = tokenizer UpperCamelCase__ : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = TFGPTaLMHeadModel.from_config(UpperCAmelCase_) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text'),)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int): UpperCamelCase__ : str = self.tokenizer(UpperCAmelCase_) UpperCamelCase__ : Dict = tokenized['input_ids'].to_tensor() UpperCamelCase__ : Tuple = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCamelCase__ : Union[str, Any] = self.model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)['logits'] return outputs @require_tf @require_keras_nlp class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): super().setUp() UpperCamelCase__ : Tuple = [GPTaTokenizer.from_pretrained(UpperCAmelCase_) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCamelCase__ : int = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase_) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) UpperCamelCase__ : Dict = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1])) def __UpperCamelCase ( self : str): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: UpperCamelCase__ : int = tokenizer([test_inputs] , return_tensors='tf') UpperCamelCase__ : List[str] = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCamelCase__ : Optional[int] = python_outputs[key].numpy() UpperCamelCase__ : Optional[int] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase_ , tf.intaa) == tf_outputs_values)) @slow def __UpperCamelCase ( self : List[Any]): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ : Dict = tf.function(UpperCAmelCase_) for test_inputs in self.test_sentences: UpperCamelCase__ : int = tf.constant(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = compiled_tokenizer(UpperCAmelCase_) UpperCamelCase__ : List[Any] = tf_tokenizer(UpperCAmelCase_) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def __UpperCamelCase ( self : Union[str, Any]): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ : Union[str, Any] = ModelToSave(tokenizer=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]]) UpperCamelCase__ : List[str] = model.serving(UpperCAmelCase_) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ : Dict = Path(UpperCAmelCase_) / 'saved.model' tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={'serving_default': model.serving}) UpperCamelCase__ : Optional[int] = tf.saved_model.load(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = loaded_model.signatures['serving_default'](UpperCAmelCase_)['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def __UpperCamelCase ( self : Dict): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ : Tuple = tf.convert_to_tensor([self.test_sentences[0]]) UpperCamelCase__ : int = tf_tokenizer(UpperCAmelCase_) # Build model with some sample inputs UpperCamelCase__ : Tuple = tf_tokenizer.get_config() UpperCamelCase__ : Any = TFGPTaTokenizer.from_config(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = model_from_config(UpperCAmelCase_) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def __UpperCamelCase ( self : List[Any]): for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCamelCase__ : List[Any] = 123_123 for max_length in [3, 5, 1_024]: UpperCamelCase__ : Tuple = tf.convert_to_tensor([self.test_sentences[0]]) UpperCamelCase__ : List[Any] = tf_tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import functools def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_) or not all(isinstance(lowerCamelCase_ , lowerCamelCase_) for day in days): raise ValueError('The parameter days should be a list of integers') if len(lowerCamelCase_) != 3 or not all(isinstance(lowerCamelCase_ , lowerCamelCase_) for cost in costs): raise ValueError('The parameter costs should be a list of three integers') if len(lowerCamelCase_) == 0: return 0 if min(lowerCamelCase_) <= 0: raise ValueError('All days elements should be greater than 0') if max(lowerCamelCase_) >= 366: raise ValueError('All days elements should be less than 366') UpperCamelCase__ : Optional[Any] = set(lowerCamelCase_) @functools.cache def dynamic_programming(lowerCamelCase_) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1) return min( costs[0] + dynamic_programming(index + 1) , costs[1] + dynamic_programming(index + 7) , costs[2] + dynamic_programming(index + 30) , ) return dynamic_programming(1) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 10 def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Any = max(lowerCamelCase_) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase__ : list[list] = [[] for _ in range(lowerCamelCase_)] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase__ : Any = int((i / placement) % RADIX) buckets[tmp].append(lowerCamelCase_) # put each buckets' contents into list_of_ints UpperCamelCase__ : int = 0 for b in range(lowerCamelCase_): for i in buckets[b]: UpperCamelCase__ : int = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ = 10 , lowerCamelCase_ = 1_000 , lowerCamelCase_ = True) -> int: assert ( isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)') return min_val if option else max_val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: return int((number_a + number_a) / 2) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: assert ( isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_) and isinstance(lowerCamelCase_ , lowerCamelCase_) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)') if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value') def answer(lowerCamelCase_) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...') UpperCamelCase__ : Dict = lower UpperCamelCase__ : Optional[Any] = higher UpperCamelCase__ : Optional[int] = [] while True: UpperCamelCase__ : List[Any] = get_avg(lowerCamelCase_ , lowerCamelCase_) last_numbers.append(lowerCamelCase_) if answer(lowerCamelCase_) == "low": UpperCamelCase__ : Any = number elif answer(lowerCamelCase_) == "high": UpperCamelCase__ : Optional[Any] = number else: break print(f'guess the number : {last_numbers[-1]}') print(f'details : {last_numbers!s}') def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : Dict = int(input('Enter lower value : ').strip()) UpperCamelCase__ : Union[str, Any] = int(input('Enter high value : ').strip()) UpperCamelCase__ : Optional[int] = int(input('Enter value to guess : ').strip()) guess_the_number(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": main()
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( lowerCamelCase_) -> tuple: return (data["data"], data["target"]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Optional[Any] = XGBRegressor(verbosity=0 , random_state=42) xgb.fit(lowerCamelCase_ , lowerCamelCase_) # Predict target for test data UpperCamelCase__ : Union[str, Any] = xgb.predict(lowerCamelCase_) UpperCamelCase__ : int = predictions.reshape(len(lowerCamelCase_) , 1) return predictions def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[str] = fetch_california_housing() UpperCamelCase__, UpperCamelCase__ : int = data_handling(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = train_test_split( lowerCamelCase_ , lowerCamelCase_ , test_size=0.25 , random_state=1) UpperCamelCase__ : Dict = xgboost(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(lowerCamelCase_ , lowerCamelCase_)}') print(f'Mean Square Error : {mean_squared_error(lowerCamelCase_ , lowerCamelCase_)}') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCAmelCase__ = 'tiny-wmt19-en-ru' # Build # borrowed from a test lowerCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ = dict(zip(vocab, range(len(vocab)))) lowerCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(tmpdirname) lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) lowerCAmelCase__ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCAmelCase__ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCAmelCase__ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test lowerCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') lowerCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCAmelCase__ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Union[str, Any] = {} state_dict.pop('pixel_mean' , lowerCamelCase_) state_dict.pop('pixel_std' , lowerCamelCase_) UpperCamelCase__ : str = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase__ : int = key.replace(lowerCamelCase_ , lowerCamelCase_) if re.match(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : int = int(re.match(lowerCamelCase_ , lowerCamelCase_).group(2)) if layer_nb == 0: UpperCamelCase__ : Optional[Any] = key.replace('layers.0' , 'proj_in') elif layer_nb == 1: UpperCamelCase__ : List[str] = key.replace('layers.1' , 'layers.0') elif layer_nb == 2: UpperCamelCase__ : List[Any] = key.replace('layers.2' , 'proj_out') UpperCamelCase__ : Any = value UpperCamelCase__ : int = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="ybelkada/segment-anything") -> Any: UpperCamelCase__ : Dict = hf_hub_download(lowerCamelCase_ , f'checkpoints/{model_name}.pth') if "sam_vit_b" in model_name: UpperCamelCase__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase__ : Union[str, Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase__ : Tuple = SamConfig( vision_config=lowerCamelCase_ , ) elif "sam_vit_h" in model_name: UpperCamelCase__ : Optional[Any] = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase__ : str = SamConfig( vision_config=lowerCamelCase_ , ) UpperCamelCase__ : Optional[int] = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : Union[str, Any] = replace_keys(lowerCamelCase_) UpperCamelCase__ : int = SamImageProcessor() UpperCamelCase__ : Dict = SamProcessor(image_processor=lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = SamModel(lowerCamelCase_) hf_model.load_state_dict(lowerCamelCase_) UpperCamelCase__ : Dict = hf_model.to('cuda') UpperCamelCase__ : Dict = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' UpperCamelCase__ : Any = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw).convert('RGB') UpperCamelCase__ : Dict = [[[400, 650]]] UpperCamelCase__ : List[str] = [[1]] UpperCamelCase__ : Any = processor(images=np.array(lowerCamelCase_) , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : Tuple = hf_model(**lowerCamelCase_) UpperCamelCase__ : str = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 UpperCamelCase__ : Union[str, Any] = processor( images=np.array(lowerCamelCase_) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : List[str] = hf_model(**lowerCamelCase_) UpperCamelCase__ : List[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 UpperCamelCase__ : Tuple = ((75, 275, 1_725, 850),) UpperCamelCase__ : str = processor(images=np.array(lowerCamelCase_) , input_boxes=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : Tuple = hf_model(**lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. UpperCamelCase__ : str = [[[400, 650], [800, 650]]] UpperCamelCase__ : Optional[int] = [[1, 1]] UpperCamelCase__ : Any = processor( images=np.array(lowerCamelCase_) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : List[str] = hf_model(**lowerCamelCase_) UpperCamelCase__ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) lowerCAmelCase__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import os import numpy import onnx def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : Optional[Any] = a.name UpperCamelCase__ : Dict = b.name UpperCamelCase__ : int = '' UpperCamelCase__ : Dict = '' UpperCamelCase__ : Any = a == b UpperCamelCase__ : List[str] = name_a UpperCamelCase__ : List[Any] = name_b return res def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : int = list(model.graph.initializer) UpperCamelCase__ : int = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCamelCase__ : Tuple = inits[i].name UpperCamelCase__ : Optional[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Union[str, Any] = os.path.dirname(lowerCamelCase_) UpperCamelCase__ : List[Any] = os.path.basename(lowerCamelCase_) UpperCamelCase__ : Any = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_)) UpperCamelCase__ : List[str] = list(model.graph.initializer) UpperCamelCase__ : List[str] = set() UpperCamelCase__ : int = {} UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = 0 for i in range(len(lowerCamelCase_)): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(lowerCamelCase_) dup_set.add(lowerCamelCase_) UpperCamelCase__ : Any = inits[j].data_type UpperCamelCase__ : List[str] = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase_) total_reduced_size += mem_size UpperCamelCase__ : Tuple = inits[i].name UpperCamelCase__ : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_) else: UpperCamelCase__ : List[str] = [name_j] ind_to_replace.append((j, i)) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB') UpperCamelCase__ : List[str] = sorted(lowerCamelCase_) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Any = 'optimized_' + model_file_name UpperCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_) onnx.save(lowerCamelCase_ , lowerCamelCase_) return new_model
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' from __future__ import annotations import math class __lowercase : def __init__( self : Dict , UpperCAmelCase_ : int): UpperCamelCase__ : Dict = size # approximate the overall size of segment tree with given value UpperCamelCase__ : Any = [0 for i in range(0 , 4 * size)] # create array to store lazy update UpperCamelCase__ : Tuple = [0 for i in range(0 , 4 * size)] UpperCamelCase__ : List[str] = [0 for i in range(0 , 4 * size)] # flag for lazy update def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): return idx * 2 def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): return idx * 2 + 1 def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int]): if left_element == right_element: UpperCamelCase__ : Optional[int] = a[left_element - 1] else: UpperCamelCase__ : str = (left_element + right_element) // 2 self.build(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.build(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = max( self.segment_tree[self.left(UpperCAmelCase_)] , self.segment_tree[self.right(UpperCAmelCase_)]) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if self.flag[idx] is True: UpperCamelCase__ : Union[str, Any] = self.lazy[idx] UpperCamelCase__ : List[Any] = False if left_element != right_element: UpperCamelCase__ : List[Any] = self.lazy[idx] UpperCamelCase__ : str = self.lazy[idx] UpperCamelCase__ : int = True UpperCamelCase__ : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase__ : str = val if left_element != right_element: UpperCamelCase__ : List[Any] = val UpperCamelCase__ : Tuple = val UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : int = True return True UpperCamelCase__ : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.update(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = max( self.segment_tree[self.left(UpperCAmelCase_)] , self.segment_tree[self.right(UpperCAmelCase_)]) return True def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if self.flag[idx] is True: UpperCamelCase__ : Union[str, Any] = self.lazy[idx] UpperCamelCase__ : Optional[int] = False if left_element != right_element: UpperCamelCase__ : Dict = self.lazy[idx] UpperCamelCase__ : Optional[Any] = self.lazy[idx] UpperCamelCase__ : Dict = True UpperCamelCase__ : Any = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase__ : Union[str, Any] = (left_element + right_element) // 2 UpperCamelCase__ : int = self.query(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.query(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return max(UpperCAmelCase_ , UpperCAmelCase_) def __str__( self : List[str]): return str([self.query(1 , 1 , self.size , UpperCAmelCase_ , UpperCAmelCase_) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowerCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase__ = 15 lowerCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = RobertaTokenizer def __init__( self : Any , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]="replace" , UpperCAmelCase_ : Any="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : Optional[int] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space: UpperCamelCase__ : Tuple = getattr(UpperCAmelCase_ , pre_tok_state.pop('type')) UpperCamelCase__ : Optional[Any] = add_prefix_space UpperCamelCase__ : List[str] = pre_tok_class(**UpperCAmelCase_) UpperCamelCase__ : str = add_prefix_space UpperCamelCase__ : Optional[int] = 'post_processor' UpperCamelCase__ : Dict = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) if tokenizer_component_instance: UpperCamelCase__ : Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ : Optional[int] = tuple(state['sep']) if "cls" in state: UpperCamelCase__ : Tuple = tuple(state['cls']) UpperCamelCase__ : Union[str, Any] = False if state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space: UpperCamelCase__ : int = add_prefix_space UpperCamelCase__ : List[str] = True if state.get('trim_offsets' , UpperCAmelCase_) != trim_offsets: UpperCamelCase__ : Tuple = trim_offsets UpperCamelCase__ : List[str] = True if changes_to_apply: UpperCamelCase__ : Tuple = getattr(UpperCAmelCase_ , state.pop('type')) UpperCamelCase__ : Any = component_class(**UpperCAmelCase_) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) @property def __UpperCamelCase ( self : Union[str, Any]): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __UpperCamelCase ( self : str , UpperCAmelCase_ : Any): UpperCamelCase__ : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else value UpperCamelCase__ : Any = value def __UpperCamelCase ( self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any]): UpperCamelCase__ : str = kwargs.get('is_split_into_words' , UpperCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = kwargs.get('is_split_into_words' , UpperCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): UpperCamelCase__ : Tuple = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None): UpperCamelCase__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' class __lowercase : def __init__( self : Dict , UpperCAmelCase_ : int): UpperCamelCase__ : str = n UpperCamelCase__ : List[str] = [None] * self.n UpperCamelCase__ : Optional[int] = 0 # index of the first element UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Union[str, Any] = 0 def __len__( self : List[Any]): return self.size def __UpperCamelCase ( self : int): return self.size == 0 def __UpperCamelCase ( self : Tuple): return False if self.is_empty() else self.array[self.front] def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple): if self.size >= self.n: raise Exception('QUEUE IS FULL') UpperCamelCase__ : int = data UpperCamelCase__ : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def __UpperCamelCase ( self : List[str]): if self.size == 0: raise Exception('UNDERFLOW') UpperCamelCase__ : str = self.array[self.front] UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = (self.front + 1) % self.n self.size -= 1 return temp
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> tuple[float, float]: # Check if the input is valid if not len(lowerCamelCase_) == len(lowerCamelCase_) == 3: raise ValueError('Please enter a valid equation.') if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.') # Extract the coefficients UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = equationa UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = equationa # Calculate the determinants of the matrices UpperCamelCase__ : Optional[int] = aa * ba - aa * ba UpperCamelCase__ : Union[str, Any] = ca * ba - ca * ba UpperCamelCase__ : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)') else: raise ValueError('No solution. (Inconsistent system)') else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCamelCase__ : Tuple = determinant_x / determinant UpperCamelCase__ : Optional[int] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __UpperCAmelCase ( lowerCamelCase_) -> Any: return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Optional[int] = create_tensor(lowerCamelCase_) UpperCamelCase__ : List[Any] = gather(lowerCamelCase_) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1)) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Dict = [state.process_index] UpperCamelCase__ : Any = gather_object(lowerCamelCase_) assert len(lowerCamelCase_) == state.num_processes, f'{gathered_obj}, {len(lowerCamelCase_)} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes)), f'{gathered_obj} != {list(range(state.num_processes))}' def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Dict = create_tensor(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = broadcast(lowerCamelCase_) assert broadcasted_tensor.shape == torch.Size([state.num_processes]) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1)) def __UpperCAmelCase ( lowerCamelCase_) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCamelCase__ : Optional[Any] = torch.arange(state.num_processes + 1).to(state.device) else: UpperCamelCase__ : Any = torch.arange(state.num_processes).to(state.device) UpperCamelCase__ : int = pad_across_processes(lowerCamelCase_) assert padded_tensor.shape == torch.Size([state.num_processes + 1]) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes)) + [0] def __UpperCAmelCase ( lowerCamelCase_) -> int: # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase__ : Dict = create_tensor(lowerCamelCase_) UpperCamelCase__ : int = reduce(lowerCamelCase_ , 'sum') UpperCamelCase__ : Tuple = torch.tensor([4.0, 6]).to(state.device) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), f'{reduced_tensor} != {truth_tensor}' def __UpperCAmelCase ( lowerCamelCase_) -> Any: # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase__ : List[str] = create_tensor(lowerCamelCase_) UpperCamelCase__ : List[str] = reduce(lowerCamelCase_ , 'mean') UpperCamelCase__ : List[Any] = torch.tensor([2.0, 3]).to(state.device) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), f'{reduced_tensor} != {truth_tensor}' def __UpperCAmelCase ( lowerCamelCase_) -> Any: # For xla_spawn (TPUs) main() def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Any = PartialState() state.print(f'State: {state}') state.print('testing gather') test_gather(lowerCamelCase_) state.print('testing gather_object') test_gather_object(lowerCamelCase_) state.print('testing broadcast') test_broadcast(lowerCamelCase_) state.print('testing pad_across_processes') test_pad_across_processes(lowerCamelCase_) state.print('testing reduce_sum') test_reduce_sum(lowerCamelCase_) state.print('testing reduce_mean') test_reduce_mean(lowerCamelCase_) if __name__ == "__main__": main()
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''facebook/bart-large-mnli''' _lowerCamelCase = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) _lowerCamelCase = '''text_classifier''' _lowerCamelCase = AutoTokenizer _lowerCamelCase = AutoModelForSequenceClassification _lowerCamelCase = ['''text''', ['''text''']] _lowerCamelCase = ['''text'''] def __UpperCamelCase ( self : List[str]): super().setup() UpperCamelCase__ : List[str] = self.model.config UpperCamelCase__ : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): UpperCamelCase__ : int = int(UpperCAmelCase_) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : List[Any] = labels return self.pre_processor( [text] * len(UpperCAmelCase_) , [F'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : Union[str, Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''open-llama''' def __init__( self : Optional[int] , UpperCAmelCase_ : Any=100_000 , UpperCAmelCase_ : Union[str, Any]=4_096 , UpperCAmelCase_ : int=11_008 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Optional[int]=2_048 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-6 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Dict , ): UpperCamelCase__ : int = vocab_size UpperCamelCase__ : Optional[int] = max_position_embeddings UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : List[Any] = rms_norm_eps UpperCamelCase__ : Optional[int] = use_cache UpperCamelCase__ : Any = kwargs.pop( 'use_memorry_efficient_attention' , UpperCAmelCase_) UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_dropout_prob UpperCamelCase__ : Optional[Any] = use_stable_embedding UpperCamelCase__ : Optional[Any] = shared_input_output_embedding UpperCamelCase__ : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __UpperCamelCase ( self : List[str]): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}') UpperCamelCase__ : Optional[Any] = self.rope_scaling.get('type' , UpperCAmelCase_) UpperCamelCase__ : Any = self.rope_scaling.get('factor' , UpperCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''CLIPImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = kwargs.pop('feature_extractor') UpperCamelCase__ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : List[str] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: UpperCamelCase__ : Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: UpperCamelCase__ : Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: UpperCamelCase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.tokenizer.model_input_names UpperCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self : int): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : str): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive') UpperCamelCase__ : Tuple = str(bin(lowerCamelCase_))[2:] # remove the leading "0b" UpperCamelCase__ : str = str(bin(lowerCamelCase_))[2:] UpperCamelCase__ : List[str] = max(len(lowerCamelCase_) , len(lowerCamelCase_)) return "0b" + "".join( str(int('1' in (char_a, char_b))) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_) , b_binary.zfill(lowerCamelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import functools from typing import Any def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> bool: # Validation if not isinstance(lowerCamelCase_ , lowerCamelCase_) or len(lowerCamelCase_) == 0: raise ValueError('the string should be not empty string') if not isinstance(lowerCamelCase_ , lowerCamelCase_) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_) and len(lowerCamelCase_) > 0 for item in words): raise ValueError('the words should be a list of non-empty strings') # Build trie UpperCamelCase__ : dict[str, Any] = {} UpperCamelCase__ : Any = 'WORD_KEEPER' for word in words: UpperCamelCase__ : Optional[Any] = trie for c in word: if c not in trie_node: UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : str = trie_node[c] UpperCamelCase__ : Any = True UpperCamelCase__ : List[Any] = len(lowerCamelCase_) # Dynamic programming method @functools.cache def is_breakable(lowerCamelCase_) -> bool: if index == len_string: return True UpperCamelCase__ : Optional[int] = trie for i in range(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Dict = trie_node.get(string[i] , lowerCamelCase_) if trie_node is None: return False if trie_node.get(lowerCamelCase_ , lowerCamelCase_) and is_breakable(i + 1): return True return False return is_breakable(0) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=True) -> Dict: model.train() UpperCamelCase__ : Any = model(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = F.mse_loss(lowerCamelCase_ , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> int: set_seed(42) UpperCamelCase__ : Any = RegressionModel() UpperCamelCase__ : Optional[int] = deepcopy(lowerCamelCase_) UpperCamelCase__ : Optional[int] = RegressionDataset(length=80) UpperCamelCase__ : Tuple = DataLoader(lowerCamelCase_ , batch_size=16) model.to(accelerator.device) if sched: UpperCamelCase__ : str = AdamW(params=model.parameters() , lr=1e-3) UpperCamelCase__ : str = AdamW(params=ddp_model.parameters() , lr=1e-3) UpperCamelCase__ : Any = LambdaLR(lowerCamelCase_ , lr_lambda=lambda lowerCamelCase_: epoch**0.65) UpperCamelCase__ : str = LambdaLR(lowerCamelCase_ , lr_lambda=lambda lowerCamelCase_: epoch**0.65) # Make a copy of `model` if sched: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__, UpperCamelCase__ : Dict = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[Any] = get_training_setup(lowerCamelCase_) # Use a single batch UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase__, UpperCamelCase__ : int = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__, UpperCamelCase__ : Optional[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : Union[str, Any] = ddp_input[torch.randperm(len(lowerCamelCase_))] def __UpperCAmelCase ( lowerCamelCase_) -> str: # Test on distributed setup that context manager behaves properly UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = get_training_setup(lowerCamelCase_) # Use a single batch UpperCamelCase__, UpperCamelCase__ : str = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase__, UpperCamelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__, UpperCamelCase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : Any = ddp_input[torch.randperm(len(lowerCamelCase_))] def __UpperCAmelCase ( lowerCamelCase_=False , lowerCamelCase_=False) -> Dict: UpperCamelCase__ : Optional[Any] = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = get_training_setup(lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__, UpperCamelCase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__, UpperCamelCase__ : int = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : int = ddp_input[torch.randperm(len(lowerCamelCase_))] GradientState._reset_state() def __UpperCAmelCase ( lowerCamelCase_=False , lowerCamelCase_=False) -> Optional[int]: UpperCamelCase__ : Dict = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = get_training_setup(lowerCamelCase_ , lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): UpperCamelCase__, UpperCamelCase__ : int = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__, UpperCamelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__, UpperCamelCase__ : Optional[int] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' UpperCamelCase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_)) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) GradientState._reset_state() def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : List[Any] = Accelerator() UpperCamelCase__ : Dict = RegressionDataset(length=80) UpperCamelCase__ : List[Any] = DataLoader(lowerCamelCase_ , batch_size=16) UpperCamelCase__ : int = RegressionDataset(length=96) UpperCamelCase__ : str = DataLoader(lowerCamelCase_ , batch_size=16) UpperCamelCase__, UpperCamelCase__ : List[Any] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if iteration < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if batch_num < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : str = Accelerator() UpperCamelCase__ : int = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**') test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**') test_noop_sync(lowerCamelCase_) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**') test_distributed_sync(lowerCamelCase_) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCamelCase_ , lowerCamelCase_) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0') or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowercase (yaml.SafeLoader ): def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ : str = [tuple(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else key for key in keys] UpperCamelCase__ : int = Counter(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}') def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False): UpperCamelCase__ : Union[str, Any] = super().construct_mapping(UpperCAmelCase_ , deep=UpperCAmelCase_) self._check_no_duplicates_on_constructed_node(UpperCAmelCase_) return mapping def __UpperCAmelCase ( lowerCamelCase_) -> Tuple[Optional[str], str]: UpperCamelCase__ : str = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ : Dict = full_content[1:].index('---') + 1 UpperCamelCase__ : Any = '\n'.join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(lowerCamelCase_) class __lowercase (__lowerCamelCase ): # class attributes _lowerCamelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : List[str] , UpperCAmelCase_ : Path): with open(UpperCAmelCase_ , encoding='utf-8') as readme_file: UpperCamelCase__, UpperCamelCase__ : Any = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase_) else: return cls() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Path): if path.exists(): with open(UpperCAmelCase_ , encoding='utf-8') as readme_file: UpperCamelCase__ : Tuple = readme_file.read() else: UpperCamelCase__ : List[Any] = None UpperCamelCase__ : List[Any] = self._to_readme(UpperCAmelCase_) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as readme_file: readme_file.write(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[str] = None): if readme_content is not None: UpperCamelCase__, UpperCamelCase__ : Any = _split_yaml_from_readme(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: UpperCamelCase__ : List[str] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : str): UpperCamelCase__ : Any = yaml.load(UpperCAmelCase_ , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ : int = { (key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase_) def __UpperCamelCase ( self : Any): return yaml.safe_dump( { (key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ , encoding='utf-8' , ).decode('utf-8') lowerCAmelCase__ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCAmelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') lowerCAmelCase__ = ap.parse_args() lowerCAmelCase__ = Path(args.readme_filepath) lowerCAmelCase__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''distilbert''' _lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : Any , UpperCAmelCase_ : Tuple=30_522 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Tuple=4 * 768 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.2 , UpperCAmelCase_ : Dict=0 , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : Dict = vocab_size UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : Dict = sinusoidal_pos_embds UpperCamelCase__ : List[str] = n_layers UpperCamelCase__ : Union[str, Any] = n_heads UpperCamelCase__ : Any = dim UpperCamelCase__ : Any = hidden_dim UpperCamelCase__ : Union[str, Any] = dropout UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : Union[str, Any] = activation UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : str = qa_dropout UpperCamelCase__ : str = seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_) class __lowercase (__lowerCamelCase ): @property def __UpperCamelCase ( self : List[Any]): if self.task == "multiple-choice": UpperCamelCase__ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase__ : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' from __future__ import annotations from typing import Any def __UpperCAmelCase ( lowerCamelCase_) -> None: create_state_space_tree(lowerCamelCase_ , [] , 0) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: if index == len(lowerCamelCase_): print(lowerCamelCase_) return create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase__ = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase__ = 0 lowerCAmelCase__ = 0xE_0_0_0 lowerCAmelCase__ = 0xE_0_0_1 lowerCAmelCase__ = 0xE_0_0_2 lowerCAmelCase__ = 0xE_0_0_3 lowerCAmelCase__ = 0xE_0_0_4 # Maps special codepoints to human-readable names. lowerCAmelCase__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowercase (__lowerCamelCase ): _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : Union[str, Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : List[Any]=chr(UpperCAmelCase_) , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=2_048 , **UpperCAmelCase_ : Optional[int] , ): UpperCamelCase__ : Optional[int] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase__ : List[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase__ : Optional[int] = UNICODE_VOCAB_SIZE UpperCamelCase__ : Union[str, Any] = len(self._special_codepoints) @property def __UpperCamelCase ( self : Dict): return self._unicode_vocab_size def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): return list(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): try: return ord(UpperCAmelCase_) except TypeError: raise ValueError(F'invalid token: \'{token}\'') def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_) except TypeError: raise ValueError(F'invalid id: {index}') def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[Any]): return "".join(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : List[str] = [self.sep_token_id] UpperCamelCase__ : Union[str, Any] = [self.cls_token_id] UpperCamelCase__ : Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = [1] + ([0] * len(UpperCAmelCase_)) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_)) + [1] return result def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Tuple = [self.sep_token_id] UpperCamelCase__ : str = [self.cls_token_id] UpperCamelCase__ : Tuple = len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def __UpperCamelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): return ()
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : str = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase_ , architectures=['RobertaPreLayerNormForMaskedLM']) # convert state_dict UpperCamelCase__ : Tuple = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename='pytorch_model.bin')) UpperCamelCase__ : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.'): UpperCamelCase__ : Tuple = 'roberta_prelayernorm.' + tensor_key[len('roberta.') :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight') or tensor_key.endswith('.self.LayerNorm.bias'): continue UpperCamelCase__ : Tuple = tensor_value UpperCamelCase__ : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) # convert tokenizer UpperCamelCase__ : Any = AutoTokenizer.from_pretrained(lowerCamelCase_) tokenizer.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowercase : def __init__( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[Any]=None , ): UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : Tuple = seq_length UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Optional[Any] = use_input_mask UpperCamelCase__ : Optional[int] = use_token_type_ids UpperCamelCase__ : List[Any] = use_labels UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : List[str] = hidden_size UpperCamelCase__ : Dict = embedding_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Dict = attention_probs_dropout_prob UpperCamelCase__ : str = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : Union[str, Any] = type_sequence_label_size UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Any = num_labels UpperCamelCase__ : List[str] = num_choices UpperCamelCase__ : List[str] = scope def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : List[str] = None if self.use_input_mask: UpperCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase__ : Any = None if self.use_token_type_ids: UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : List[Any] = None UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase__ : int = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any): UpperCamelCase__ : Dict = MegatronBertModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) UpperCamelCase__ : Any = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) UpperCamelCase__ : Dict = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : List[str] = MegatronBertForMaskedLM(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]): UpperCamelCase__ : str = MegatronBertForCausalLM(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Optional[Any] = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : int = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Dict = MegatronBertForPreTraining(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : str = MegatronBertForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Optional[Any] = self.num_labels UpperCamelCase__ : Optional[int] = MegatronBertForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : List[str] = self.num_labels UpperCamelCase__ : Any = MegatronBertForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Any = self.num_choices UpperCamelCase__ : str = MegatronBertForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : List[str] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Dict = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ) : Dict = config_and_inputs UpperCamelCase__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True # test_resize_embeddings = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int=False): UpperCamelCase__ : int = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class in get_values(UpperCAmelCase_): UpperCamelCase__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[str] = MegatronBertModelTester(self) UpperCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : List[Any]): self.config_tester.run_common_tests() def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return torch.tensor( lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): @slow @unittest.skip('Model is not available.') def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: UpperCamelCase__ : List[Any] = os.path.join(os.environ['MYDIR'] , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = MegatronBertModel.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) model.half() UpperCamelCase__ : Optional[int] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]]) with torch.no_grad(): UpperCamelCase__ : List[str] = model(UpperCAmelCase_)[0] UpperCamelCase__ : Union[str, Any] = torch.Size((1, 9, 1_024)) self.assertEqual(output.shape , UpperCAmelCase_) UpperCamelCase__ : Any = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3): for jj in range(3): UpperCamelCase__ : Tuple = output[0, ii, jj] UpperCamelCase__ : Optional[Any] = expected[3 * ii + jj] UpperCamelCase__ : Optional[Any] = 'ii={} jj={} a={} b={}'.format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_) , msg=UpperCAmelCase_)
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCAmelCase ( lowerCamelCase_) -> str: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase__ : Union[str, Any] = k.replace(lowerCamelCase_ , lowerCamelCase_) if k.startswith('encoder'): UpperCamelCase__ : Any = k.replace('.attn' , '.self_attn') UpperCamelCase__ : Optional[Any] = k.replace('norm1' , 'self_attn_layer_norm') UpperCamelCase__ : List[Any] = k.replace('norm2' , 'final_layer_norm') elif k.startswith('decoder'): UpperCamelCase__ : int = k.replace('norm1' , 'self_attn_layer_norm') UpperCamelCase__ : List[Any] = k.replace('norm2' , 'encoder_attn_layer_norm') UpperCamelCase__ : List[Any] = k.replace('norm3' , 'final_layer_norm') return k def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Tuple = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: UpperCamelCase__ : Optional[int] = sd.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = k.replace('layernorm_embedding' , 'layer_norm') assert new_k not in sd UpperCamelCase__ : Union[str, Any] = v lowerCAmelCase__ = ['START'] @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : int = model['model'] UpperCamelCase__ : Optional[int] = BlenderbotConfig.from_json_file(lowerCamelCase_) UpperCamelCase__ : Dict = BlenderbotForConditionalGeneration(lowerCamelCase_) UpperCamelCase__ : int = m.model.state_dict().keys() UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Tuple = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase__ : List[Any] = rename_state_dict_key(lowerCamelCase_) if new_k not in valid_keys: failures.append([k, new_k]) else: UpperCamelCase__ : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCamelCase_) m.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) m.half() m.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__lowerCamelCase ): _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : List[str]): UpperCamelCase__ : List[str] = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCAmelCase_) return config def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Optional[int] = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : List[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : int = 10, 0.0 UpperCamelCase__ : Optional[int] = self.dummy_model() UpperCamelCase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for t in scheduler.timesteps: UpperCamelCase__ : str = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def __UpperCamelCase ( self : Optional[int]): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def __UpperCamelCase ( self : str): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_) UpperCamelCase__ : int = self.scheduler_classes[0] UpperCamelCase__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1) UpperCamelCase__ : List[Any] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def __UpperCamelCase ( self : List[str]): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def __UpperCamelCase ( self : int): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def __UpperCamelCase ( self : int): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase_) def __UpperCamelCase ( self : Any): self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def __UpperCamelCase ( self : int): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase_) def __UpperCamelCase ( self : int): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase_ , eta=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.scheduler_classes[0] UpperCamelCase__ : Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ : Dict = scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_47_71)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_24_60)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_09_79)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config() UpperCamelCase__ : List[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Any = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_model() UpperCamelCase__ : Any = self.dummy_sample_deter UpperCamelCase__ : Any = self.dummy_sample_deter + 0.1 UpperCamelCase__ : List[str] = self.dummy_sample_deter - 0.1 UpperCamelCase__ : int = samplea.shape[0] UpperCamelCase__ : Any = torch.stack([samplea, samplea, samplea] , dim=0) UpperCamelCase__ : Any = torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) UpperCamelCase__ : Tuple = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) UpperCamelCase__ : int = scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase_) UpperCamelCase__ : Dict = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 11_47.79_04) < 1e-2 assert abs(result_mean.item() - 0.49_82) < 1e-3 def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.full_loop() UpperCamelCase__ : Optional[Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[str] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_72.00_67) < 1e-2 assert abs(result_mean.item() - 0.22_39_67) < 1e-3 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : str = self.full_loop(prediction_type='v_prediction') UpperCamelCase__ : str = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Any = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 52.53_02) < 1e-2 assert abs(result_mean.item() - 0.06_84) < 1e-3 def __UpperCamelCase ( self : List[str]): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : List[Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Any = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.82_95) < 1e-2 assert abs(result_mean.item() - 0.19_51) < 1e-3 def __UpperCamelCase ( self : Union[str, Any]): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : Any = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.07_84) < 1e-2 assert abs(result_mean.item() - 0.19_41) < 1e-3
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Tuple: UpperCamelCase__ : Optional[Any] = None if token is not None: UpperCamelCase__ : str = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : int = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' UpperCamelCase__ : List[str] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_).json() UpperCamelCase__ : Tuple = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']}) UpperCamelCase__ : Optional[Any] = math.ceil((result['total_count'] - 100) / 100) for i in range(lowerCamelCase_): UpperCamelCase__ : Optional[Any] = requests.get(url + f'&page={i + 2}' , headers=lowerCamelCase_).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']}) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}') return {} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : Optional[int] = None if token is not None: UpperCamelCase__ : Any = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : Tuple = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' UpperCamelCase__ : Dict = requests.get(lowerCamelCase_ , headers=lowerCamelCase_).json() UpperCamelCase__ : Tuple = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']}) UpperCamelCase__ : Dict = math.ceil((result['total_count'] - 100) / 100) for i in range(lowerCamelCase_): UpperCamelCase__ : Any = requests.get(url + f'&page={i + 2}' , headers=lowerCamelCase_).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']}) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}') return {} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[Any] = None if token is not None: UpperCamelCase__ : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : Optional[Any] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ , allow_redirects=lowerCamelCase_) UpperCamelCase__ : Tuple = result.headers['Location'] UpperCamelCase__ : Tuple = requests.get(lowerCamelCase_ , allow_redirects=lowerCamelCase_) UpperCamelCase__ : List[Any] = os.path.join(lowerCamelCase_ , f'{artifact_name}.zip') with open(lowerCamelCase_ , 'wb') as fp: fp.write(response.content) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> List[str]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Optional[int] = None with zipfile.ZipFile(lowerCamelCase_) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCamelCase_) as f: for line in f: UpperCamelCase__ : Optional[Any] = line.decode('UTF-8').strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase__ : List[Any] = line[: line.index(': ')] UpperCamelCase__ : Tuple = line[line.index(': ') + len(': ') :] errors.append([error_line, error]) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED '): # `test` is the test method that failed UpperCamelCase__ : List[str] = line[len('FAILED ') :] failed_tests.append(lowerCamelCase_) elif filename == "job_name.txt": UpperCamelCase__ : Tuple = line if len(lowerCamelCase_) != len(lowerCamelCase_): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCamelCase_)} for `errors` ' f'and {len(lowerCamelCase_)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.') UpperCamelCase__ : Dict = None if job_name and job_links: UpperCamelCase__ : List[str] = job_links.get(lowerCamelCase_ , lowerCamelCase_) # A list with elements of the form (line of error, error, failed test) UpperCamelCase__ : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(lowerCamelCase_ , lowerCamelCase_)] return result def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : int = [] UpperCamelCase__ : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_) for p in os.listdir(lowerCamelCase_) if p.endswith('.zip')] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCamelCase_ , job_links=lowerCamelCase_)) return errors def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : Optional[int] = Counter() counter.update([x[1] for x in logs]) UpperCamelCase__ : Dict = counter.most_common() UpperCamelCase__ : str = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase__ : List[Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase__ : str = dict(sorted(r.items() , key=lambda lowerCamelCase_: item[1]["count"] , reverse=lowerCamelCase_)) return r def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = test.split('::')[0] if test.startswith('tests/models/'): UpperCamelCase__ : Optional[int] = test.split('/')[2] else: UpperCamelCase__ : int = None return test def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> int: UpperCamelCase__ : Tuple = [(x[0], x[1], get_model(x[2])) for x in logs] UpperCamelCase__ : Tuple = [x for x in logs if x[2] is not None] UpperCamelCase__ : List[Any] = {x[2] for x in logs} UpperCamelCase__ : Union[str, Any] = {} for test in tests: UpperCamelCase__ : List[Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test]) UpperCamelCase__ : int = counter.most_common() UpperCamelCase__ : List[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase__ : Tuple = sum(error_counts.values()) if n_errors > 0: UpperCamelCase__ : int = {'count': n_errors, 'errors': error_counts} UpperCamelCase__ : str = dict(sorted(r.items() , key=lambda lowerCamelCase_: item[1]["count"] , reverse=lowerCamelCase_)) return r def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Optional[int] = '| no. | error | status |' UpperCamelCase__ : Dict = '|-:|:-|:-|' UpperCamelCase__ : str = [header, sep] for error in reduced_by_error: UpperCamelCase__ : Optional[int] = reduced_by_error[error]['count'] UpperCamelCase__ : str = f'| {count} | {error[:100]} | |' lines.append(lowerCamelCase_) return "\n".join(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = '| model | no. of errors | major error | count |' UpperCamelCase__ : Dict = '|-:|-:|-:|-:|' UpperCamelCase__ : Optional[Any] = [header, sep] for model in reduced_by_model: UpperCamelCase__ : Any = reduced_by_model[model]['count'] UpperCamelCase__, UpperCamelCase__ : int = list(reduced_by_model[model]['errors'].items())[0] UpperCamelCase__ : str = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(lowerCamelCase_) return "\n".join(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase__ = get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase__ = k.find(' / ') lowerCAmelCase__ = k[index + len(' / ') :] lowerCAmelCase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = reduce_by_error(errors) lowerCAmelCase__ = reduce_by_model(errors) lowerCAmelCase__ = make_github_table(reduced_by_error) lowerCAmelCase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> Tuple: UpperCamelCase__ : Optional[int] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias')) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ]) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCamelCase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('deit') else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ]) return rename_keys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: for i in range(config.num_hidden_layers): if base_model: UpperCamelCase__ : int = '' else: UpperCamelCase__ : int = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight') UpperCamelCase__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : str = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : List[str] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : Any = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Union[str, Any] = dct.pop(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = val def __UpperCAmelCase ( ) -> str: UpperCamelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads UpperCamelCase__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase__ : Tuple = 1_000 UpperCamelCase__ : List[Any] = 'huggingface/label-files' UpperCamelCase__ : Any = 'imagenet-1k-id2label.json' UpperCamelCase__ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r')) UpperCamelCase__ : str = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = idalabel UpperCamelCase__ : int = {v: k for k, v in idalabel.items()} UpperCamelCase__ : int = int(deit_name[-6:-4]) UpperCamelCase__ : int = int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith('tiny'): UpperCamelCase__ : Union[str, Any] = 192 UpperCamelCase__ : int = 768 UpperCamelCase__ : List[str] = 12 UpperCamelCase__ : Union[str, Any] = 3 elif deit_name[9:].startswith('small'): UpperCamelCase__ : str = 384 UpperCamelCase__ : Union[str, Any] = 1_536 UpperCamelCase__ : List[str] = 12 UpperCamelCase__ : List[Any] = 6 if deit_name[9:].startswith('base'): pass elif deit_name[4:].startswith('large'): UpperCamelCase__ : List[Any] = 1_024 UpperCamelCase__ : Union[str, Any] = 4_096 UpperCamelCase__ : List[Any] = 24 UpperCamelCase__ : str = 16 # load original model from timm UpperCamelCase__ : Optional[Any] = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : List[Any] = timm_model.state_dict() UpperCamelCase__ : List[Any] = create_rename_keys(lowerCamelCase_ , lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : List[str] = DeiTForImageClassificationWithTeacher(lowerCamelCase_).eval() model.load_state_dict(lowerCamelCase_) # Check outputs on an image, prepared by DeiTImageProcessor UpperCamelCase__ : Dict = int( (256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCamelCase__ : int = DeiTImageProcessor(size=lowerCamelCase_ , crop_size=config.image_size) UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt') UpperCamelCase__ : Optional[Any] = encoding['pixel_values'] UpperCamelCase__ : str = model(lowerCamelCase_) UpperCamelCase__ : List[str] = timm_model(lowerCamelCase_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1e-3) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class __lowercase (__lowerCamelCase , __lowerCamelCase ): _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : List[str]=[2, 4, 8, 16] , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[str]=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1e-5 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Any , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Tuple = patch_size UpperCamelCase__ : Tuple = num_channels UpperCamelCase__ : List[Any] = embed_dim UpperCamelCase__ : Dict = depths UpperCamelCase__ : Dict = len(UpperCAmelCase_) UpperCamelCase__ : str = num_heads UpperCamelCase__ : List[Any] = kernel_size UpperCamelCase__ : Union[str, Any] = mlp_ratio UpperCamelCase__ : List[str] = qkv_bias UpperCamelCase__ : List[Any] = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : Tuple = int(embed_dim * 2 ** (len(UpperCAmelCase_) - 1)) UpperCamelCase__ : List[str] = layer_scale_init_value UpperCamelCase__ : List[str] = ['stem'] + [F'stage{idx}' for idx in range(1 , len(UpperCAmelCase_) + 1)] UpperCamelCase__, UpperCamelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowercase : def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : List[Any]=17 , UpperCAmelCase_ : Optional[int]=23 , UpperCAmelCase_ : Optional[Any]=11 , UpperCAmelCase_ : Union[str, Any]=True , ): UpperCamelCase__ : str = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : int = seq_length UpperCamelCase__ : Optional[Any] = act_dim UpperCamelCase__ : str = state_dim UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = max_length UpperCamelCase__ : str = is_training def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Dict = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) UpperCamelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) UpperCamelCase__ : Tuple = floats_tensor((self.batch_size, self.seq_length, 1)) UpperCamelCase__ : Any = floats_tensor((self.batch_size, self.seq_length, 1)) UpperCamelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000) UpperCamelCase__ : str = random_attention_mask((self.batch_size, self.seq_length)) UpperCamelCase__ : int = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCamelCase ( self : List[Any]): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[str] = DecisionTransformerModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[Any] = model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ) : Dict = config_and_inputs UpperCamelCase__ : List[str] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (DecisionTransformerModel,) if is_torch_available() else () _lowerCamelCase = () _lowerCamelCase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _lowerCamelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = DecisionTransformerModelTester(self) UpperCamelCase__ : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) @slow def __UpperCamelCase ( self : Any): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Any = DecisionTransformerModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__, UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(UpperCAmelCase_) UpperCamelCase__ : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : int = [*signature.parameters.keys()] UpperCamelCase__ : Union[str, Any] = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(UpperCAmelCase_)] , UpperCAmelCase_) @require_torch class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Dict = 2 # number of steps of autoregressive prediction we will perform UpperCamelCase__ : Dict = 10 # defined by the RL environment, may be normalized UpperCamelCase__ : Union[str, Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert') UpperCamelCase__ : Optional[Any] = model.to(UpperCAmelCase_) UpperCamelCase__ : List[Any] = model.config torch.manual_seed(0) UpperCamelCase__ : int = torch.randn(1 , 1 , config.state_dim).to(device=UpperCAmelCase_ , dtype=torch.floataa) # env.reset() UpperCamelCase__ : int = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=UpperCAmelCase_) UpperCamelCase__ : List[Any] = torch.tensor(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.floataa).reshape(1 , 1 , 1) UpperCamelCase__ : Union[str, Any] = state UpperCamelCase__ : Tuple = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase_ , dtype=torch.floataa) UpperCamelCase__ : int = torch.zeros(1 , 0 , device=UpperCAmelCase_ , dtype=torch.floataa) UpperCamelCase__ : List[str] = torch.tensor(0 , device=UpperCAmelCase_ , dtype=torch.long).reshape(1 , 1) for step in range(UpperCAmelCase_): UpperCamelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase_)] , dim=1) UpperCamelCase__ : str = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase_)] , dim=1) UpperCamelCase__ : Optional[int] = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = model( states=UpperCAmelCase_ , actions=UpperCAmelCase_ , rewards=UpperCAmelCase_ , returns_to_go=UpperCAmelCase_ , timesteps=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=UpperCAmelCase_ , dtype=torch.floataa), 1.0, False, {}, ) UpperCamelCase__ : str = action_pred[0, -1] UpperCamelCase__ : List[Any] = torch.cat([states, state] , dim=1) UpperCamelCase__ : Union[str, Any] = returns_to_go[0, -1] - reward UpperCamelCase__ : Dict = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) UpperCamelCase__ : Any = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase_ , dtype=torch.long) * (step + 1)] , dim=1)
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Tuple = set({'(', '[', '{'}) UpperCamelCase__ : Dict = set({')', ']', '}'}) UpperCamelCase__ : Optional[Any] = {'{': '}', '[': ']', '(': ')'} for i in range(len(lowerCamelCase_)): if s[i] in open_brackets: stack.append(s[i]) elif s[i] in closed_brackets and ( len(lowerCamelCase_) == 0 or (len(lowerCamelCase_) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase_) == 0 def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : List[str] = input('Enter sequence of brackets: ') if is_balanced(lowerCamelCase_): print(lowerCamelCase_ , 'is balanced') else: print(lowerCamelCase_ , 'is not balanced') if __name__ == "__main__": main()
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return 1 / (1 + np.exp(-z)) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: return (-y * np.log(lowerCamelCase_) - (1 - y) * np.log(1 - h)).mean() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : int = np.dot(lowerCamelCase_ , lowerCamelCase_) return np.sum(y * scores - np.log(1 + np.exp(lowerCamelCase_))) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=70_000) -> Optional[int]: UpperCamelCase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(lowerCamelCase_): UpperCamelCase__ : List[Any] = np.dot(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : int = sigmoid_function(lowerCamelCase_) UpperCamelCase__ : List[Any] = np.dot(x.T , h - y) / y.size UpperCamelCase__ : str = theta - alpha * gradient # updating the weights UpperCamelCase__ : str = np.dot(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Dict = sigmoid_function(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = cost_function(lowerCamelCase_ , lowerCamelCase_) if iterations % 100 == 0: print(f'loss: {j} \t') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowerCAmelCase__ = datasets.load_iris() lowerCAmelCase__ = iris.data[:, :2] lowerCAmelCase__ = (iris.target != 0) * 1 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: return sigmoid_function( np.dot(lowerCamelCase_ , lowerCamelCase_)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((lowerCAmelCase__) , (lowerCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((lowerCAmelCase__) , (lowerCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((lowerCAmelCase__) , (lowerCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowerCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] lowerCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 class __lowercase (__lowerCamelCase ): pass def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: for shard in shards: for i in range(lowerCamelCase_): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: UpperCamelCase__ : str = int(os.environ['RANK']) UpperCamelCase__ : str = int(os.environ['WORLD_SIZE']) UpperCamelCase__ : int = ArgumentParser() parser.add_argument('--streaming' , type=lowerCamelCase_) parser.add_argument('--local_rank' , type=lowerCamelCase_) parser.add_argument('--num_workers' , type=lowerCamelCase_ , default=0) UpperCamelCase__ : str = parser.parse_args() UpperCamelCase__ : List[str] = args.streaming UpperCamelCase__ : int = args.num_workers UpperCamelCase__ : Tuple = {'shards': [f'shard_{shard_idx}' for shard_idx in range(lowerCamelCase_)]} UpperCamelCase__ : int = IterableDataset.from_generator(lowerCamelCase_ , gen_kwargs=lowerCamelCase_) if not streaming: UpperCamelCase__ : List[Any] = Dataset.from_list(list(lowerCamelCase_)) UpperCamelCase__ : Union[str, Any] = split_dataset_by_node(lowerCamelCase_ , rank=lowerCamelCase_ , world_size=lowerCamelCase_) UpperCamelCase__ : List[str] = torch.utils.data.DataLoader(lowerCamelCase_ , num_workers=lowerCamelCase_) UpperCamelCase__ : Any = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCamelCase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) UpperCamelCase__ : Dict = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}') if __name__ == "__main__": main()
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' import argparse import datetime def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : int = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } UpperCamelCase__ : str = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase_) < 11: raise ValueError('Must be 10 characters long') # Get month UpperCamelCase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12') UpperCamelCase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'') # Get day UpperCamelCase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31') # Get second separator UpperCamelCase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'') # Get year UpperCamelCase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?') # Get datetime obj for validation UpperCamelCase__ : int = datetime.date(int(lowerCamelCase_) , int(lowerCamelCase_) , int(lowerCamelCase_)) # Start math if m <= 2: UpperCamelCase__ : int = y - 1 UpperCamelCase__ : List[Any] = m + 12 # maths var UpperCamelCase__ : int = int(str(lowerCamelCase_)[:2]) UpperCamelCase__ : int = int(str(lowerCamelCase_)[2:]) UpperCamelCase__ : int = int(2.6 * m - 5.39) UpperCamelCase__ : int = int(c / 4) UpperCamelCase__ : int = int(k / 4) UpperCamelCase__ : int = int(d + k) UpperCamelCase__ : int = int(t + u + v + x) UpperCamelCase__ : int = int(z - (2 * c)) UpperCamelCase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.') # Response UpperCamelCase__ : str = f'Your date {date_input}, is a {days[str(lowerCamelCase_)]}!' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) lowerCAmelCase__ = parser.parse_args() zeller(args.date_input)
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''encoder-decoder''' _lowerCamelCase = True def __init__( self : Tuple , **UpperCAmelCase_ : Tuple): super().__init__(**UpperCAmelCase_) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase__ : List[str] = kwargs.pop('encoder') UpperCamelCase__ : Any = encoder_config.pop('model_type') UpperCamelCase__ : Optional[int] = kwargs.pop('decoder') UpperCamelCase__ : Union[str, Any] = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig UpperCamelCase__ : Dict = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[Any] = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = True @classmethod def __UpperCamelCase ( cls : Any , UpperCAmelCase_ : PretrainedConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Optional[int]): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config') UpperCamelCase__ : Dict = True UpperCamelCase__ : Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = copy.deepcopy(self.__dict__) UpperCamelCase__ : Union[str, Any] = self.encoder.to_dict() UpperCamelCase__ : Optional[int] = self.decoder.to_dict() UpperCamelCase__ : Optional[int] = self.__class__.model_type return output
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[int] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : List[Any]): UpperCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : str = kwargs.pop('feature_extractor') UpperCamelCase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : Tuple , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Any]="max_length" , UpperCAmelCase_ : str="np" , **UpperCAmelCase_ : Optional[Any]): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.') if text is not None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_) or (isinstance(UpperCAmelCase_ , UpperCAmelCase_) and not isinstance(text[0] , UpperCAmelCase_)): UpperCamelCase__ : Union[str, Any] = [self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_)] elif isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(text[0] , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [] # Maximum number of queries across batch UpperCamelCase__ : Tuple = max([len(UpperCAmelCase_) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase_) != max_num_queries: UpperCamelCase__ : List[Any] = t + [' '] * (max_num_queries - len(UpperCAmelCase_)) UpperCamelCase__ : str = self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) encodings.append(UpperCAmelCase_) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings') if return_tensors == "np": UpperCamelCase__ : List[str] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) UpperCamelCase__ : List[str] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase__ : Union[str, Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0) UpperCamelCase__ : List[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase__ : Dict = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0) UpperCamelCase__ : Union[str, Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase__ : List[str] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0) UpperCamelCase__ : Union[str, Any] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0) else: raise ValueError('Target return tensor type could not be returned') UpperCamelCase__ : Optional[Any] = BatchEncoding() UpperCamelCase__ : str = input_ids UpperCamelCase__ : Optional[Any] = attention_mask if query_images is not None: UpperCamelCase__ : Tuple = BatchEncoding() UpperCamelCase__ : Tuple = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_).pixel_values UpperCamelCase__ : Union[str, Any] = query_pixel_values if images is not None: UpperCamelCase__ : List[str] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: UpperCamelCase__ : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase__ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): return self.image_processor.post_process(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]): return self.image_processor.post_process_object_detection(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : str): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any]): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = UnCLIPImageVariationPipeline _lowerCamelCase = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} _lowerCamelCase = IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] _lowerCamelCase = False @property def __UpperCamelCase ( self : Tuple): return 32 @property def __UpperCamelCase ( self : Tuple): return 32 @property def __UpperCamelCase ( self : int): return self.time_input_dim @property def __UpperCamelCase ( self : Any): return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[Any]): return 100 @property def __UpperCamelCase ( self : Any): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase_) @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCAmelCase_) @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Dict = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } UpperCamelCase__ : int = UnCLIPTextProjModel(**UpperCAmelCase_) return model @property def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } UpperCamelCase__ : Optional[Any] = UNetaDConditionModel(**UpperCAmelCase_) return model @property def __UpperCamelCase ( self : List[str]): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __UpperCamelCase ( self : List[Any]): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs) return model @property def __UpperCamelCase ( self : Optional[Any]): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) UpperCamelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.dummy_decoder UpperCamelCase__ : Dict = self.dummy_text_proj UpperCamelCase__ : int = self.dummy_text_encoder UpperCamelCase__ : Tuple = self.dummy_tokenizer UpperCamelCase__ : Optional[Any] = self.dummy_super_res_first UpperCamelCase__ : List[str] = self.dummy_super_res_last UpperCamelCase__ : Optional[Any] = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCamelCase__ : Tuple = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) UpperCamelCase__ : List[Any] = CLIPImageProcessor(crop_size=32 , size=32) UpperCamelCase__ : Optional[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Dict=True): UpperCamelCase__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) if str(UpperCAmelCase_).startswith('mps'): UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) else: UpperCamelCase__ : str = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) if pil_image: UpperCamelCase__ : List[Any] = input_image * 0.5 + 0.5 UpperCamelCase__ : str = input_image.clamp(0 , 1) UpperCamelCase__ : Optional[Any] = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() UpperCamelCase__ : int = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = 'cpu' UpperCamelCase__ : Optional[Any] = self.get_dummy_components() UpperCamelCase__ : Dict = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : int = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_) UpperCamelCase__ : int = output.images UpperCamelCase__ : Dict = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : List[str] = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : int = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : int = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = 'cpu' UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : Any = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : Any = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : Dict = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : Dict = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : int = 'cpu' UpperCamelCase__ : int = self.get_dummy_components() UpperCamelCase__ : Tuple = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : Dict = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Dict = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : Dict = [ pipeline_inputs['image'], pipeline_inputs['image'], ] UpperCamelCase__ : int = pipe(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = output.images UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : List[str] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] UpperCamelCase__ : str = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCamelCase__ : Any = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = torch.device('cpu') class __lowercase : _lowerCamelCase = 1 UpperCamelCase__ : List[Any] = self.get_dummy_components() UpperCamelCase__ : Dict = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Union[str, Any] = pipe.decoder.dtype UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Optional[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCamelCase__ : Optional[int] = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler()) UpperCamelCase__ : Any = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCamelCase__ : str = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler()) UpperCamelCase__ : List[str] = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_).images UpperCamelCase__ : int = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_) # Don't pass image, instead pass embedding UpperCamelCase__ : Dict = pipeline_inputs.pop('image') UpperCamelCase__ : int = pipe.image_encoder(UpperCAmelCase_).image_embeds UpperCamelCase__ : int = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ , image_embeddings=UpperCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a).max() < 1e-4 @skip_mps def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[int] = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCamelCase__ : Optional[Any] = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase_ , expected_max_diff=UpperCAmelCase_) @skip_mps def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = torch_device == 'cpu' UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[int] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCamelCase__ : Tuple = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCAmelCase_) @skip_mps def __UpperCamelCase ( self : List[Any]): return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCamelCase ( self : str): return super().test_save_load_local() @skip_mps def __UpperCamelCase ( self : Optional[Any]): return super().test_save_load_optional_components() @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png') UpperCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy') UpperCamelCase__ : Any = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa) UpperCamelCase__ : Dict = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = torch.Generator(device='cpu').manual_seed(0) UpperCamelCase__ : Optional[int] = pipeline( UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : List[Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ , 15)
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase__ = random.Random() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None) -> str: if rng is None: UpperCamelCase__ : List[Any] = global_rng UpperCamelCase__ : str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): def __init__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : List[str]=2_000 , UpperCAmelCase_ : int=24 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=16_000 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , ): UpperCamelCase__ : Any = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : Any = min_seq_length UpperCamelCase__ : Optional[Any] = max_seq_length UpperCamelCase__ : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : List[str] = feature_size UpperCamelCase__ : Optional[int] = num_mel_bins UpperCamelCase__ : Tuple = padding_value UpperCamelCase__ : List[str] = sampling_rate UpperCamelCase__ : Optional[Any] = return_attention_mask UpperCamelCase__ : int = do_normalize def __UpperCamelCase ( self : Tuple): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Any=False): def _flatten(UpperCAmelCase_ : List[Any]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: UpperCamelCase__ : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size UpperCamelCase__ : Union[str, Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: UpperCamelCase__ : Optional[Any] = [np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[Any] = SpeechaTextFeatureExtractionTester(self) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1e-3)) def __UpperCamelCase ( self : Optional[int]): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = [np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ : Union[str, Any] = feature_extractor(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np').input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input UpperCamelCase__ : str = feature_extractor(speech_inputs[0] , return_tensors='np').input_features UpperCamelCase__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_features self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) # Test batched UpperCamelCase__ : Tuple = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features UpperCamelCase__ : Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in (800, 800, 800)] UpperCamelCase__ : Dict = np.asarray(UpperCAmelCase_) UpperCamelCase__ : str = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features UpperCamelCase__ : Tuple = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Union[str, Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase__ : Tuple = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = feature_extractor( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_) UpperCamelCase__ : List[str] = inputs.input_features UpperCamelCase__ : int = inputs.attention_mask UpperCamelCase__ : Optional[Any] = [np.sum(UpperCAmelCase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : str = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase__ : Union[str, Any] = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Dict = feature_extractor( UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = inputs.input_features UpperCamelCase__ : List[str] = inputs.attention_mask UpperCamelCase__ : Dict = [np.sum(UpperCAmelCase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = feature_extractor( UpperCAmelCase_ , padding='max_length' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = inputs.input_features UpperCamelCase__ : str = inputs.attention_mask UpperCamelCase__ : Tuple = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : str = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : int = inputs.input_features UpperCamelCase__ : Any = inputs.attention_mask UpperCamelCase__ : Optional[int] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : Optional[Any] = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=16 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = inputs.input_features UpperCamelCase__ : int = inputs.attention_mask UpperCamelCase__ : Tuple = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def __UpperCamelCase ( self : Any): import torch UpperCamelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Dict = np.random.rand(100 , 32).astype(np.floataa) UpperCamelCase__ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_features.dtype == np.floataa) UpperCamelCase__ : int = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Tuple): from datasets import load_dataset UpperCamelCase__ : Tuple = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech UpperCamelCase__ : List[str] = ds.sort('id').select(range(UpperCAmelCase_))[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : List[Any]): # fmt: off UpperCamelCase__ : Any = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ]) # fmt: on UpperCamelCase__ : List[str] = self._load_datasamples(1) UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : int = feature_extractor(UpperCAmelCase_ , return_tensors='pt').input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase_ , atol=1e-4))
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' def __UpperCAmelCase ( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1)) for i in range(1_000)] lowerCAmelCase__ = generate_large_matrix() lowerCAmelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCAmelCase ( lowerCamelCase_) -> None: assert all(row == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for row in grid) assert all(list(lowerCamelCase_) == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for col in zip(*lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : List[str] = len(lowerCamelCase_) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCamelCase__ : int = (left + right) // 2 UpperCamelCase__ : int = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCamelCase__ : Union[str, Any] = mid + 1 else: UpperCamelCase__ : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = len(grid[0]) for i in range(len(lowerCamelCase_)): UpperCamelCase__ : Dict = find_negative_index(grid[i][:bound]) total += bound return (len(lowerCamelCase_) * len(grid[0])) - total def __UpperCAmelCase ( lowerCamelCase_) -> int: return len([number for row in grid for number in row if number < 0]) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = 0 for row in grid: for i, number in enumerate(lowerCamelCase_): if number < 0: total += len(lowerCamelCase_) - i break return total def __UpperCAmelCase ( ) -> None: from timeit import timeit print('Running benchmarks') UpperCamelCase__ : Optional[int] = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCamelCase__ : Any = timeit(f'{func}(grid=grid)' , setup=lowerCamelCase_ , number=500) print(f'{func}() took {time:0.4f} seconds') if __name__ == "__main__": import doctest doctest.testmod() benchmark()
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase__ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase__ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase__ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModel) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1