code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from importlib import import_module from .logging import get_logger _snake_case = get_logger(__name__) class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None ): lowerCamelCase__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = module._original_module if isinstance(SCREAMING_SNAKE_CASE__ , _PatchedModuleObj ) else module class _a : a_ : Any = [] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None ): lowerCamelCase__ = obj lowerCamelCase__ = target lowerCamelCase__ = new lowerCamelCase__ = target.split('.' )[0] lowerCamelCase__ = {} lowerCamelCase__ = attrs or [] def __enter__( self : int ): *lowerCamelCase__ , lowerCamelCase__ = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: lowerCamelCase__ = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): lowerCamelCase__ = obj_attr # patch at top level setattr(self.obj , SCREAMING_SNAKE_CASE__ , _PatchedModuleObj(SCREAMING_SNAKE_CASE__ , attrs=self.attrs ) ) lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , attrs=self.attrs ) ) lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowerCamelCase__ = getattr(import_module('.'.join(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , SCREAMING_SNAKE_CASE__ ) is attr_value: lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE__ ) setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowerCamelCase__ = globals()['__builtins__'][target_attr] setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : int ): for attr in list(self.original ): setattr(self.obj , SCREAMING_SNAKE_CASE__ , self.original.pop(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Any ): self.__enter__() self._active_patches.append(self ) def _UpperCamelCase ( self : Tuple ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
659
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case ( _a: Optional[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [-1] * len(_a ) def dfs(_a: Any , _a: Optional[int] ): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["PerceiverFeatureExtractor"] _snake_case = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
1
"""simple docstring""" from __future__ import annotations import numpy as np def snake_case ( _a: list[float] )-> Optional[Any]: '''simple docstring''' return np.maximum(0 , _a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
659
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def snake_case ( _a: Callable[[int | float], int | float] , _a: int | float , _a: int | float , _a: int = 100 , )-> float: '''simple docstring''' lowerCamelCase__ = x_start lowerCamelCase__ = fnc(_a ) lowerCamelCase__ = 0.0 for _ in range(_a ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCamelCase__ = (x_end - x_start) / steps + xa lowerCamelCase__ = fnc(_a ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCamelCase__ = xa lowerCamelCase__ = fxa return area if __name__ == "__main__": def snake_case ( _a: Union[str, Any] )-> Tuple: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") _snake_case = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
659
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
1
"""simple docstring""" import argparse import struct import unittest class _a : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bytes ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants lowerCamelCase__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : bytes ): lowerCamelCase__ = B'\x80' + (B'\x00' * (63 - (len(SCREAMING_SNAKE_CASE__ ) + 8) % 64)) lowerCamelCase__ = struct.pack('>Q' , (len(SCREAMING_SNAKE_CASE__ ) * 8) ) return data + padding + big_endian_integer def _UpperCamelCase ( self : Dict ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack('>16L' , SCREAMING_SNAKE_CASE__ ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowerCamelCase__ = self.ror(SCREAMING_SNAKE_CASE__ , 6 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 11 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowerCamelCase__ = self.ror(SCREAMING_SNAKE_CASE__ , 2 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 13 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = ''.join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 0Xf_f_f_f_f_f_f_f & (value << (32 - rotations)) | (value >> rotations) class _a ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ): import hashlib lowerCamelCase__ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash , hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() ) def snake_case ( )-> None: '''simple docstring''' import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(_a , 'utf-8' ) print(SHAaaa(_a ).hash ) if __name__ == "__main__": main()
659
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
1
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class _a : a_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a_ : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) a_ : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to log verbose messages or not.'} , ) a_ : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) a_ : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) a_ : Optional[float] = field( default=0.999995 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def snake_case ( _a: ModelArguments , _a: TrainingArguments )-> Dict: '''simple docstring''' logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase__ = logging.WARNING if model_args.verbose_logging: lowerCamelCase__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowerCamelCase__ = logging.INFO logger.setLevel(_a ) @dataclass class _a : a_ : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) a_ : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) a_ : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) a_ : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) a_ : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a_ : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) a_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) a_ : Optional[float] = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class _a : a_ : WavaVecaForPreTraining a_ : WavaVecaFeatureExtractor a_ : Union[bool, str] = "longest" a_ : Optional[int] = None a_ : Optional[int] = None def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format lowerCamelCase__ = self.feature_extractor.pad( SCREAMING_SNAKE_CASE__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowerCamelCase__ = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) lowerCamelCase__ = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCamelCase__ = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) lowerCamelCase__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCamelCase__ = 1 lowerCamelCase__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCamelCase__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=SCREAMING_SNAKE_CASE__ , min_masks=2 , ) return batch class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , **SCREAMING_SNAKE_CASE__ : List[str] ): super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 0 lowerCamelCase__ = max_gumbel_temp lowerCamelCase__ = min_gumbel_temp lowerCamelCase__ = gumbel_temp_decay def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : nn.Module , SCREAMING_SNAKE_CASE__ : Dict[str, Union[torch.Tensor, Any]] ): model.train() lowerCamelCase__ = self._prepare_inputs(SCREAMING_SNAKE_CASE__ ) if self.use_amp: with autocast(): lowerCamelCase__ = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCamelCase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCamelCase__ = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowerCamelCase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE__ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def snake_case ( )-> List[str]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() configure_logger(_a , _a ) # Downloading and loading a dataset from the hub. lowerCamelCase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_a ) def prepare_dataset(_a: List[Any] ): # check that all files have the correct sampling rate lowerCamelCase__ , lowerCamelCase__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowerCamelCase__ = datasets.map( _a , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long lowerCamelCase__ = vectorized_datasets.filter( lambda _a : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_a: List[str] ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowerCamelCase__ = vectorized_datasets.map( _a , batched=_a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCamelCase__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) lowerCamelCase__ = WavaVecaForPreTraining(_a ) lowerCamelCase__ = DataCollatorForWavaVecaPretraining(model=_a , feature_extractor=_a ) lowerCamelCase__ = WavaVecaPreTrainer( model=_a , data_collator=_a , args=_a , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=_a , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
659
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
659
1
"""simple docstring""" from PIL import Image def snake_case ( _a: Image , _a: float )-> Image: '''simple docstring''' def brightness(_a: int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_a ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _snake_case = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
659
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
1
"""simple docstring""" def snake_case ( _a: int , _a: int , _a: list[list[int]] )-> int: '''simple docstring''' def update_area_of_max_square(_a: int , _a: int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCamelCase__ = update_area_of_max_square(_a , col + 1 ) lowerCamelCase__ = update_area_of_max_square(row + 1 , col + 1 ) lowerCamelCase__ = update_area_of_max_square(row + 1 , _a ) if mat[row][col]: lowerCamelCase__ = 1 + min([right, diagonal, down] ) lowerCamelCase__ = max(largest_square_area[0] , _a ) return sub_problem_sol else: return 0 lowerCamelCase__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def snake_case ( _a: int , _a: int , _a: list[list[int]] )-> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( _a: int , _a: int , _a: list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCamelCase__ = update_area_of_max_square_using_dp_array(_a , col + 1 , _a ) lowerCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _a ) lowerCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , _a , _a ) if mat[row][col]: lowerCamelCase__ = 1 + min([right, diagonal, down] ) lowerCamelCase__ = max(largest_square_area[0] , _a ) lowerCamelCase__ = sub_problem_sol return sub_problem_sol else: return 0 lowerCamelCase__ = [0] lowerCamelCase__ = [[-1] * cols for _ in range(_a )] update_area_of_max_square_using_dp_array(0 , 0 , _a ) return largest_square_area[0] def snake_case ( _a: int , _a: int , _a: list[list[int]] )-> int: '''simple docstring''' lowerCamelCase__ = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCamelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__ = dp_array[row][col + 1] lowerCamelCase__ = dp_array[row + 1][col + 1] lowerCamelCase__ = dp_array[row + 1][col] if mat[row][col] == 1: lowerCamelCase__ = 1 + min(_a , _a , _a ) lowerCamelCase__ = max(dp_array[row][col] , _a ) else: lowerCamelCase__ = 0 return largest_square_area def snake_case ( _a: int , _a: int , _a: list[list[int]] )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (cols + 1) lowerCamelCase__ = [0] * (cols + 1) lowerCamelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__ = current_row[col + 1] lowerCamelCase__ = next_row[col + 1] lowerCamelCase__ = next_row[col] if mat[row][col] == 1: lowerCamelCase__ = 1 + min(_a , _a , _a ) lowerCamelCase__ = max(current_row[col] , _a ) else: lowerCamelCase__ = 0 lowerCamelCase__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
659
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
1
"""simple docstring""" import qiskit def snake_case ( _a: int , _a: int )-> qiskit.result.counts.Counts: '''simple docstring''' lowerCamelCase__ = qiskit.Aer.get_backend('aer_simulator' ) lowerCamelCase__ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase__ = qiskit.execute(_a , _a , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_a ) if __name__ == "__main__": _snake_case = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
659
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union _snake_case = TypeVar("T") _snake_case = Union[List[T], Tuple[T, ...]] _snake_case = Union[T, List[T], Dict[str, T]] _snake_case = Union[str, bytes, os.PathLike]
659
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( SCREAMING_SNAKE_CASE_ ): def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as input_file: lowerCamelCase__ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) lowerCamelCase__ = input_file.read() lowerCamelCase__ = regexp.search(SCREAMING_SNAKE_CASE__ ) return match def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as input_file: lowerCamelCase__ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) lowerCamelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCamelCase__ = regexp.finditer(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = Path('./datasets' ) lowerCamelCase__ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE__ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = Path('./datasets' ) lowerCamelCase__ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(SCREAMING_SNAKE_CASE__ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
659
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase ): @property def _UpperCamelCase ( self : str ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.dummy_uncond_unet lowerCamelCase__ = PNDMScheduler() lowerCamelCase__ = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type='numpy' ).images lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type='numpy' , return_dict=SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Any ): lowerCamelCase__ = 'google/ddpm-cifar10-32' lowerCamelCase__ = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = PNDMScheduler() lowerCamelCase__ = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
659
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = 'swinv2' a_ : Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int=2_24 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : str=96 , SCREAMING_SNAKE_CASE__ : Dict=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : int=32 , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) lowerCamelCase__ = (0, 0, 0, 0)
659
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case ( _a: int = 100 )-> int: '''simple docstring''' lowerCamelCase__ = factorial(_a ) lowerCamelCase__ = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
659
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Tuple = StableDiffusionXLImgaImgPipeline a_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} a_ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} a_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase__ = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=32 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=0 ): lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCamelCase ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCamelCase ( self : Any ): pass def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # forward without prompt embeds lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 3 * ['this is a negative prompt'] lowerCamelCase__ = negative_prompt lowerCamelCase__ = 3 * [inputs['prompt']] lowerCamelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 3 * ['this is a negative prompt'] lowerCamelCase__ = 3 * [inputs.pop('prompt' )] ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = sd_pipe.encode_prompt(SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe( **SCREAMING_SNAKE_CASE__ , prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , pooled_prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_pooled_prompt_embeds=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]="cpu" , SCREAMING_SNAKE_CASE__ : List[str]=torch.floataa , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE__ ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ ).images lowerCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) lowerCamelCase__ = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
659
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
1
"""simple docstring""" class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = value lowerCamelCase__ = weight def __repr__( self : List[Any] ): return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def _UpperCamelCase ( self : Union[str, Any] ): return self.value def _UpperCamelCase ( self : Dict ): return self.name def _UpperCamelCase ( self : Tuple ): return self.weight def _UpperCamelCase ( self : Tuple ): return self.value / self.weight def snake_case ( _a: str , _a: Optional[int] , _a: Tuple )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [] for i in range(len(_a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case ( _a: str , _a: Dict , _a: List[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = sorted(_a , key=_a , reverse=_a ) lowerCamelCase__ = [] lowerCamelCase__ , lowerCamelCase__ = 0.0, 0.0 for i in range(len(_a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case ( )-> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
659
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case ( _a: Any )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = test_results.split(' ' ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None lowerCamelCase__ = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _a ): lowerCamelCase__ = True lowerCamelCase__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ = line lowerCamelCase__ = False return failures class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = title lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ = doc_test_results['success'] lowerCamelCase__ = doc_test_results['failures'] lowerCamelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ = doc_test_results @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [self._time_spent] lowerCamelCase__ = 0 for time in time_spent: lowerCamelCase__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCamelCase__ = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def _UpperCamelCase ( self : Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 40 lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} lowerCamelCase__ = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def _UpperCamelCase ( self : str ): lowerCamelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( ): lowerCamelCase__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[int] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' lowerCamelCase__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = '' for key, value in failures.items(): lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' lowerCamelCase__ = job_name lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self : Optional[int] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n' lowerCamelCase__ = job_result['failures'] lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def snake_case ( )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCamelCase__ = requests.get(_a ).json() lowerCamelCase__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_a ): lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _a ) return {} def snake_case ( _a: str )-> Dict: '''simple docstring''' lowerCamelCase__ = {} if os.path.exists(_a ): lowerCamelCase__ = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f: lowerCamelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e return _artifact def snake_case ( )-> Optional[int]: '''simple docstring''' class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = [] def __str__( self : Dict ): return self.name def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ = {} lowerCamelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ = directory if artifact_name not in _available_artifacts: lowerCamelCase__ = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
659
1
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[PIL.Image.Image, np.ndarray] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : PriorTransformer , SCREAMING_SNAKE_CASE__ : CLIPVisionModel , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE__ : ShapERenderer , ): super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE__ , image_encoder=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , renderer=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): if latents is None: lowerCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase__ = latents.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ = torch.device(F'cuda:{gpu_id}' ) lowerCamelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Dict ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase__ = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_encoder(SCREAMING_SNAKE_CASE__ )['last_hidden_state'] lowerCamelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = torch.zeros_like(SCREAMING_SNAKE_CASE__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ = self._encode_image(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.prior.config.num_embeddings lowerCamelCase__ = self.prior.config.embedding_dim lowerCamelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase__ = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.prior( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , proj_embedding=SCREAMING_SNAKE_CASE__ , ).predicted_image_embedding # remove the variance lowerCamelCase__ , lowerCamelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE__ ): print() lowerCamelCase__ = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.stack(SCREAMING_SNAKE_CASE__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase__ = images.cpu().numpy() if output_type == "pil": lowerCamelCase__ = [self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from math import factorial def snake_case ( _a: int = 20 )-> int: '''simple docstring''' lowerCamelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCamelCase__ = n // 2 return int(factorial(_a ) / (factorial(_a ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _snake_case = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
659
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def snake_case ( _a: str )-> int: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = tokenizer(example['content'] , truncation=_a )['input_ids'] lowerCamelCase__ = len(example['content'] ) / len(output['input_ids'] ) return output _snake_case = HfArgumentParser(PretokenizationArguments) _snake_case = parser.parse_args() if args.num_workers is None: _snake_case = multiprocessing.cpu_count() _snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir) _snake_case = time.time() _snake_case = load_dataset(args.dataset_name, split="train") print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") _snake_case = time.time() _snake_case = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") _snake_case = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
659
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Any=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (TFBlipTextModel,) if is_tf_available() else () a_ : List[str] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : str ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): pass def _UpperCamelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : Dict ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : List[Any] ): pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["YolosFeatureExtractor"] _snake_case = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
659
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _a : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , ): lowerCamelCase__ = parent lowerCamelCase__ = 13 lowerCamelCase__ = 7 lowerCamelCase__ = 30 lowerCamelCase__ = self.seq_length + self.mem_len lowerCamelCase__ = 15 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 99 lowerCamelCase__ = [10, 50, 80] lowerCamelCase__ = 32 lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = 8 lowerCamelCase__ = 1_28 lowerCamelCase__ = 2 lowerCamelCase__ = 2 lowerCamelCase__ = None lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = 3 lowerCamelCase__ = self.vocab_size - 1 lowerCamelCase__ = 0.01 def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _UpperCamelCase ( self : Union[str, Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = TFTransfoXLModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'mems': mems_a} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'labels': lm_labels} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ , lowerCamelCase__ = model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a_ : int = () if is_tf_available() else () a_ : List[Any] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a_ : Optional[Any] = False a_ : Dict = False a_ : Any = False a_ : Any = False def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = TFTransfoXLModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , d_embed=37 ) def _UpperCamelCase ( self : Any ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[str] ): self.model_tester.set_seed() lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): self.model_tester.set_seed() lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase__ = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer ) lowerCamelCase__ = model.get_bias() assert name is None else: lowerCamelCase__ = model.get_output_embeddings() assert x is None lowerCamelCase__ = model.get_bias() assert name is None def _UpperCamelCase ( self : int ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def _UpperCamelCase ( self : Dict ): pass @require_tf class _a ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off lowerCamelCase__ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase__ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _snake_case = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _snake_case = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _snake_case = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION a_ : List[str] = FunnelTokenizer a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : int = 2 def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<sep>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple="<cls>" , SCREAMING_SNAKE_CASE__ : Tuple="<mask>" , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int="##" , **SCREAMING_SNAKE_CASE__ : Any , ): super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , clean_text=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , wordpieces_prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = do_lower_case def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): lowerCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" _snake_case = {str(digit): digit**5 for digit in range(10)} def snake_case ( _a: int )-> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_a ) ) def snake_case ( )-> int: '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(_a ) ) if __name__ == "__main__": print(solution())
659
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case ( _a: Optional[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [-1] * len(_a ) def dfs(_a: Any , _a: Optional[int] ): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
659
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = 'gptj' a_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=5_04_00 , SCREAMING_SNAKE_CASE__ : str=20_48 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=40_96 , SCREAMING_SNAKE_CASE__ : str=28 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any="gelu_new" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=5_02_56 , SCREAMING_SNAKE_CASE__ : Dict=5_02_56 , SCREAMING_SNAKE_CASE__ : str=False , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : PretrainedConfig , SCREAMING_SNAKE_CASE__ : str = "default" , SCREAMING_SNAKE_CASE__ : List[PatchingSpec] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): super().__init__(SCREAMING_SNAKE_CASE__ , task=SCREAMING_SNAKE_CASE__ , patching_specs=SCREAMING_SNAKE_CASE__ , use_past=SCREAMING_SNAKE_CASE__ ) if not getattr(self._config , 'pad_token_id' , SCREAMING_SNAKE_CASE__ ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='inputs' ) lowerCamelCase__ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def _UpperCamelCase ( self : Optional[int] ): return self._config.n_layer @property def _UpperCamelCase ( self : Dict ): return self._config.n_head def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ): lowerCamelCase__ = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs['attention_mask'] if self.use_past: lowerCamelCase__ = ordered_inputs['attention_mask'].dtype lowerCamelCase__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self : List[str] ): return 13
659
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _snake_case = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def snake_case ( _a: int )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} state_dict.pop('pixel_mean' , _a ) state_dict.pop('pixel_std' , _a ) lowerCamelCase__ = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase__ = key.replace(_a , _a ) if re.match(_a , _a ): lowerCamelCase__ = int(re.match(_a , _a ).group(2 ) ) if layer_nb == 0: lowerCamelCase__ = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: lowerCamelCase__ = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: lowerCamelCase__ = key.replace('layers.2' , 'proj_out' ) lowerCamelCase__ = value lowerCamelCase__ = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def snake_case ( _a: Dict , _a: Optional[Any] , _a: Union[str, Any] , _a: Optional[Any]="ybelkada/segment-anything" )-> Tuple: '''simple docstring''' lowerCamelCase__ = hf_hub_download(_a , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: lowerCamelCase__ = SamConfig() elif "sam_vit_l" in model_name: lowerCamelCase__ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCamelCase__ = SamConfig( vision_config=_a , ) elif "sam_vit_h" in model_name: lowerCamelCase__ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCamelCase__ = SamConfig( vision_config=_a , ) lowerCamelCase__ = torch.load(_a , map_location='cpu' ) lowerCamelCase__ = replace_keys(_a ) lowerCamelCase__ = SamImageProcessor() lowerCamelCase__ = SamProcessor(image_processor=_a ) lowerCamelCase__ = SamModel(_a ) hf_model.load_state_dict(_a ) lowerCamelCase__ = hf_model.to('cuda' ) lowerCamelCase__ = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' lowerCamelCase__ = Image.open(requests.get(_a , stream=_a ).raw ).convert('RGB' ) lowerCamelCase__ = [[[400, 650]]] lowerCamelCase__ = [[1]] lowerCamelCase__ = processor(images=np.array(_a ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCamelCase__ = hf_model(**_a ) lowerCamelCase__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 lowerCamelCase__ = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCamelCase__ = hf_model(**_a ) lowerCamelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 lowerCamelCase__ = ((75, 275, 1725, 850),) lowerCamelCase__ = processor(images=np.array(_a ) , input_boxes=_a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCamelCase__ = hf_model(**_a ) lowerCamelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. lowerCamelCase__ = [[[400, 650], [800, 650]]] lowerCamelCase__ = [[1, 1]] lowerCamelCase__ = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowerCamelCase__ = hf_model(**_a ) lowerCamelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": _snake_case = argparse.ArgumentParser() _snake_case = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _snake_case = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
659
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = StableDiffusionControlNetImgaImgPipeline a_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} a_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) a_ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 2 lowerCamelCase__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ) lowerCamelCase__ = floats_tensor(control_image.shape , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((64, 64) ) lowerCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _UpperCamelCase ( self : Dict ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : Union[str, Any] ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = StableDiffusionControlNetImgaImgPipeline a_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} a_ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ : int = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _UpperCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(SCREAMING_SNAKE_CASE__ : Any ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(0 ) lowerCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(0 ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = MultiControlNetModel([controlneta, controlneta] ) lowerCamelCase__ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 2 lowerCamelCase__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ), ] lowerCamelCase__ = floats_tensor(control_image[0].shape , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((64, 64) ) lowerCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 10.0 lowerCamelCase__ = 4 lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = steps lowerCamelCase__ = scale lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = steps lowerCamelCase__ = scale lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = steps lowerCamelCase__ = scale lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = steps lowerCamelCase__ = scale lowerCamelCase__ = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _UpperCamelCase ( self : Optional[int] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : List[Any] ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCamelCase__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=SCREAMING_SNAKE_CASE__ , controlnet=SCREAMING_SNAKE_CASE__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ = 'evil space-punk bird' lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) ) lowerCamelCase__ = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) ) lowerCamelCase__ = pipe( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , control_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) lowerCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" class _a : def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : bool = False ): # Mapping from the first character of the prefix of the node lowerCamelCase__ = {} # A node will be a leaf if the tree contains its word lowerCamelCase__ = is_leaf lowerCamelCase__ = prefix def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : list[str] ): for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowerCamelCase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCamelCase__ = RadixNode(prefix=SCREAMING_SNAKE_CASE__ , is_leaf=SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = self.nodes[word[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCamelCase__ = remaining_prefix lowerCamelCase__ = self.nodes[matching_string[0]] lowerCamelCase__ = RadixNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = aux_node if remaining_word == "": lowerCamelCase__ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCamelCase__ = list(self.nodes.values() )[0] lowerCamelCase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowerCamelCase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCamelCase__ = False # If there is 1 edge, we merge it with its child else: lowerCamelCase__ = list(incoming_node.nodes.values() )[0] lowerCamelCase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCamelCase__ = merging_node.nodes return True def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 0 ): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def snake_case ( )-> bool: '''simple docstring''' lowerCamelCase__ = 'banana bananas bandana band apple all beast'.split() lowerCamelCase__ = RadixNode() root.insert_many(_a ) assert all(root.find(_a ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def snake_case ( )-> None: '''simple docstring''' assert test_trie() def snake_case ( )-> None: '''simple docstring''' lowerCamelCase__ = RadixNode() lowerCamelCase__ = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(_a ) print('Words:' , _a ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
659
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
1
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class _a : def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : uuid.UUID = None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ): if not conversation_id: lowerCamelCase__ = uuid.uuida() if past_user_inputs is None: lowerCamelCase__ = [] if generated_responses is None: lowerCamelCase__ = [] lowerCamelCase__ = conversation_id lowerCamelCase__ = past_user_inputs lowerCamelCase__ = generated_responses lowerCamelCase__ = text def __eq__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCamelCase__ = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCamelCase__ = text def _UpperCamelCase ( self : Any ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCamelCase__ = None def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ): self.generated_responses.append(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[str] ): lowerCamelCase__ = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCamelCase__ = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( SCREAMING_SNAKE_CASE_ , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ): super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.tokenizer.pad_token_id is None: lowerCamelCase__ = self.tokenizer.eos_token def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = {} lowerCamelCase__ = {} lowerCamelCase__ = {} if min_length_for_response is not None: lowerCamelCase__ = min_length_for_response if minimum_tokens is not None: lowerCamelCase__ = minimum_tokens if "max_length" in generate_kwargs: lowerCamelCase__ = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCamelCase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE__ : List[str]=0 , **SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = super().__call__(SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) == 1: return outputs[0] return outputs def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Conversation , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCamelCase__ = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCamelCase__ = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE__ ) if self.framework == "pt": lowerCamelCase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCamelCase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=10 , **SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCamelCase__ = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCamelCase__ = max_length - minimum_tokens lowerCamelCase__ = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCamelCase__ = model_inputs['attention_mask'][:, -trim:] lowerCamelCase__ = model_inputs.pop('conversation' ) lowerCamelCase__ = max_length lowerCamelCase__ = self.model.generate(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.model.config.is_encoder_decoder: lowerCamelCase__ = 1 else: lowerCamelCase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int=True ): lowerCamelCase__ = model_outputs['output_ids'] lowerCamelCase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE__ ) return conversation def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Conversation ): lowerCamelCase__ = self.tokenizer.eos_token_id lowerCamelCase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > self.tokenizer.model_max_length: lowerCamelCase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
659
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _snake_case = logging.get_logger("transformers.models.speecht5") _snake_case = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } _snake_case = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } _snake_case = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } _snake_case = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } _snake_case = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } _snake_case = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } _snake_case = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } _snake_case = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _snake_case = [] _snake_case = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] _snake_case = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] _snake_case = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] _snake_case = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def snake_case ( _a: List[Any] , _a: str , _a: Any , _a: str , _a: Tuple )-> Dict: '''simple docstring''' for attribute in key.split('.' ): lowerCamelCase__ = getattr(_a , _a ) if weight_type is not None: lowerCamelCase__ = getattr(_a , _a ).shape else: lowerCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value elif weight_type == "running_mean": lowerCamelCase__ = value elif weight_type == "running_var": lowerCamelCase__ = value elif weight_type == "num_batches_tracked": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def snake_case ( _a: Optional[Any] , _a: List[str] )-> Any: '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ , lowerCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case ( _a: int , _a: Union[str, Any] , _a: Tuple )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] if task == "s2t": lowerCamelCase__ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase__ = MAPPING_S2T lowerCamelCase__ = IGNORE_KEYS_S2T elif task == "t2s": lowerCamelCase__ = None lowerCamelCase__ = MAPPING_T2S lowerCamelCase__ = IGNORE_KEYS_T2S elif task == "s2s": lowerCamelCase__ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase__ = MAPPING_S2S lowerCamelCase__ = IGNORE_KEYS_S2S else: raise ValueError(F'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_a , _a ): logger.info(F'{name} was ignored' ) continue lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCamelCase__ , lowerCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: lowerCamelCase__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(_a )[0].split('.' )[-2] lowerCamelCase__ = mapped_key.replace('*' , _a ) if "weight_g" in name: lowerCamelCase__ = 'weight_g' elif "weight_v" in name: lowerCamelCase__ = 'weight_v' elif "bias" in name: lowerCamelCase__ = 'bias' elif "weight" in name: lowerCamelCase__ = 'weight' elif "running_mean" in name: lowerCamelCase__ = 'running_mean' elif "running_var" in name: lowerCamelCase__ = 'running_var' elif "num_batches_tracked" in name: lowerCamelCase__ = 'num_batches_tracked' else: lowerCamelCase__ = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( _a: Tuple , _a: Tuple , _a: Dict , _a: Dict , _a: Optional[Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = full_name.split('conv_layers.' )[-1] lowerCamelCase__ = name.split('.' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_a ) @torch.no_grad() def snake_case ( _a: Optional[int] , _a: int , _a: int , _a: Dict=None , _a: Optional[Any]=None , _a: Any=None , )-> Tuple: '''simple docstring''' if config_path is not None: lowerCamelCase__ = SpeechTaConfig.from_pretrained(_a ) else: lowerCamelCase__ = SpeechTaConfig() if task == "s2t": lowerCamelCase__ = config.max_text_positions lowerCamelCase__ = SpeechTaForSpeechToText(_a ) elif task == "t2s": lowerCamelCase__ = 1876 lowerCamelCase__ = 600 lowerCamelCase__ = config.max_speech_positions lowerCamelCase__ = SpeechTaForTextToSpeech(_a ) elif task == "s2s": lowerCamelCase__ = 1876 lowerCamelCase__ = config.max_speech_positions lowerCamelCase__ = SpeechTaForSpeechToSpeech(_a ) else: raise ValueError(F'Unknown task name: {task}' ) if vocab_path: lowerCamelCase__ = SpeechTaTokenizer(_a , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken('<mask>' , lstrip=_a , rstrip=_a ) lowerCamelCase__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) lowerCamelCase__ = SpeechTaFeatureExtractor() lowerCamelCase__ = SpeechTaProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(_a ) lowerCamelCase__ = torch.load(_a ) recursively_load_weights(fairseq_checkpoint['model'] , _a , _a ) model.save_pretrained(_a ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
659
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
659
1
"""simple docstring""" from __future__ import annotations def snake_case ( _a: int , _a: int )-> list[list[int]]: '''simple docstring''' lowerCamelCase__ = [] create_all_state(1 , _a , _a , [] , _a ) return result def snake_case ( _a: int , _a: int , _a: int , _a: list[int] , _a: list[list[int]] , )-> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_a , total_number - level + 2 ): current_list.append(_a ) create_all_state(i + 1 , _a , level - 1 , _a , _a ) current_list.pop() def snake_case ( _a: list[list[int]] )-> None: '''simple docstring''' for i in total_list: print(*_a ) if __name__ == "__main__": _snake_case = 4 _snake_case = 2 _snake_case = generate_all_combinations(n, k) print_all_state(total_list)
659
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = KandinskyVaaControlnetImgaImgPipeline a_ : List[str] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] a_ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] a_ : Optional[int] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] a_ : Union[str, Any] = False @property def _UpperCamelCase ( self : str ): return 32 @property def _UpperCamelCase ( self : int ): return 32 @property def _UpperCamelCase ( self : Union[str, Any] ): return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ): return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Tuple ): return 1_00 @property def _UpperCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase__ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def _UpperCamelCase ( self : Tuple ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Tuple ): torch.manual_seed(0 ) lowerCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.dummy_unet lowerCamelCase__ = self.dummy_movq lowerCamelCase__ = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ = DDIMScheduler(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): lowerCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image lowerCamelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((2_56, 2_56) ) # create hint lowerCamelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = output.images lowerCamelCase__ = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : int ): lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ = init_image.resize((5_12, 5_12) ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE__ ) ).float() / 2_55.0 lowerCamelCase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase__ = 'A robot, 4k photo' lowerCamelCase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ = pipe_prior( SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , strength=0.85 , generator=SCREAMING_SNAKE_CASE__ , negative_prompt='' , ).to_tuple() lowerCamelCase__ = pipeline( image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , hint=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='np' , ) lowerCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 _snake_case = get_tests_dir("fixtures/dummy-config.json") class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = 0 def _UpperCamelCase ( self : List[Any] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = AutoConfig.for_model('roberta' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'fake-roberta' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE__ ) # Wrong model type will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoConfig.register('model' , SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoConfig.register('bert' , SCREAMING_SNAKE_CASE__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase__ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _UpperCamelCase ( self : int ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase__ = AutoConfig.from_pretrained('bert-base' ) def _UpperCamelCase ( self : Any ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='aaaaaa' ) def _UpperCamelCase ( self : List[Any] ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def _UpperCamelCase ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def _UpperCamelCase ( self : Tuple ): class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = 'new-model' try: AutoConfig.register('new-model' , SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCamelCase__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
659
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule _snake_case = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
659
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
1
"""simple docstring""" import operator def snake_case ( _a: list , _a: bool = False , _a: list | None = None )-> list: '''simple docstring''' lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(_a ): if _operator(_a , sublist[-1] ): sublist.append(_a ) arr.pop(_a ) # merging sublist into solution list if not solution: solution.extend(_a ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(_a ): if not _operator(_a , _a ): solution.insert(_a , _a ) break else: solution.append(_a ) strand_sort(_a , _a , _a ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
659
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = 384 if "tiny" in model_name: lowerCamelCase__ = [3, 3, 9, 3] lowerCamelCase__ = [96, 192, 384, 768] if "small" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [96, 192, 384, 768] if "base" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [128, 256, 512, 1024] lowerCamelCase__ = 512 if "large" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [192, 384, 768, 1536] lowerCamelCase__ = 768 if "xlarge" in model_name: lowerCamelCase__ = [3, 3, 27, 3] lowerCamelCase__ = [256, 512, 1024, 2048] lowerCamelCase__ = 1024 # set label information lowerCamelCase__ = 150 lowerCamelCase__ = 'huggingface/label-files' lowerCamelCase__ = 'ade20k-id2label.json' lowerCamelCase__ = json.load(open(hf_hub_download(_a , _a , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ = {int(_a ): v for k, v in idalabel.items()} lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = ConvNextConfig( depths=_a , hidden_sizes=_a , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowerCamelCase__ = UperNetConfig( backbone_config=_a , auxiliary_in_channels=_a , num_labels=_a , idalabel=_a , labelaid=_a , ) return config def snake_case ( _a: Optional[int] )-> int: '''simple docstring''' lowerCamelCase__ = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def snake_case ( _a: int , _a: Any , _a: Any )-> List[Any]: '''simple docstring''' lowerCamelCase__ = dct.pop(_a ) lowerCamelCase__ = val def snake_case ( _a: Union[str, Any] , _a: Tuple , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } lowerCamelCase__ = model_name_to_url[model_name] lowerCamelCase__ = torch.hub.load_state_dict_from_url(_a , map_location='cpu' )['state_dict'] lowerCamelCase__ = get_upernet_config(_a ) lowerCamelCase__ = UperNetForSemanticSegmentation(_a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(_a ) if "bn" in key: lowerCamelCase__ = key.replace('bn' , 'batch_norm' ) lowerCamelCase__ = val # rename keys lowerCamelCase__ = create_rename_keys(_a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) model.load_state_dict(_a ) # verify on image lowerCamelCase__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCamelCase__ = Image.open(requests.get(_a , stream=_a ).raw ).convert('RGB' ) lowerCamelCase__ = SegformerImageProcessor() lowerCamelCase__ = processor(_a , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCamelCase__ = model(_a ) if model_name == "upernet-convnext-tiny": lowerCamelCase__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase__ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase__ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase__ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase__ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_a ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case ( _a: Optional[int] , _a: Any , _a: Optional[int] , _a: Tuple )-> Any: '''simple docstring''' lowerCamelCase__ = s.rsplit(_a , _a ) return new.join(_a ) def snake_case ( _a: List[str] )-> Optional[Any]: '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def snake_case ( _a: str )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: lowerCamelCase__ = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ = rreplace(_a , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ = rreplace(_a , '.b' , '.bias' , 1 ) lowerCamelCase__ = value.float() return upgrade @torch.no_grad() def snake_case ( _a: List[str] , _a: Union[str, Any] , _a: Any=None , _a: Dict=True )-> int: '''simple docstring''' from dall_e import Encoder lowerCamelCase__ = Encoder() if os.path.exists(_a ): lowerCamelCase__ = torch.load(_a ) else: lowerCamelCase__ = torch.hub.load_state_dict_from_url(_a ) if isinstance(_a , _a ): lowerCamelCase__ = ckpt.state_dict() encoder.load_state_dict(_a ) if config_path is not None: lowerCamelCase__ = FlavaImageCodebookConfig.from_pretrained(_a ) else: lowerCamelCase__ = FlavaImageCodebookConfig() lowerCamelCase__ = FlavaImageCodebook(_a ).eval() lowerCamelCase__ = encoder.state_dict() lowerCamelCase__ = upgrade_state_dict(_a ) hf_model.load_state_dict(_a ) lowerCamelCase__ = hf_model.state_dict() lowerCamelCase__ = count_parameters(_a ) lowerCamelCase__ = count_parameters(_a ) assert torch.allclose(_a , _a , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_a ) else: return hf_state_dict if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _snake_case = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
659
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = 'swinv2' a_ : Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int=2_24 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : str=96 , SCREAMING_SNAKE_CASE__ : Dict=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : int=32 , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) lowerCamelCase__ = (0, 0, 0, 0)
659
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def snake_case ( )-> List[str]: '''simple docstring''' lowerCamelCase__ = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ = g.get_repo('huggingface/diffusers' ) lowerCamelCase__ = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) lowerCamelCase__ = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
659
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case ( _a: int = 100 )-> int: '''simple docstring''' lowerCamelCase__ = factorial(_a ) lowerCamelCase__ = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
659
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = "base_with_context" def snake_case ( _a: Optional[int] , _a: List[Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ = weights[F'layers_{lyr_num}'] lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ = ly_weight['attention'] lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case ( _a: List[str] , _a: Dict )-> Tuple: '''simple docstring''' lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ = weights[F'layers_{lyr_num}'] lowerCamelCase__ = ly_weight['attention'] lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case ( _a: str , _a: Optional[Any] )-> int: '''simple docstring''' lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_a ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ = weights[F'layers_{lyr_num}'] lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ = ly_weight['self_attention'] lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ = ly_weight['MultiHeadDotProductAttention_0'] lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowerCamelCase__ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case ( _a: str )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ = jnp.tree_util.tree_map(onp.array , _a ) lowerCamelCase__ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowerCamelCase__ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowerCamelCase__ = inference.parse_training_gin_file(_a , _a ) lowerCamelCase__ = inference.InferenceModel(args.checkpoint_path , _a ) lowerCamelCase__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowerCamelCase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _a ) lowerCamelCase__ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _a ) lowerCamelCase__ = load_decoder(ta_checkpoint['target']['decoder'] , _a ) lowerCamelCase__ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowerCamelCase__ = SpectrogramDiffusionPipeline( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) _snake_case = parser.parse_args() main(args)
659
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case ( _a: Any )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = test_results.split(' ' ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None lowerCamelCase__ = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _a ): lowerCamelCase__ = True lowerCamelCase__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ = line lowerCamelCase__ = False return failures class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = title lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ = doc_test_results['success'] lowerCamelCase__ = doc_test_results['failures'] lowerCamelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ = doc_test_results @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [self._time_spent] lowerCamelCase__ = 0 for time in time_spent: lowerCamelCase__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCamelCase__ = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def _UpperCamelCase ( self : Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 40 lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} lowerCamelCase__ = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def _UpperCamelCase ( self : str ): lowerCamelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( ): lowerCamelCase__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[int] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' lowerCamelCase__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = '' for key, value in failures.items(): lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' lowerCamelCase__ = job_name lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self : Optional[int] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n' lowerCamelCase__ = job_result['failures'] lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def snake_case ( )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCamelCase__ = requests.get(_a ).json() lowerCamelCase__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_a ): lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _a ) return {} def snake_case ( _a: str )-> Dict: '''simple docstring''' lowerCamelCase__ = {} if os.path.exists(_a ): lowerCamelCase__ = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f: lowerCamelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e return _artifact def snake_case ( )-> Optional[int]: '''simple docstring''' class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = [] def __str__( self : Dict ): return self.name def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ = {} lowerCamelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ = directory if artifact_name not in _available_artifacts: lowerCamelCase__ = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
659
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def snake_case ( _a: Optional[int] , _a: List[Any] , _a: List[Any]=None )-> str: '''simple docstring''' if rng is None: lowerCamelCase__ = random.Random() lowerCamelCase__ = 1 for dim in shape: total_dims *= dim lowerCamelCase__ = [] for _ in range(_a ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCamelCase__ = np.array(_a , dtype=jnp.intaa ).reshape(_a ) return output def snake_case ( _a: Optional[Any] , _a: Tuple=None )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = ids_tensor(_a , vocab_size=2 , rng=_a ) # make sure that at least one token is attended to for each batch lowerCamelCase__ = 1 return attn_mask @require_flax class _a : a_ : Optional[Any] = None a_ : List[Any] = () def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCamelCase__ = 2 lowerCamelCase__ = inputs['input_ids'].shape[-1] // 2 lowerCamelCase__ = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCamelCase__ = jnp.ones_like(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCamelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCamelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _UpperCamelCase ( self : Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 0 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() lowerCamelCase__ = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , flax_model.params ) lowerCamelCase__ = flax_model.generate(SCREAMING_SNAKE_CASE__ ).sequences lowerCamelCase__ = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCamelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = True lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 2 lowerCamelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = True lowerCamelCase__ = max_length lowerCamelCase__ = 0.8 lowerCamelCase__ = 10 lowerCamelCase__ = 0.3 lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = max_length lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = max_length lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = False lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = True lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = 2 lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): lowerCamelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCamelCase__ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCamelCase__ = 'Hello world' lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'do_samples' ): model.generate(SCREAMING_SNAKE_CASE__ , do_samples=SCREAMING_SNAKE_CASE__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'foo' ): lowerCamelCase__ = {'foo': 'bar'} model.generate(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[PIL.Image.Image, np.ndarray] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : PriorTransformer , SCREAMING_SNAKE_CASE__ : CLIPVisionModel , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE__ : ShapERenderer , ): super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE__ , image_encoder=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , renderer=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): if latents is None: lowerCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase__ = latents.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ = torch.device(F'cuda:{gpu_id}' ) lowerCamelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Dict ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase__ = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_encoder(SCREAMING_SNAKE_CASE__ )['last_hidden_state'] lowerCamelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = torch.zeros_like(SCREAMING_SNAKE_CASE__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ = self._encode_image(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.prior.config.num_embeddings lowerCamelCase__ = self.prior.config.embedding_dim lowerCamelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase__ = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.prior( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , proj_embedding=SCREAMING_SNAKE_CASE__ , ).predicted_image_embedding # remove the variance lowerCamelCase__ , lowerCamelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE__ ): print() lowerCamelCase__ = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.stack(SCREAMING_SNAKE_CASE__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase__ = images.cpu().numpy() if output_type == "pil": lowerCamelCase__ = [self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class _a ( SCREAMING_SNAKE_CASE_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a_ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) a_ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) a_ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) a_ : str = "question" a_ : str = "context" a_ : str = "answers" @property def _UpperCamelCase ( self : int ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
659
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
1
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Any=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (TFBlipTextModel,) if is_tf_available() else () a_ : List[str] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : str ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): pass def _UpperCamelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : Dict ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : List[Any] ): pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer _snake_case = logging.get_logger(__name__) _snake_case = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _snake_case = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _snake_case = { "facebook/blenderbot_small-90M": 512, } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = VOCAB_FILES_NAMES a_ : str = PRETRAINED_VOCAB_FILES_MAP a_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Union[str, Any] = BlenderbotSmallTokenizer def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : List[Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ , merges=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , ) , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = add_prefix_space def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ): lowerCamelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
659
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
659
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Tuple = LEDTokenizer a_ : Optional[Any] = LEDTokenizerFast a_ : Optional[int] = True def _UpperCamelCase ( self : Optional[int] ): super().setUp() lowerCamelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCamelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ = {'unk_token': '<unk>'} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any , **SCREAMING_SNAKE_CASE__ : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Optional[int] ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def _UpperCamelCase ( self : int ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase__ = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) @require_torch def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _UpperCamelCase ( self : Optional[int] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = ['A long paragraph for summarization.'] lowerCamelCase__ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) lowerCamelCase__ = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) lowerCamelCase__ = inputs['input_ids'] lowerCamelCase__ = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ = ['Summary of the text.', 'Another summary.'] lowerCamelCase__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [[0] * len(SCREAMING_SNAKE_CASE__ ) for x in encoded_output['input_ids']] lowerCamelCase__ = tokenizer.pad(SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): pass def _UpperCamelCase ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'A, <mask> AllenNLP sentence.' lowerCamelCase__ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
659
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _snake_case = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _snake_case = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _snake_case = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION a_ : List[str] = FunnelTokenizer a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : int = 2 def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<sep>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple="<cls>" , SCREAMING_SNAKE_CASE__ : Tuple="<mask>" , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int="##" , **SCREAMING_SNAKE_CASE__ : Any , ): super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , clean_text=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , wordpieces_prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = do_lower_case def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): lowerCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def _UpperCamelCase ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[List[List[str]]] , SCREAMING_SNAKE_CASE__ : List[List[str]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE__ , hypotheses=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ ) }
659
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case ( _a: Optional[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [-1] * len(_a ) def dfs(_a: Any , _a: Optional[int] ): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
659
1
"""simple docstring""" def snake_case ( _a: int = 1 , _a: int = 1000 )-> int: '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = 0 for divide_by_number in range(_a , digit + 1 ): lowerCamelCase__ = [] lowerCamelCase__ = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_a ): lowerCamelCase__ = len(_a ) lowerCamelCase__ = divide_by_number else: has_been_divided.append(_a ) lowerCamelCase__ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
659
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
1
"""simple docstring""" from torch import nn def snake_case ( _a: Dict )-> List[str]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
659
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
1
"""simple docstring""" from math import factorial def snake_case ( _a: int , _a: int )-> int: '''simple docstring''' if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(_a ) // (factorial(_a ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", f"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = LongformerTokenizer a_ : Union[str, Any] = True a_ : Tuple = LongformerTokenizerFast a_ : Any = True def _UpperCamelCase ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCamelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ = {'unk_token': '<unk>'} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int , **SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = 'lower newer' lowerCamelCase__ = 'lower newer' return input_text, output_text def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = 'lower newer' lowerCamelCase__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowerCamelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = 'Encode this sequence.' lowerCamelCase__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing spaces after special tokens lowerCamelCase__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ )} ) # mask token has a left space lowerCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'Encode <mask> sequence' lowerCamelCase__ = 'Encode <mask>sequence' lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): pass def _UpperCamelCase ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'A, <mask> AllenNLP sentence.' lowerCamelCase__ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _UpperCamelCase ( self : Optional[Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['trim_offsets'] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ = F'{text_of_1_token} {text_of_1_token}' lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ) + 1, 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , )
659
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
1
"""simple docstring""" def snake_case ( _a: list[int] , _a: list[int] )-> None: '''simple docstring''' lowerCamelCase__ = len(_a ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase__ = 0 print(_a , end=',' ) # Consider rest of the activities for j in range(_a ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_a , end=',' ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() _snake_case = [1, 3, 0, 5, 8, 5] _snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
659
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
1
"""simple docstring""" import heapq import sys import numpy as np _snake_case = tuple[int, int] class _a : def __init__( self : List[Any] ): lowerCamelCase__ = [] lowerCamelCase__ = set() def _UpperCamelCase ( self : List[str] ): if not self.empty(): return self.elements[0][0] else: return float('inf' ) def _UpperCamelCase ( self : int ): return len(self.elements ) == 0 def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE__ ) else: # update # print("update", item) lowerCamelCase__ = [] ((lowerCamelCase__) , (lowerCamelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] ((lowerCamelCase__) , (lowerCamelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _UpperCamelCase ( self : str ): return self.elements[0][1] def _UpperCamelCase ( self : int ): ((lowerCamelCase__) , (lowerCamelCase__)) = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE__ ) return (priority, item) def snake_case ( _a: TPos , _a: TPos )-> Any: '''simple docstring''' lowerCamelCase__ = np.array(_a ) lowerCamelCase__ = np.array(_a ) return np.linalg.norm(a - b ) def snake_case ( _a: TPos , _a: TPos )-> Optional[Any]: '''simple docstring''' return consistent_heuristic(_a , _a ) // t def snake_case ( _a: TPos , _a: TPos )-> Any: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( _a: TPos , _a: int , _a: TPos , _a: dict[TPos, float] )-> Dict: '''simple docstring''' lowerCamelCase__ = g_function[start] + Wa * heuristics[i](_a , _a ) return ans def snake_case ( _a: Any , _a: List[Any] , _a: List[Any] )-> str: '''simple docstring''' lowerCamelCase__ = np.chararray((n, n) ) for i in range(_a ): for j in range(_a ): lowerCamelCase__ = '*' for i in range(_a ): for j in range(_a ): if (j, (n - 1) - i) in blocks: lowerCamelCase__ = '#' lowerCamelCase__ = '-' lowerCamelCase__ = back_pointer[goal] while x != start: ((lowerCamelCase__) , (lowerCamelCase__)) = x # print(x) lowerCamelCase__ = '-' lowerCamelCase__ = back_pointer[x] lowerCamelCase__ = '-' for i in range(_a ): for j in range(_a ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCamelCase__ = back_pointer[goal] while x != start: print(_a , end=' ' ) lowerCamelCase__ = back_pointer[x] print(_a ) sys.exit() def snake_case ( _a: TPos )-> str: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( _a: Dict , _a: str , _a: List[str] , _a: Tuple , _a: Optional[Any] , _a: str , _a: Dict , _a: Optional[int] , )-> Any: '''simple docstring''' for itera in range(_a ): open_list[itera].remove_element(_a ) # print("s", s) # print("j", j) ((lowerCamelCase__) , (lowerCamelCase__)) = s lowerCamelCase__ = (x - 1, y) lowerCamelCase__ = (x + 1, y) lowerCamelCase__ = (x, y + 1) lowerCamelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_a ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_a ) lowerCamelCase__ = -1 lowerCamelCase__ = float('inf' ) if valid(_a ) and g_function[neighbours] > g_function[s] + 1: lowerCamelCase__ = g_function[s] + 1 lowerCamelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(_a , key(_a , 0 , _a , _a ) ) if neighbours not in close_list_inad: for var in range(1 , _a ): if key(_a , _a , _a , _a ) <= Wa * key( _a , 0 , _a , _a ): open_list[j].put( _a , key(_a , _a , _a , _a ) ) def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _snake_case = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _snake_case = make_common_ground() _snake_case = blocks_blk # hyper parameters _snake_case = 1 _snake_case = 1 _snake_case = 20 _snake_case = 3 # one consistent and two other inconsistent # start and end destination _snake_case = (0, 0) _snake_case = (n - 1, n - 1) _snake_case = 1 def snake_case ( _a: TPos , _a: TPos , _a: int )-> List[str]: '''simple docstring''' lowerCamelCase__ = {start: 0, goal: float('inf' )} lowerCamelCase__ = {start: -1, goal: -1} lowerCamelCase__ = [] lowerCamelCase__ = set() for i in range(_a ): open_list.append(PriorityQueue() ) open_list[i].put(_a , key(_a , _a , _a , _a ) ) lowerCamelCase__ = [] lowerCamelCase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , _a ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(_a , _a , _a ) else: lowerCamelCase__ , lowerCamelCase__ = open_list[i].top_show() visited.add(_a ) expand_state( _a , _a , _a , _a , _a , _a , _a , _a , ) close_list_inad.append(_a ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(_a , _a , _a ) else: lowerCamelCase__ = open_list[0].top_show() visited.add(_a ) expand_state( _a , 0 , _a , _a , _a , _a , _a , _a , ) close_list_anchor.append(_a ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_a ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
659
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
659
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _snake_case = "\nHuman: <<task>>\n\nAssistant: " _snake_case = "huggingface-tools/default-prompts" _snake_case = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def snake_case ( _a: List[str] , _a: Dict , _a: List[str]="run" )-> Optional[int]: '''simple docstring''' if prompt_or_repo_id is None: lowerCamelCase__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , _a ) is not None: return prompt_or_repo_id lowerCamelCase__ = cached_file( _a , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(_a , 'r' , encoding='utf-8' ) as f: return f.read()
659
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _a : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=13 , SCREAMING_SNAKE_CASE__ : List[str]=7 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=10_00 , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = range_bbox def _UpperCamelCase ( self : Any ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ = bbox[i, j, 3] lowerCamelCase__ = bbox[i, j, 1] lowerCamelCase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ = bbox[i, j, 2] lowerCamelCase__ = bbox[i, j, 0] lowerCamelCase__ = t lowerCamelCase__ = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = TFLayoutLMModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFLayoutLMForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFLayoutLMForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFLayoutLMForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFLayoutLMForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) a_ : Tuple = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) a_ : Optional[Any] = False a_ : int = True a_ : Optional[Any] = 10 def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = TFLayoutLMModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : List[Any] ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFLayoutLMModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def _UpperCamelCase ( self : str ): pass def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 lowerCamelCase__ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCamelCase__ = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCamelCase__ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCamelCase__ = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _a ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) # test the sequence output on [0, :3, :3] lowerCamelCase__ = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # test the pooled output on [1, :3] lowerCamelCase__ = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) @slow def _UpperCamelCase ( self : str ): # initialize model with randomly initialized sequence classification head lowerCamelCase__ = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase__ = model( input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCamelCase__ = outputs.loss lowerCamelCase__ = (2,) self.assertEqual(loss.shape , SCREAMING_SNAKE_CASE__ ) # test the shape of the logits lowerCamelCase__ = outputs.logits lowerCamelCase__ = (2, 2) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : Union[str, Any] ): # initialize model with randomly initialized token classification head lowerCamelCase__ = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase__ = model( input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) # test the shape of the logits lowerCamelCase__ = outputs.logits lowerCamelCase__ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : Optional[Any] ): # initialize model with randomly initialized token classification head lowerCamelCase__ = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) # test the shape of the logits lowerCamelCase__ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , SCREAMING_SNAKE_CASE__ ) self.assertEqual(outputs.end_logits.shape , SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
1
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = (DPMSolverSDEScheduler,) a_ : Dict = 10 def _UpperCamelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = { 'num_train_timesteps': 11_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def _UpperCamelCase ( self : Union[str, Any] ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = output.prev_sample lowerCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = output.prev_sample lowerCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3 def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = output.prev_sample lowerCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma lowerCamelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: lowerCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = output.prev_sample lowerCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
659
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
1
"""simple docstring""" def snake_case ( _a: str )-> list: '''simple docstring''' if n_term == "": return [] lowerCamelCase__ = [] for temp in range(int(_a ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
659
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
1
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.sql.Selectable"] , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , SCREAMING_SNAKE_CASE__ : Optional[Features] = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : Tuple , ): super().__init__(features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = Sql( cache_dir=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , sql=SCREAMING_SNAKE_CASE__ , con=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : int ): lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , ) # Build dataset for splits lowerCamelCase__ = self.builder.as_dataset( split='train' , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Dataset , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) lowerCamelCase__ = dataset lowerCamelCase__ = name lowerCamelCase__ = con lowerCamelCase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase__ = num_proc lowerCamelCase__ = to_sql_kwargs def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.to_sql_kwargs.pop('sql' , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.to_sql_kwargs.pop('con' , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.to_sql_kwargs.pop('index' , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self._write(index=SCREAMING_SNAKE_CASE__ , **self.to_sql_kwargs ) return written def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = args lowerCamelCase__ = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs lowerCamelCase__ = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE__ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCamelCase__ = batch.to_pandas() lowerCamelCase__ = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return num_rows or len(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCamelCase__ , lowerCamelCase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
659
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _snake_case = 10 def snake_case ( _a: int , _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' for i in range(_a , _a ): if array[i] == target: return i return -1 def snake_case ( _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = len(_a ) while left <= right: if right - left < precision: return lin_search(_a , _a , _a , _a ) lowerCamelCase__ = (left + right) // 3 + 1 lowerCamelCase__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCamelCase__ = one_third - 1 elif array[two_third] < target: lowerCamelCase__ = two_third + 1 else: lowerCamelCase__ = one_third + 1 lowerCamelCase__ = two_third - 1 else: return -1 def snake_case ( _a: int , _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_a , _a , _a , _a ) lowerCamelCase__ = (left + right) // 3 + 1 lowerCamelCase__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_a , one_third - 1 , _a , _a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _a , _a , _a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _a , _a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _snake_case = int(input("Enter the number to be found in the list:\n").strip()) _snake_case = ite_ternary_search(collection, target) _snake_case = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case ( )-> Dict: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args_into_dataclasses()[0] lowerCamelCase__ = TensorFlowBenchmark(args=_a ) try: lowerCamelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCamelCase__ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' lowerCamelCase__ = ' '.join(str(_a ).split(' ' )[:-1] ) lowerCamelCase__ = '' lowerCamelCase__ = eval(str(_a ).split(' ' )[-1] ) lowerCamelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_a ) if len(_a ) > 0: lowerCamelCase__ = full_error_msg + begin_error_msg + str(_a ) raise ValueError(_a ) benchmark.run() if __name__ == "__main__": main()
659
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = 'swinv2' a_ : Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int=2_24 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : str=96 , SCREAMING_SNAKE_CASE__ : Dict=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : int=32 , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) lowerCamelCase__ = (0, 0, 0, 0)
659
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case ( _a: Any )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = test_results.split(' ' ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None lowerCamelCase__ = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _a ): lowerCamelCase__ = True lowerCamelCase__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ = line lowerCamelCase__ = False return failures class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = title lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ = doc_test_results['success'] lowerCamelCase__ = doc_test_results['failures'] lowerCamelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ = doc_test_results @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [self._time_spent] lowerCamelCase__ = 0 for time in time_spent: lowerCamelCase__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCamelCase__ = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def _UpperCamelCase ( self : Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 40 lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} lowerCamelCase__ = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def _UpperCamelCase ( self : str ): lowerCamelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( ): lowerCamelCase__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[int] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' lowerCamelCase__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = '' for key, value in failures.items(): lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' lowerCamelCase__ = job_name lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self : Optional[int] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n' lowerCamelCase__ = job_result['failures'] lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def snake_case ( )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCamelCase__ = requests.get(_a ).json() lowerCamelCase__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_a ): lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _a ) return {} def snake_case ( _a: str )-> Dict: '''simple docstring''' lowerCamelCase__ = {} if os.path.exists(_a ): lowerCamelCase__ = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f: lowerCamelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e return _artifact def snake_case ( )-> Optional[int]: '''simple docstring''' class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = [] def __str__( self : Dict ): return self.name def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ = {} lowerCamelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ = directory if artifact_name not in _available_artifacts: lowerCamelCase__ = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
659
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case ( _a: int = 100 )-> int: '''simple docstring''' lowerCamelCase__ = factorial(_a ) lowerCamelCase__ = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
1
"""simple docstring""" from __future__ import annotations from typing import Any class _a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 0 ): lowerCamelCase__ , lowerCamelCase__ = row, column lowerCamelCase__ = [[default_value for c in range(SCREAMING_SNAKE_CASE__ )] for r in range(SCREAMING_SNAKE_CASE__ )] def __str__( self : Union[str, Any] ): lowerCamelCase__ = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier lowerCamelCase__ = 0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__ = max(SCREAMING_SNAKE_CASE__ , len(str(SCREAMING_SNAKE_CASE__ ) ) ) lowerCamelCase__ = F'%{max_element_length}s' # Make string and return def single_line(SCREAMING_SNAKE_CASE__ : list[float] ) -> str: nonlocal string_format_identifier lowerCamelCase__ = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(SCREAMING_SNAKE_CASE__ ) for row_vector in self.array ) return s def __repr__( self : Any ): return str(self ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : tuple[int, int] ): if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and len(SCREAMING_SNAKE_CASE__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , SCREAMING_SNAKE_CASE__ : tuple[int, int] ): assert self.validate_indicies(SCREAMING_SNAKE_CASE__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : float ): assert self.validate_indicies(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = value def __add__( self : int , SCREAMING_SNAKE_CASE__ : Matrix ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ = self[r, c] + another[r, c] return result def __neg__( self : Dict ): lowerCamelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ = -self[r, c] return result def __sub__( self : Tuple , SCREAMING_SNAKE_CASE__ : Matrix ): return self + (-another) def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int | float | Matrix ): if isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): # Scalar multiplication lowerCamelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ = self[r, c] * another return result elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Matrix multiplication assert self.column == another.row lowerCamelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__ = F'Unsupported type given for another ({type(SCREAMING_SNAKE_CASE__ )})' raise TypeError(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ = self[r, c] return result def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Matrix , SCREAMING_SNAKE_CASE__ : Matrix ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__ = v.transpose() lowerCamelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def snake_case ( )-> None: '''simple docstring''' lowerCamelCase__ = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__ = 1 print(F'a^(-1) is {ainv}' ) # u, v lowerCamelCase__ = Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1, 2, -3 lowerCamelCase__ = Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(_a , _a )}' ) def snake_case ( )-> None: '''simple docstring''' import doctest doctest.testmod() testa()
659
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case ( _a: Any )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = test_results.split(' ' ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None lowerCamelCase__ = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _a ): lowerCamelCase__ = True lowerCamelCase__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ = line lowerCamelCase__ = False return failures class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = title lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ = doc_test_results['success'] lowerCamelCase__ = doc_test_results['failures'] lowerCamelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ = doc_test_results @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [self._time_spent] lowerCamelCase__ = 0 for time in time_spent: lowerCamelCase__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCamelCase__ = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def _UpperCamelCase ( self : Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 40 lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} lowerCamelCase__ = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def _UpperCamelCase ( self : str ): lowerCamelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( ): lowerCamelCase__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[int] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' lowerCamelCase__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = '' for key, value in failures.items(): lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' lowerCamelCase__ = job_name lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self : Optional[int] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n' lowerCamelCase__ = job_result['failures'] lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def snake_case ( )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCamelCase__ = requests.get(_a ).json() lowerCamelCase__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_a ): lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _a ) return {} def snake_case ( _a: str )-> Dict: '''simple docstring''' lowerCamelCase__ = {} if os.path.exists(_a ): lowerCamelCase__ = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f: lowerCamelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e return _artifact def snake_case ( )-> Optional[int]: '''simple docstring''' class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = [] def __str__( self : Dict ): return self.name def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ = {} lowerCamelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ = directory if artifact_name not in _available_artifacts: lowerCamelCase__ = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
659
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[Any] = VideoToVideoSDPipeline a_ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} a_ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} a_ : int = PipelineTesterMixin.required_optional_params - {'latents'} a_ : List[str] = False # No `output_type`. a_ : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def _UpperCamelCase ( self : int ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCamelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=0 ): # 3 frames lowerCamelCase__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): lowerCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'np' lowerCamelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames lowerCamelCase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCamelCase__ = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCamelCase ( self : str ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _UpperCamelCase ( self : Any ): pass def _UpperCamelCase ( self : str ): return super().test_progress_bar() @slow @skip_mps class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCamelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ = torch.randn((1, 10, 3, 10_24, 5_76) , generator=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = video.to('cuda' ) lowerCamelCase__ = 'Spiderman is surfing' lowerCamelCase__ = pipe(SCREAMING_SNAKE_CASE__ , video=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=3 , output_type='pt' ).frames lowerCamelCase__ = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
659
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[PIL.Image.Image, np.ndarray] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : PriorTransformer , SCREAMING_SNAKE_CASE__ : CLIPVisionModel , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE__ : ShapERenderer , ): super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE__ , image_encoder=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , renderer=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): if latents is None: lowerCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase__ = latents.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ = torch.device(F'cuda:{gpu_id}' ) lowerCamelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Dict ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase__ = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_encoder(SCREAMING_SNAKE_CASE__ )['last_hidden_state'] lowerCamelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = torch.zeros_like(SCREAMING_SNAKE_CASE__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ = self._encode_image(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.prior.config.num_embeddings lowerCamelCase__ = self.prior.config.embedding_dim lowerCamelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase__ = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.prior( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , proj_embedding=SCREAMING_SNAKE_CASE__ , ).predicted_image_embedding # remove the variance lowerCamelCase__ , lowerCamelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE__ ): print() lowerCamelCase__ = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.stack(SCREAMING_SNAKE_CASE__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase__ = images.cpu().numpy() if output_type == "pil": lowerCamelCase__ = [self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , **SCREAMING_SNAKE_CASE__ : str ): super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = {} lowerCamelCase__ = {} lowerCamelCase__ = {} # preprocess args if "points_per_batch" in kwargs: lowerCamelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: lowerCamelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: lowerCamelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: lowerCamelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: lowerCamelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: lowerCamelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: lowerCamelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: lowerCamelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: lowerCamelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: lowerCamelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: lowerCamelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: lowerCamelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : str ): return super().__call__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : float = 5_12 / 15_00 , SCREAMING_SNAKE_CASE__ : Optional[int] = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , ): lowerCamelCase__ = load_image(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_processor.size['longest_edge'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": lowerCamelCase__ = self.get_inference_context() with inference_context(): lowerCamelCase__ = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ , device=self.device ) lowerCamelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) lowerCamelCase__ = image_embeddings lowerCamelCase__ = grid_points.shape[1] lowerCamelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = grid_points[:, i : i + points_per_batch, :, :] lowerCamelCase__ = input_labels[:, i : i + points_per_batch] lowerCamelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=0.88 , SCREAMING_SNAKE_CASE__ : Any=0.95 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Dict=1 , ): lowerCamelCase__ = model_inputs.pop('input_boxes' ) lowerCamelCase__ = model_inputs.pop('is_last' ) lowerCamelCase__ = model_inputs.pop('original_sizes' ).tolist() lowerCamelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() lowerCamelCase__ = self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCamelCase__ = model_outputs['pred_masks'] lowerCamelCase__ = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , binarize=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_outputs['iou_scores'] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=0.7 , ): lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = {} if output_rle_mask: lowerCamelCase__ = rle_mask if output_bboxes_mask: lowerCamelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
659
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = 'sew-d' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Tuple=7_68 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Tuple=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=2_56 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : Optional[int]="layer_norm" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-7 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : str="group" , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_28 , SCREAMING_SNAKE_CASE__ : Dict=16 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=0.05 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Optional[int]=2_56 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Dict=2 , **SCREAMING_SNAKE_CASE__ : Any , ): super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_size lowerCamelCase__ = feat_extract_norm lowerCamelCase__ = feat_extract_activation lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = conv_bias lowerCamelCase__ = num_conv_pos_embeddings lowerCamelCase__ = num_conv_pos_embedding_groups lowerCamelCase__ = len(self.conv_dim ) lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = intermediate_size lowerCamelCase__ = squeeze_factor lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = position_buckets lowerCamelCase__ = share_att_key lowerCamelCase__ = relative_attention lowerCamelCase__ = norm_rel_ebd lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_act lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = feat_proj_dropout lowerCamelCase__ = final_dropout lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = feature_layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ = apply_spec_augment lowerCamelCase__ = mask_time_prob lowerCamelCase__ = mask_time_length lowerCamelCase__ = mask_time_min_masks lowerCamelCase__ = mask_feature_prob lowerCamelCase__ = mask_feature_length lowerCamelCase__ = mask_feature_min_masks # ctc loss lowerCamelCase__ = ctc_loss_reduction lowerCamelCase__ = ctc_zero_infinity # sequence classification lowerCamelCase__ = use_weighted_layer_sum lowerCamelCase__ = classifier_proj_size @property def _UpperCamelCase ( self : Optional[int] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
659
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Any=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (TFBlipTextModel,) if is_tf_available() else () a_ : List[str] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : str ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): pass def _UpperCamelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : Dict ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : List[Any] ): pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
659
1
"""simple docstring""" import math class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=0 ): # a graph with Node 0,1,...,N-1 lowerCamelCase__ = n lowerCamelCase__ = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # adjacency matrix for weight lowerCamelCase__ = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # dp[i][j] stores minimum distance from i to j def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = w def _UpperCamelCase ( self : List[Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCamelCase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): return self.dp[u][v] if __name__ == "__main__": _snake_case = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
659
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _snake_case = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _snake_case = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _snake_case = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION a_ : List[str] = FunnelTokenizer a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : int = 2 def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<sep>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple="<cls>" , SCREAMING_SNAKE_CASE__ : Tuple="<mask>" , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int="##" , **SCREAMING_SNAKE_CASE__ : Any , ): super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , clean_text=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , wordpieces_prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = do_lower_case def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): lowerCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
659
1
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = CustomTokenizer pass
659
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case ( _a: Optional[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [-1] * len(_a ) def dfs(_a: Any , _a: Optional[int] ): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
659
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Any=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (TFBlipTextModel,) if is_tf_available() else () a_ : List[str] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : str ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): pass def _UpperCamelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : Dict ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : List[Any] ): pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
1
"""simple docstring""" def snake_case ( _a: int , _a: Any )-> Dict: '''simple docstring''' lowerCamelCase__ = (boundary[1] - boundary[0]) / steps lowerCamelCase__ = boundary[0] lowerCamelCase__ = boundary[1] lowerCamelCase__ = make_points(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE_ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) return y def snake_case ( _a: Dict , _a: Optional[int] , _a: int )-> Tuple: '''simple docstring''' lowerCamelCase__ = a + h while x < (b - h): yield x lowerCamelCase__ = x + h def snake_case ( _a: List[Any] )-> Optional[Any]: # enter your function here '''simple docstring''' lowerCamelCase__ = (x - 0) * (x - 0) return y def snake_case ( )-> List[str]: '''simple docstring''' lowerCamelCase__ = 0.0 # Lower bound of integration lowerCamelCase__ = 1.0 # Upper bound of integration lowerCamelCase__ = 10.0 # define number of steps or resolution lowerCamelCase__ = [a, b] # define boundary of integration lowerCamelCase__ = method_a(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'y = {y}' ) if __name__ == "__main__": main()
700
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _snake_case = "Usage of script: script_name <size_of_canvas:int>" _snake_case = [0] * 100 + [1] * 10 random.shuffle(choice) def snake_case ( _a: Optional[int] )-> Dict: '''simple docstring''' lowerCamelCase__ = [[False for i in range(__A )] for j in range(__A )] return canvas def snake_case ( _a: Any )-> Dict: '''simple docstring''' for i, row in enumerate(__A ): for j, _ in enumerate(__A ): lowerCamelCase__ = bool(random.getrandbits(1 ) ) def snake_case ( _a: Tuple )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = np.array(__A ) lowerCamelCase__ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__A ): for c, pt in enumerate(__A ): lowerCamelCase__ = __judge_point( __A , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCamelCase__ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCamelCase__ = current_canvas.tolist() return return_canvas def snake_case ( _a: Union[str, Any] , _a: Union[str, Any] )-> Tuple: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCamelCase__ = pt if pt: if alive < 2: lowerCamelCase__ = False elif alive == 2 or alive == 3: lowerCamelCase__ = True elif alive > 3: lowerCamelCase__ = False else: if alive == 3: lowerCamelCase__ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _snake_case = int(sys.argv[1]) # main working structure of this module. _snake_case = create_canvas(canvas_size) seed(c) _snake_case , _snake_case = plt.subplots() fig.show() _snake_case = ListedColormap(["w", "k"]) try: while True: _snake_case = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
701
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _a ( snake_case__ , unittest.TestCase ): '''simple docstring''' a_ : List[Any] = BlenderbotSmallTokenizer a_ : Union[str, Any] = False def _UpperCamelCase ( self : Union[str, Any] ): super().setUp() lowerCamelCase__ = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] lowerCamelCase__ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCamelCase__ = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] lowerCamelCase__ = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def _UpperCamelCase ( self : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = 'adapt act apte' lowerCamelCase__ = 'adapt act apte' return input_text, output_text def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = 'adapt act apte' lowerCamelCase__ = ['adapt', 'act', 'ap@@', 'te'] lowerCamelCase__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase__ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [13_84] lowerCamelCase__ = 'I am a small frog.' lowerCamelCase__ = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )['input_ids'] lowerCamelCase__ = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _UpperCamelCase ( self : int ): lowerCamelCase__ = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) lowerCamelCase__ = 'I am a small frog .' lowerCamelCase__ = '.' lowerCamelCase__ = tok(UpperCAmelCase_ )['input_ids'] lowerCamelCase__ = tok(UpperCAmelCase_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
702
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
703
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
0
"""simple docstring""" class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = val lowerCamelCase__ = None lowerCamelCase__ = None def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): if self.val: if val < self.val: if self.left is None: lowerCamelCase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCamelCase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCamelCase__ = val def snake_case ( _a: Optional[Any] , _a: List[str] )-> List[Any]: '''simple docstring''' if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def snake_case ( _a: Optional[int] )-> Tuple: '''simple docstring''' if len(_lowercase ) == 0: return arr lowerCamelCase__ = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCamelCase__ = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
704
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
659
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class _a ( lowercase__ ): a_ : List[Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) a_ : Optional[int] = Features({'text': Value('string' )} ) a_ : Any = Features({'summary': Value('string' )} ) a_ : str = 'text' a_ : Optional[int] = 'summary' @property def _UpperCamelCase ( self : str ): return {self.text_column: "text", self.summary_column: "summary"}
705
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _snake_case = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _snake_case = "https://storage.googleapis.com/cvdf-datasets/mnist/" def snake_case ( _a: Any )-> str: '''simple docstring''' lowerCamelCase__ = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0] @deprecated(lowerCamelCase_ , 'Please use tf.data to implement this functionality.' ) def snake_case ( _a: Dict )-> Optional[int]: '''simple docstring''' print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: lowerCamelCase__ = _readaa(lowerCamelCase_ ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCamelCase__ = _readaa(lowerCamelCase_ ) lowerCamelCase__ = _readaa(lowerCamelCase_ ) lowerCamelCase__ = _readaa(lowerCamelCase_ ) lowerCamelCase__ = bytestream.read(rows * cols * num_images ) lowerCamelCase__ = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) lowerCamelCase__ = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) return data @deprecated(lowerCamelCase_ , 'Please use tf.one_hot on tensors.' ) def snake_case ( _a: str , _a: Dict )-> str: '''simple docstring''' lowerCamelCase__ = labels_dense.shape[0] lowerCamelCase__ = numpy.arange(lowerCamelCase_ ) * num_classes lowerCamelCase__ = numpy.zeros((num_labels, num_classes) ) lowerCamelCase__ = 1 return labels_one_hot @deprecated(lowerCamelCase_ , 'Please use tf.data to implement this functionality.' ) def snake_case ( _a: Any , _a: Dict=False , _a: str=10 )-> Any: '''simple docstring''' print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: lowerCamelCase__ = _readaa(lowerCamelCase_ ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCamelCase__ = _readaa(lowerCamelCase_ ) lowerCamelCase__ = bytestream.read(lowerCamelCase_ ) lowerCamelCase__ = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ ) return labels class _a : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=dtypes.floataa , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ): lowerCamelCase__ = random_seed.get_seed(UpperCAmelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCamelCase__ = dtypes.as_dtype(UpperCAmelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCamelCase__ = 1_00_00 lowerCamelCase__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCamelCase__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCamelCase__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCamelCase__ = images.astype(numpy.floataa ) lowerCamelCase__ = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0 ) lowerCamelCase__ = images lowerCamelCase__ = labels lowerCamelCase__ = 0 lowerCamelCase__ = 0 @property def _UpperCamelCase ( self : List[Any] ): return self._images @property def _UpperCamelCase ( self : List[Any] ): return self._labels @property def _UpperCamelCase ( self : Union[str, Any] ): return self._num_examples @property def _UpperCamelCase ( self : Dict ): return self._epochs_completed def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=True ): if fake_data: lowerCamelCase__ = [1] * 7_84 lowerCamelCase__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_ )], [fake_label for _ in range(UpperCAmelCase_ )], ) lowerCamelCase__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCamelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCamelCase__ = self.images[perma] lowerCamelCase__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCamelCase__ = self._num_examples - start lowerCamelCase__ = self._images[start : self._num_examples] lowerCamelCase__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCamelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCamelCase__ = self.images[perm] lowerCamelCase__ = self.labels[perm] # Start next epoch lowerCamelCase__ = 0 lowerCamelCase__ = batch_size - rest_num_examples lowerCamelCase__ = self._index_in_epoch lowerCamelCase__ = self._images[start:end] lowerCamelCase__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCamelCase__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , 'Please write your own downloading logic.' ) def snake_case ( _a: List[Any] , _a: Optional[Any] , _a: Any )-> Optional[Any]: '''simple docstring''' if not gfile.Exists(lowerCamelCase_ ): gfile.MakeDirs(lowerCamelCase_ ) lowerCamelCase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not gfile.Exists(lowerCamelCase_ ): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310 with gfile.GFile(lowerCamelCase_ ) as f: lowerCamelCase__ = f.size() print('Successfully downloaded' , lowerCamelCase_ , lowerCamelCase_ , 'bytes.' ) return filepath @deprecated( lowerCamelCase_ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def snake_case ( _a: Tuple , _a: Optional[Any]=False , _a: str=False , _a: Union[str, Any]=dtypes.floataa , _a: int=True , _a: Optional[int]=5000 , _a: Union[str, Any]=None , _a: Dict=DEFAULT_SOURCE_URL , )-> List[str]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ ) lowerCamelCase__ = fake() lowerCamelCase__ = fake() lowerCamelCase__ = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ ) if not source_url: # empty string check lowerCamelCase__ = DEFAULT_SOURCE_URL lowerCamelCase__ = 'train-images-idx3-ubyte.gz' lowerCamelCase__ = 'train-labels-idx1-ubyte.gz' lowerCamelCase__ = 't10k-images-idx3-ubyte.gz' lowerCamelCase__ = 't10k-labels-idx1-ubyte.gz' lowerCamelCase__ = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file ) with gfile.Open(lowerCamelCase_ , 'rb' ) as f: lowerCamelCase__ = _extract_images(lowerCamelCase_ ) lowerCamelCase__ = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file ) with gfile.Open(lowerCamelCase_ , 'rb' ) as f: lowerCamelCase__ = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) lowerCamelCase__ = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file ) with gfile.Open(lowerCamelCase_ , 'rb' ) as f: lowerCamelCase__ = _extract_images(lowerCamelCase_ ) lowerCamelCase__ = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file ) with gfile.Open(lowerCamelCase_ , 'rb' ) as f: lowerCamelCase__ = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) if not 0 <= validation_size <= len(lowerCamelCase_ ): lowerCamelCase__ = ( 'Validation size should be between 0 and ' F'{len(lowerCamelCase_ )}. Received: {validation_size}.' ) raise ValueError(lowerCamelCase_ ) lowerCamelCase__ = train_images[:validation_size] lowerCamelCase__ = train_labels[:validation_size] lowerCamelCase__ = train_images[validation_size:] lowerCamelCase__ = train_labels[validation_size:] lowerCamelCase__ = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCamelCase__ = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase__ = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase__ = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
706
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
0
from collections.abc import Sequence def snake_case ( _a: Sequence[float] , _a: bool = False )-> float: '''simple docstring''' if not arr: return 0 lowerCamelCase__ = 0 if allow_empty_subarrays else float('-inf' ) lowerCamelCase__ = 0.0 for num in arr: lowerCamelCase__ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCamelCase__ = max(_a , _a ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _snake_case = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
707
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _a ( __A ): @require_torch def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCamelCase__ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCamelCase__ = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCamelCase__ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipeline(task='fill-mask' , model=SCREAMING_SNAKE_CASE__ ) # baseline - just load from_pretrained with normal network lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCamelCase__ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ = '''1''' lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def _UpperCamelCase ( self : str ): lowerCamelCase__ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCamelCase__ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCamelCase__ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCamelCase__ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipeline(task='fill-mask' , model=SCREAMING_SNAKE_CASE__ ) # baseline - just load from_pretrained with normal network lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCamelCase__ = self.get_env() lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def _UpperCamelCase ( self : Any ): lowerCamelCase__ = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowerCamelCase__ = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowerCamelCase__ = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCamelCase__ = self.get_env() lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ = '''1''' lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = ''' from transformers import pipeline ''' lowerCamelCase__ = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowerCamelCase__ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowerCamelCase__ = self.get_env() lowerCamelCase__ = '''1''' lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def _UpperCamelCase ( self : int ): lowerCamelCase__ = ''' from transformers import AutoModel ''' lowerCamelCase__ = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowerCamelCase__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCamelCase__ = self.get_env() lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase__ = '''1''' lowerCamelCase__ = subprocess.run(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , check=SCREAMING_SNAKE_CASE__ , capture_output=SCREAMING_SNAKE_CASE__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
708
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
0
"""simple docstring""" import os import string import sys _snake_case = 1 << 8 _snake_case = { 'tab': ord("\t"), 'newline': ord("\r"), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } _snake_case = KEYMAP['up'] _snake_case = KEYMAP['left'] if sys.platform == "win32": _snake_case = [] _snake_case = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): _snake_case = ord(str(i)) def snake_case ( )-> Tuple: '''simple docstring''' if os.name == "nt": import msvcrt lowerCamelCase__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCAmelCase ) == 0: # Read the keystroke lowerCamelCase__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__lowerCAmelCase ) if ord(__lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__ = chr(KEYMAP['esc'] ) except KeyError: lowerCamelCase__ = cha[1] else: lowerCamelCase__ = ch.decode(__lowerCAmelCase ) else: lowerCamelCase__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__ = sys.stdin.fileno() lowerCamelCase__ = termios.tcgetattr(__lowerCAmelCase ) try: tty.setraw(__lowerCAmelCase ) lowerCamelCase__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCAmelCase , termios.TCSADRAIN , __lowerCAmelCase ) return ch def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCAmelCase ) == KEYMAP["esc"]: lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) == KEYMAP["mod_int"]: lowerCamelCase__ = get_raw_chars() if ord(__lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
709
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _snake_case = datasets.utils.logging.get_logger(__name__) class _a ( folder_based_builder.FolderBasedBuilderConfig ): a_ : bool = None a_ : bool = None class _a ( folder_based_builder.FolderBasedBuilder ): a_ : Dict = datasets.Audio() a_ : List[str] = "audio" a_ : List[str] = AudioFolderConfig a_ : List[str] # definition at the bottom of the script a_ : Optional[Any] = AudioClassification(audio_column='audio' , label_column='label' ) _snake_case = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _snake_case = AUDIO_EXTENSIONS
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _snake_case = logging.getLogger(__name__) def snake_case ( _a: Union[str, Any] , _a: Dict )-> int: '''simple docstring''' if os.path.exists(_lowerCAmelCase ): if os.path.exists(os.path.join(_lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(_lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) def snake_case ( _a: Optional[Any] , _a: Optional[int]=False )-> str: '''simple docstring''' lowerCamelCase__ = 2 if unlogit: lowerCamelCase__ = torch.pow(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = p * torch.log(_lowerCAmelCase ) lowerCamelCase__ = 0 return -plogp.sum(dim=-1 ) def snake_case ( _a: Any )-> List[Any]: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'{x + 1}' for x in range(len(_lowerCAmelCase ) ) ) ) for row in range(len(_lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def snake_case ( _a: List[Any] , _a: Dict , _a: str , _a: Any=True , _a: Dict=True , _a: int=None , _a: str=False )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = model.config.num_hidden_layers, model.config.num_attention_heads lowerCamelCase__ = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) lowerCamelCase__ = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) if head_mask is None: lowerCamelCase__ = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCamelCase__ = None lowerCamelCase__ = 0.0 lowerCamelCase__ = 0.0 for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): lowerCamelCase__ = tuple(t.to(args.device ) for t in inputs ) (lowerCamelCase__ ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCamelCase__ = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCamelCase__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCAmelCase ): lowerCamelCase__ = entropy(attn.detach() , _lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCamelCase__ = 2 lowerCamelCase__ = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowerCamelCase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_lowerCAmelCase ) logger.info('Head ranked by importance scores' ) lowerCamelCase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCamelCase__ = torch.arange( head_importance.numel() , device=args.device ) lowerCamelCase__ = head_ranks.view_as(_lowerCAmelCase ) print_ad_tensor(_lowerCAmelCase ) return attn_entropy, head_importance, total_loss def snake_case ( _a: List[Any] , _a: Dict , _a: List[Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase ) lowerCamelCase__ = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _lowerCAmelCase , original_score * args.masking_threshold ) lowerCamelCase__ = torch.ones_like(_lowerCAmelCase ) lowerCamelCase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCamelCase__ = original_score while current_score >= original_score * args.masking_threshold: lowerCamelCase__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = head_importance.view(-1 ).sort()[1] if len(_lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads lowerCamelCase__ = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) lowerCamelCase__ = new_head_mask.view(-1 ) lowerCamelCase__ = 0.0 lowerCamelCase__ = new_head_mask.view_as(_lowerCAmelCase ) lowerCamelCase__ = new_head_mask.clone().detach() print_ad_tensor(_lowerCAmelCase ) # Compute metric and head importance again lowerCamelCase__ = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase ) lowerCamelCase__ = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case ( _a: Union[str, Any] , _a: List[str] , _a: Union[str, Any] , _a: Union[str, Any] )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = datetime.now() lowerCamelCase__ = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase ) lowerCamelCase__ = 1 / loss lowerCamelCase__ = datetime.now() - before_time lowerCamelCase__ = sum(p.numel() for p in model.parameters() ) lowerCamelCase__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = [ v, ] assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCAmelCase ) lowerCamelCase__ = sum(p.numel() for p in model.parameters() ) lowerCamelCase__ = datetime.now() lowerCamelCase__ = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , ) lowerCamelCase__ = 1 / loss lowerCamelCase__ = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _lowerCAmelCase , _lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_lowerCAmelCase , args.output_dir ) def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=_lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=_lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) lowerCamelCase__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCamelCase__ = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) lowerCamelCase__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCamelCase__ = torch.device('cuda' , args.local_rank ) lowerCamelCase__ = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCamelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCamelCase__ = nn.parallel.DistributedDataParallel( _lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase ) elif args.n_gpu > 1: lowerCamelCase__ = nn.DataParallel(_lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _lowerCAmelCase ) # Prepare dataset lowerCamelCase__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCamelCase__ = (torch.from_numpy(_lowerCAmelCase ),) lowerCamelCase__ = TensorDataset(*_lowerCAmelCase ) lowerCamelCase__ = RandomSampler(_lowerCAmelCase ) lowerCamelCase__ = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCamelCase__ = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
711
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = 'swinv2' a_ : Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int=2_24 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : str=96 , SCREAMING_SNAKE_CASE__ : Dict=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : int=32 , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) lowerCamelCase__ = (0, 0, 0, 0)
659
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = tempfile.mkdtemp() # fmt: off lowerCamelCase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCamelCase__ = dict(zip(_a , range(len(_a ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCamelCase__ = {"""unk_token""": """<unk>"""} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) lowerCamelCase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCamelCase__ = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_a , _a ) def _UpperCamelCase ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def _UpperCamelCase ( self : int , **SCREAMING_SNAKE_CASE__ : Any ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def _UpperCamelCase ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _UpperCamelCase ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase__ = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowerCamelCase__ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_a , return_tensors='np' ) lowerCamelCase__ = processor(images=_a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_a ) lowerCamelCase__ = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(images=_a , visual_prompt=_a ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPSegProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_a ) lowerCamelCase__ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a )
712
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case ( _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case ( _a: int = 100 )-> int: '''simple docstring''' lowerCamelCase__ = factorial(_a ) lowerCamelCase__ = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
659
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case ( _a: str )-> int: '''simple docstring''' lowerCamelCase__ = FileLock(str(tmpdir / 'foo.lock' ) ) lowerCamelCase__ = FileLock(str(tmpdir / 'foo.lock' ) ) lowerCamelCase__ = 0.01 with locka.acquire(): with pytest.raises(__UpperCAmelCase ): lowerCamelCase__ = time.time() locka.acquire(__UpperCAmelCase ) assert time.time() - _start > timeout def snake_case ( _a: Optional[int] )-> int: '''simple docstring''' lowerCamelCase__ = 'a' * 1000 + '.lock' lowerCamelCase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowerCamelCase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCAmelCase ): locka.acquire(0 )
713
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def snake_case ( _a: List[str] , _a: List[Any]=False )-> Tuple: '''simple docstring''' lowerCamelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): lowerCamelCase__ = 'segformer.encoder.' + key if key.startswith('backbone' ): lowerCamelCase__ = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: lowerCamelCase__ = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] lowerCamelCase__ = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: lowerCamelCase__ = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ = key[key.find('block' ) + len('block' )] lowerCamelCase__ = key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: lowerCamelCase__ = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if key.startswith('head' ): lowerCamelCase__ = key.replace('head' , 'classifier' ) lowerCamelCase__ = value return new_state_dict def snake_case ( _a: Optional[Any] , _a: List[Any] )-> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ = kv_bias[ config.hidden_sizes[i] : ] def snake_case ( )-> Tuple: '''simple docstring''' lowerCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def snake_case ( _a: int , _a: List[str] , _a: Optional[int] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = SegformerConfig() lowerCamelCase__ = False # set attributes based on model_name lowerCamelCase__ = 'huggingface/label-files' if "segformer" in model_name: lowerCamelCase__ = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: lowerCamelCase__ = 150 lowerCamelCase__ = 'ade20k-id2label.json' lowerCamelCase__ = (1, 150, 128, 128) elif "city" in model_name: lowerCamelCase__ = 19 lowerCamelCase__ = 'cityscapes-id2label.json' lowerCamelCase__ = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: lowerCamelCase__ = True lowerCamelCase__ = model_name[4:6] lowerCamelCase__ = 1000 lowerCamelCase__ = 'imagenet-1k-id2label.json' lowerCamelCase__ = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes lowerCamelCase__ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCamelCase__ = [64, 128, 320, 512] lowerCamelCase__ = 256 elif size == "b2": lowerCamelCase__ = [64, 128, 320, 512] lowerCamelCase__ = 768 lowerCamelCase__ = [3, 4, 6, 3] elif size == "b3": lowerCamelCase__ = [64, 128, 320, 512] lowerCamelCase__ = 768 lowerCamelCase__ = [3, 4, 18, 3] elif size == "b4": lowerCamelCase__ = [64, 128, 320, 512] lowerCamelCase__ = 768 lowerCamelCase__ = [3, 8, 27, 3] elif size == "b5": lowerCamelCase__ = [64, 128, 320, 512] lowerCamelCase__ = 768 lowerCamelCase__ = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCamelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) # prepare image lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCamelCase__ = torch.load(lowerCAmelCase__ , map_location=torch.device('cpu' ) ) else: lowerCamelCase__ = torch.load(lowerCAmelCase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys lowerCamelCase__ = rename_keys(lowerCAmelCase__ , encoder_only=lowerCAmelCase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict if encoder_only: lowerCamelCase__ = False lowerCamelCase__ = SegformerForImageClassification(lowerCAmelCase__ ) else: lowerCamelCase__ = SegformerForSemanticSegmentation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass lowerCamelCase__ = model(lowerCAmelCase__ ) lowerCamelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCamelCase__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCamelCase__ = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCamelCase__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCamelCase__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCamelCase__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
714
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case ( _a: Any )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = test_results.split(' ' ) lowerCamelCase__ = 0 lowerCamelCase__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case ( _a: Optional[int] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None lowerCamelCase__ = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , _a ): lowerCamelCase__ = True lowerCamelCase__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCamelCase__ = line lowerCamelCase__ = False return failures class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = title lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0] lowerCamelCase__ = doc_test_results['success'] lowerCamelCase__ = doc_test_results['failures'] lowerCamelCase__ = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ = doc_test_results @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [self._time_spent] lowerCamelCase__ = 0 for time in time_spent: lowerCamelCase__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCamelCase__ = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def _UpperCamelCase ( self : Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self : Dict ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = 40 lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} lowerCamelCase__ = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def _UpperCamelCase ( self : str ): lowerCamelCase__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( ): lowerCamelCase__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[int] ): print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' lowerCamelCase__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): lowerCamelCase__ = '' for key, value in failures.items(): lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' lowerCamelCase__ = job_name lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCamelCase__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self : Optional[int] ): if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCamelCase__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n' lowerCamelCase__ = job_result['failures'] lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def snake_case ( )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = os.environ['GITHUB_RUN_ID'] lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCamelCase__ = requests.get(_a ).json() lowerCamelCase__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_a ): lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _a ) return {} def snake_case ( _a: str )-> Dict: '''simple docstring''' lowerCamelCase__ = {} if os.path.exists(_a ): lowerCamelCase__ = os.listdir(_a ) for file in files: try: with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f: lowerCamelCase__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e return _artifact def snake_case ( )-> Optional[int]: '''simple docstring''' class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = name lowerCamelCase__ = [] def __str__( self : Dict ): return self.name def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): self.paths.append({'name': self.name, 'path': path} ) lowerCamelCase__ = {} lowerCamelCase__ = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ = directory if artifact_name not in _available_artifacts: lowerCamelCase__ = Artifact(_a ) _available_artifacts[artifact_name].add_path(_a ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
659
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case ( _a: Any , _a: Optional[Any] , _a: Union[str, Any]=None , _a: List[Any]=None , _a: Tuple=None , _a: Union[str, Any]=None , _a: List[Any]=None , _a: Dict=None , )-> List[Any]: '''simple docstring''' if attention_mask is None: lowerCamelCase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : int=0.02 , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = eos_token_id lowerCamelCase__ = pad_token_id lowerCamelCase__ = bos_token_id lowerCamelCase__ = initializer_range def _UpperCamelCase ( self : str ): lowerCamelCase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase__ = shift_tokens_right(_UpperCamelCase , 1 , 2 ) lowerCamelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) lowerCamelCase__ = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = 20 lowerCamelCase__ = model_class_name(_UpperCamelCase ) lowerCamelCase__ = model.encode(inputs_dict['input_ids'] ) lowerCamelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) lowerCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCamelCase__ = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) lowerCamelCase__ = model.decode(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCamelCase__ = 20 lowerCamelCase__ = model_class_name(_UpperCamelCase ) lowerCamelCase__ = model.encode(inputs_dict['input_ids'] ) lowerCamelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) lowerCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCamelCase__ = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) lowerCamelCase__ = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) lowerCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class _a ( unittest.TestCase ): a_ : List[str] = 99 def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__ = input_ids.shape[0] lowerCamelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self._get_config_and_data() lowerCamelCase__ = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) lowerCamelCase__ = lm_model(input_ids=_UpperCamelCase ) lowerCamelCase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCamelCase ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__ = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) lowerCamelCase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase__ = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) lowerCamelCase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCamelCase ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase__ = shift_tokens_right(_UpperCamelCase , 1 , 2 ) lowerCamelCase__ = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() lowerCamelCase__ = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( __lowerCAmelCase , unittest.TestCase , __lowerCAmelCase ): a_ : List[Any] = True a_ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a_ : Optional[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCamelCase ( self : Any ): lowerCamelCase__ = FlaxBlenderbotModelTester(self ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : Dict ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest('JIT Enabled' ): lowerCamelCase__ = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase__ = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ = model_class(_UpperCamelCase ) lowerCamelCase__ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowerCamelCase__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest('JIT Enabled' ): lowerCamelCase__ = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase__ = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self : str ): for model_class_name in self.all_model_classes: lowerCamelCase__ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _UpperCamelCase ( self : int ): lowerCamelCase__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} lowerCamelCase__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowerCamelCase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_UpperCamelCase ) lowerCamelCase__ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) lowerCamelCase__ = ["""Sam"""] lowerCamelCase__ = tokenizer(_UpperCamelCase , return_tensors='jax' ) lowerCamelCase__ = model.generate(**_UpperCamelCase , **_UpperCamelCase ) lowerCamelCase__ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowerCamelCase__ = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
715
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[PIL.Image.Image, np.ndarray] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : PriorTransformer , SCREAMING_SNAKE_CASE__ : CLIPVisionModel , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE__ : ShapERenderer , ): super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE__ , image_encoder=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , renderer=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): if latents is None: lowerCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase__ = latents.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ = torch.device(F'cuda:{gpu_id}' ) lowerCamelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Dict ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase__ = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_encoder(SCREAMING_SNAKE_CASE__ )['last_hidden_state'] lowerCamelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = torch.zeros_like(SCREAMING_SNAKE_CASE__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ = self._encode_image(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.prior.config.num_embeddings lowerCamelCase__ = self.prior.config.embedding_dim lowerCamelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase__ = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.prior( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , proj_embedding=SCREAMING_SNAKE_CASE__ , ).predicted_image_embedding # remove the variance lowerCamelCase__ , lowerCamelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE__ ): print() lowerCamelCase__ = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.stack(SCREAMING_SNAKE_CASE__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase__ = images.cpu().numpy() if output_type == "pil": lowerCamelCase__ = [self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ )
659
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_A , ) assert hasattr(self , 'env' ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = { 'enabled': True, 'processes_per_host': 8, } lowerCamelCase__ = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } lowerCamelCase__ = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} lowerCamelCase__ = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='py36' , ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): TrainingJobAnalytics(_A ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self.create_estimator(_A ) # run training estimator.fit() # result dataframe lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _A )
716
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case ( _a: List[Any] )-> Any: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for rt in rc.restypes: lowerCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCamelCase__ = {name: i for i, name in enumerate(_lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCamelCase__ = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein['aatype'].device , ) lowerCamelCase__ = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein['aatype'].device , ) lowerCamelCase__ = torch.tensor( _lowerCamelCase , dtype=torch.floataa , device=protein['aatype'].device , ) lowerCamelCase__ = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase__ = restype_atomaa_mask[protein_aatype] lowerCamelCase__ = residx_atomaa_mask lowerCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCamelCase__ = rc.restype_atoa[restype_letter] lowerCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCamelCase__ = rc.atom_order[atom_name] lowerCamelCase__ = 1 lowerCamelCase__ = restype_atomaa_mask[protein_aatype] lowerCamelCase__ = residx_atomaa_mask return protein def snake_case ( _a: Optional[int] )-> str: '''simple docstring''' lowerCamelCase__ = tree_map(lambda _a : torch.tensor(_lowerCamelCase , device=batch['aatype'].device ) , _lowerCamelCase , np.ndarray ) lowerCamelCase__ = tensor_tree_map(lambda _a : np.array(_lowerCamelCase ) , make_atomaa_masks(_lowerCamelCase ) ) return out
717
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Any=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = scope lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase__ = input_mask.numpy() lowerCamelCase__ , lowerCamelCase__ = input_mask.shape lowerCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (TFBlipTextModel,) if is_tf_available() else () a_ : List[str] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : str ): lowerCamelCase__ = BlipTextModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): pass def _UpperCamelCase ( self : Tuple ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase ( self : List[str] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : Dict ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase ( self : List[Any] ): pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE__ )
659
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self : Any ): lowerCamelCase__ = 1 lowerCamelCase__ = 3 lowerCamelCase__ = (32, 32) lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def _UpperCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _UpperCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCamelCase ( self : Tuple ): torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.dummy_cond_unet_upscale lowerCamelCase__ = DDPMScheduler() lowerCamelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase__ = self.dummy_vae lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__ = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) lowerCamelCase__ = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ = '''A painting of a squirrel eating a burger''' lowerCamelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) lowerCamelCase__ = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase__ = output.images lowerCamelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) lowerCamelCase__ = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.dummy_cond_unet_upscale lowerCamelCase__ = DDPMScheduler() lowerCamelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase__ = self.dummy_vae lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__ = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) lowerCamelCase__ = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ = '''A painting of a squirrel eating a burger''' lowerCamelCase__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase__ = output.images assert image.shape[0] == 2 lowerCamelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) lowerCamelCase__ = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCamelCase__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.dummy_cond_unet_upscale lowerCamelCase__ = DDPMScheduler() lowerCamelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCamelCase__ = self.dummy_vae lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase__ = unet.half() lowerCamelCase__ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase__ = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) lowerCamelCase__ = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ = '''A painting of a squirrel eating a burger''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='np' , ).images lowerCamelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCamelCase__ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCamelCase__ = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ = '''a cat sitting on a park bench''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) lowerCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _UpperCamelCase ( self : Any ): lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCamelCase__ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCamelCase__ = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ = '''a cat sitting on a park bench''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) lowerCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _UpperCamelCase ( self : Tuple ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCamelCase__ = '''stabilityai/stable-diffusion-x4-upscaler''' lowerCamelCase__ = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ = '''a cat sitting on a park bench''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type='np' , ) lowerCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
718
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
659
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) _snake_case = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class _a ( _UpperCAmelCase ): a_ : int = 'deberta-v2' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=12_81_00 , SCREAMING_SNAKE_CASE__ : Optional[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : Tuple=24 , SCREAMING_SNAKE_CASE__ : Optional[int]=61_44 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-7 , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=-1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : str="gelu" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): super().__init__(**__UpperCamelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = relative_attention lowerCamelCase__ = max_relative_positions lowerCamelCase__ = pad_token_id lowerCamelCase__ = position_biased_input # Backwards compatibility if type(__UpperCamelCase ) == str: lowerCamelCase__ = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCamelCase__ = pos_att_type lowerCamelCase__ = vocab_size lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = kwargs.get('pooler_hidden_size' , __UpperCamelCase ) lowerCamelCase__ = pooler_dropout lowerCamelCase__ = pooler_hidden_act class _a ( _UpperCAmelCase ): @property def _UpperCamelCase ( self : int ): if self.task == "multiple-choice": lowerCamelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def _UpperCamelCase ( self : Union[str, Any] ): return 12 def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ): lowerCamelCase__ = super().generate_dummy_inputs(preprocessor=__UpperCamelCase , framework=__UpperCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
719
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _snake_case = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _snake_case = {f"""funnel-transformer/{name}""": 512 for name in _model_names} _snake_case = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class _a ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION a_ : List[str] = FunnelTokenizer a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : int = 2 def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<sep>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple="<cls>" , SCREAMING_SNAKE_CASE__ : Tuple="<mask>" , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int="##" , **SCREAMING_SNAKE_CASE__ : Any , ): super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , clean_text=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , wordpieces_prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = do_lower_case def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): lowerCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
659
0
"""simple docstring""" from importlib import import_module from .logging import get_logger _snake_case = get_logger(__name__) class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None ): lowerCamelCase__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , snake_case_ , getattr(snake_case_ , snake_case_ ) ) lowerCamelCase__ = module._original_module if isinstance(snake_case_ , _PatchedModuleObj ) else module class _a : a_ : Any = [] def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): lowerCamelCase__ = obj lowerCamelCase__ = target lowerCamelCase__ = new lowerCamelCase__ = target.split('.' )[0] lowerCamelCase__ = {} lowerCamelCase__ = attrs or [] def __enter__( self : int ): *lowerCamelCase__ , lowerCamelCase__ = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case_ ) ): try: lowerCamelCase__ = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowerCamelCase__ = getattr(self.obj , snake_case_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): lowerCamelCase__ = obj_attr # patch at top level setattr(self.obj , snake_case_ , _PatchedModuleObj(snake_case_ , attrs=self.attrs ) ) lowerCamelCase__ = getattr(self.obj , snake_case_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case_ , snake_case_ , _PatchedModuleObj(getattr(snake_case_ , snake_case_ , snake_case_ ) , attrs=self.attrs ) ) lowerCamelCase__ = getattr(snake_case_ , snake_case_ ) # finally set the target attribute setattr(snake_case_ , snake_case_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowerCamelCase__ = getattr(import_module('.'.join(snake_case_ ) ) , snake_case_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case_ ) is attr_value: lowerCamelCase__ = getattr(self.obj , snake_case_ ) setattr(self.obj , snake_case_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowerCamelCase__ = globals()['__builtins__'][target_attr] setattr(self.obj , snake_case_ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Dict , *SCREAMING_SNAKE_CASE__ : Dict ): for attr in list(self.original ): setattr(self.obj , snake_case_ , self.original.pop(snake_case_ ) ) def _UpperCamelCase ( self : Dict ): self.__enter__() self._active_patches.append(self ) def _UpperCamelCase ( self : Union[str, Any] ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
720
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case ( _a: Optional[Any] )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [-1] * len(_a ) def dfs(_a: Any , _a: Optional[int] ): lowerCamelCase__ = True lowerCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(_a , 1 - c ) for i in range(len(_a ) ): if not visited[i]: dfs(_a , 0 ) for i in range(len(_a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
659
0
"""simple docstring""" from __future__ import annotations def snake_case ( _a: int , _a: int )-> Dict: '''simple docstring''' if b == 0: return (1, 0) (lowerCamelCase__) = extended_euclid(__UpperCamelCase , a % b ) lowerCamelCase__ = a // b return (y, x - k * y) def snake_case ( _a: int , _a: int , _a: int , _a: int )-> int: '''simple docstring''' (lowerCamelCase__) = extended_euclid(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase__ = na * na lowerCamelCase__ = ra * x * na + ra * y * na return (n % m + m) % m def snake_case ( _a: int , _a: int )-> Optional[Any]: '''simple docstring''' (lowerCamelCase__) = extended_euclid(__UpperCamelCase , __UpperCamelCase ) if b < 0: lowerCamelCase__ = (b % n + n) % n return b def snake_case ( _a: int , _a: int , _a: int , _a: int )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = invert_modulo(__UpperCamelCase , __UpperCamelCase ), invert_modulo(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase__ = na * na lowerCamelCase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
721
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _a ( _lowercase ): a_ : Dict = '''MCTCTFeatureExtractor''' a_ : Optional[int] = '''AutoTokenizer''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ): super().__init__(A_ , A_ ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ = kwargs.pop('raw_speech' ) else: lowerCamelCase__ = kwargs.pop('audio' , A_ ) lowerCamelCase__ = kwargs.pop('sampling_rate' , A_ ) lowerCamelCase__ = kwargs.pop('text' , A_ ) if len(A_ ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ = self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ ) if text is not None: lowerCamelCase__ = self.tokenizer(A_ , **A_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings['input_ids'] return inputs def _UpperCamelCase ( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCamelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ , **A_ ) lowerCamelCase__ = kwargs.pop('input_features' , A_ ) lowerCamelCase__ = kwargs.pop('labels' , A_ ) if len(A_ ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if input_features is not None: lowerCamelCase__ = self.feature_extractor.pad(A_ , *A_ , **A_ ) if labels is not None: lowerCamelCase__ = self.tokenizer.pad(A_ , **A_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ = labels['input_ids'] return input_features def _UpperCamelCase ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ): return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def _UpperCamelCase ( self : Any ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
700
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : a_ : Union[str, Any] = MBartConfig a_ : Dict = {} a_ : List[str] = 'gelu' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : List[str]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Any=37 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=20 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : int=0 , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = eos_token_id lowerCamelCase__ = pad_token_id lowerCamelCase__ = bos_token_id def _UpperCamelCase ( self : str ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ = prepare_mbart_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = TFMBartModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() lowerCamelCase__ = inputs_dict['input_ids'] lowerCamelCase__ = input_ids[:1, :] lowerCamelCase__ = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ = inputs_dict['head_mask'] lowerCamelCase__ = 1 # first forward pass lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = outputs.to_tuple() lowerCamelCase__ = past_key_values[1] def snake_case ( _a: int , _a: Tuple , _a: Union[str, Any] , _a: Union[str, Any]=None , _a: Optional[int]=None , _a: Optional[int]=None , _a: Optional[Any]=None , _a: List[str]=None , )-> Union[str, Any]: '''simple docstring''' if attention_mask is None: lowerCamelCase__ = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( lowercase__ , lowercase__ , unittest.TestCase ): a_ : int = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () a_ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () a_ : Any = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) a_ : str = True a_ : Union[str, Any] = False a_ : Dict = False def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = TFMBartModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): a_ : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] a_ : Optional[int] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] a_ : int = 'facebook/mbart-large-en-ro' @cached_property def _UpperCamelCase ( self : List[Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCamelCase ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.translate_src_text(**SCREAMING_SNAKE_CASE__ ) self.assertListEqual(self.expected_text , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Any , **SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = self.tokenizer(self.src_text , **SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) lowerCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCamelCase__ = self.tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) return generated_words @slow def _UpperCamelCase ( self : Optional[int] ): self._assert_generated_batch_equal_expected()
701
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
0
"""simple docstring""" import os import sys import transformers _snake_case = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
702
"""simple docstring""" def snake_case ( _a: list[list[float]] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for data in source_data: for i, el in enumerate(_a ): if len(_a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_a ) ) return data_lists def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = [] for dlist, weight in zip(_a , _a ): lowerCamelCase__ = min(_a ) lowerCamelCase__ = max(_a ) lowerCamelCase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCamelCase__ = F'Invalid weight of {weight:f} provided' raise ValueError(_a ) score_lists.append(_a ) return score_lists def snake_case ( _a: list[list[float]] )-> list[float]: '''simple docstring''' lowerCamelCase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_a ): lowerCamelCase__ = final_scores[j] + ele return final_scores def snake_case ( _a: list[list[float]] , _a: list[int] )-> list[list[float]]: '''simple docstring''' lowerCamelCase__ = get_data(_a ) lowerCamelCase__ = calculate_each_score(_a , _a ) lowerCamelCase__ = generate_final_scores(_a ) # append scores to source data for i, ele in enumerate(_a ): source_data[i].append(_a ) return source_data
659
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _snake_case = logging.get_logger(__name__) class _a : a_ : int = None @experimental def snake_case ( _a: Tuple , _a: Dict , _a: Optional[int] , _a: Optional[Any] , _a: List[Any] , _a: List[str] , _a: Optional[int] )-> Dict: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return _map_with_joblib(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def snake_case ( _a: Optional[int] , _a: Union[str, Any] , _a: Union[str, Any] , _a: Optional[int] , _a: List[str] , _a: int , _a: int )-> List[str]: '''simple docstring''' lowerCamelCase__ = num_proc if num_proc <= len(snake_case_ ) else len(snake_case_ ) lowerCamelCase__ = [] # We organize the splits ourselve (contiguous splits) for index in range(snake_case_ ): lowerCamelCase__ = len(snake_case_ ) // num_proc lowerCamelCase__ = len(snake_case_ ) % num_proc lowerCamelCase__ = div * index + min(snake_case_ , snake_case_ ) lowerCamelCase__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(snake_case_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(snake_case_ )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(snake_case_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) lowerCamelCase__ = None, None if not disable_tqdm: lowerCamelCase__ = (RLock(),), tqdm.set_lock with Pool(snake_case_ , initargs=snake_case_ , initializer=snake_case_ ) as pool: lowerCamelCase__ = pool.map(snake_case_ , snake_case_ ) logger.info(F'Finished {num_proc} processes' ) lowerCamelCase__ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(snake_case_ )} objects' ) return mapped def snake_case ( _a: Optional[int] , _a: str , _a: Any , _a: Union[str, Any] , _a: str , _a: Optional[int] , _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=snake_case_ ): return joblib.Parallel()( joblib.delayed(snake_case_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case ( _a: str )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ = None
703
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = "bird" lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCamelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = "Chef in the kitchen" lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) lowerCamelCase__ = replicate(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = shard(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pipe( prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
704
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
659
0
"""simple docstring""" def snake_case ( _a: int )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [[0 for _ in range(_a )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCamelCase__ = 1 for n in range(m + 1 ): for k in range(1 , _a ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _snake_case = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _snake_case = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
705
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
0
"""simple docstring""" from __future__ import annotations def snake_case ( _a: list[int | str] )-> int: '''simple docstring''' create_state_space_tree(snake_case__ , [] , 0 , [0 for i in range(len(snake_case__ ) )] ) def snake_case ( _a: list[int | str] , _a: list[int | str] , _a: int , _a: list[int] , )-> List[str]: '''simple docstring''' if index == len(snake_case__ ): print(snake_case__ ) return for i in range(len(snake_case__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCamelCase__ = True create_state_space_tree(snake_case__ , snake_case__ , index + 1 , snake_case__ ) current_sequence.pop() lowerCamelCase__ = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
706
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) _snake_case = None _snake_case = { "7B": 1_1008, "13B": 1_3824, "30B": 1_7920, "65B": 2_2016, "70B": 2_8672, } _snake_case = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case ( _a: int , _a: Optional[int]=1 , _a: List[str]=256 )-> Union[str, Any]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case ( _a: Tuple )-> List[str]: '''simple docstring''' with open(__snake_case , 'r' ) as f: return json.load(__snake_case ) def snake_case ( _a: Tuple , _a: Union[str, Any] )-> int: '''simple docstring''' with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) def snake_case ( _a: List[str] , _a: Dict , _a: Dict , _a: Optional[int]=True )-> List[Any]: '''simple docstring''' os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase__ = os.path.join(__snake_case , 'tmp' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase__ = read_json(os.path.join(__snake_case , 'params.json' ) ) lowerCamelCase__ = NUM_SHARDS[model_size] lowerCamelCase__ = params['n_layers'] lowerCamelCase__ = params['n_heads'] lowerCamelCase__ = n_heads // num_shards lowerCamelCase__ = params['dim'] lowerCamelCase__ = dim // n_heads lowerCamelCase__ = 10000.0 lowerCamelCase__ = 1.0 / (base ** (torch.arange(0 , __snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCamelCase__ = params['n_kv_heads'] # for GQA / MQA lowerCamelCase__ = n_heads_per_shard // num_key_value_heads lowerCamelCase__ = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCamelCase__ = n_heads lowerCamelCase__ = n_heads_per_shard lowerCamelCase__ = dim # permute for sliced rotary def permute(_a: Dict , _a: Tuple=n_heads , _a: Any=dim , _a: Union[str, Any]=dim ): return w.view(__snake_case , dima // n_heads // 2 , 2 , __snake_case ).transpose(1 , 2 ).reshape(__snake_case , __snake_case ) print(F'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCamelCase__ = torch.load(os.path.join(__snake_case , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded lowerCamelCase__ = [ torch.load(os.path.join(__snake_case , F'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(__snake_case ) ] lowerCamelCase__ = 0 lowerCamelCase__ = {'weight_map': {}} for layer_i in range(__snake_case ): lowerCamelCase__ = F'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded lowerCamelCase__ = { F'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[F'layers.{layer_i}.attention.wq.weight'] ), F'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[F'layers.{layer_i}.attention.wk.weight'] ), F'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[F'layers.{layer_i}.attention.wv.weight'], F'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[F'layers.{layer_i}.attention.wo.weight'], F'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[F'layers.{layer_i}.feed_forward.w1.weight'], F'model.layers.{layer_i}.mlp.down_proj.weight': loaded[F'layers.{layer_i}.feed_forward.w2.weight'], F'model.layers.{layer_i}.mlp.up_proj.weight': loaded[F'layers.{layer_i}.feed_forward.w3.weight'], F'model.layers.{layer_i}.input_layernorm.weight': loaded[F'layers.{layer_i}.attention_norm.weight'], F'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[F'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCamelCase__ = { F'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ F'layers.{layer_i}.attention_norm.weight' ].clone(), F'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ F'layers.{layer_i}.ffn_norm.weight' ].clone(), } lowerCamelCase__ = permute( torch.cat( [ loaded[i][F'layers.{layer_i}.attention.wq.weight'].view(__snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) ) lowerCamelCase__ = permute( torch.cat( [ loaded[i][F'layers.{layer_i}.attention.wk.weight'].view( __snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case , ) lowerCamelCase__ = torch.cat( [ loaded[i][F'layers.{layer_i}.attention.wv.weight'].view( __snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) lowerCamelCase__ = torch.cat( [loaded[i][F'layers.{layer_i}.attention.wo.weight'] for i in range(__snake_case )] , dim=1 ) lowerCamelCase__ = torch.cat( [loaded[i][F'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__snake_case )] , dim=0 ) lowerCamelCase__ = torch.cat( [loaded[i][F'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__snake_case )] , dim=1 ) lowerCamelCase__ = torch.cat( [loaded[i][F'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__snake_case )] , dim=0 ) lowerCamelCase__ = inv_freq for k, v in state_dict.items(): lowerCamelCase__ = filename param_count += v.numel() torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) lowerCamelCase__ = F'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded lowerCamelCase__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: lowerCamelCase__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(__snake_case )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(__snake_case )] , dim=0 ), } for k, v in state_dict.items(): lowerCamelCase__ = filename param_count += v.numel() torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) # Write configs lowerCamelCase__ = {'total_size': param_count * 2} write_json(__snake_case , os.path.join(__snake_case , 'pytorch_model.bin.index.json' ) ) lowerCamelCase__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 lowerCamelCase__ = params['multiple_of'] if 'multiple_of' in params else 256 lowerCamelCase__ = LlamaConfig( hidden_size=__snake_case , intermediate_size=compute_intermediate_size(__snake_case , __snake_case , __snake_case ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=__snake_case , ) config.save_pretrained(__snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) lowerCamelCase__ = LlamaForCausalLM.from_pretrained(__snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=__snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(__snake_case , safe_serialization=__snake_case ) shutil.rmtree(__snake_case ) def snake_case ( _a: List[str] , _a: Optional[int] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) lowerCamelCase__ = tokenizer_class(__snake_case ) tokenizer.save_pretrained(__snake_case ) def snake_case ( )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=__snake_case , help='Whether or not to save using `safetensors`.' ) lowerCamelCase__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCamelCase__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , __snake_case ) if __name__ == "__main__": main()
707
"""simple docstring""" def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: List[Any] )-> List[Any]: '''simple docstring''' lowerCamelCase__ = [False] * len(_a ) lowerCamelCase__ = [] queue.append(_a ) lowerCamelCase__ = True while queue: lowerCamelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_a ) lowerCamelCase__ = True lowerCamelCase__ = u return visited[t] def snake_case ( _a: List[Any] , _a: str , _a: List[str] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [-1] * (len(_a )) lowerCamelCase__ = 0 while bfs(_a , _a , _a , _a ): lowerCamelCase__ = float('Inf' ) lowerCamelCase__ = sink while s != source: # Find the minimum value in select path lowerCamelCase__ = min(_a , graph[parent[s]][s] ) lowerCamelCase__ = parent[s] max_flow += path_flow lowerCamelCase__ = sink while v != source: lowerCamelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case , _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
659
0
"""simple docstring""" import sys def snake_case ( _a: int )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = len(UpperCAmelCase__ ) lowerCamelCase__ = [[0 for x in range(UpperCAmelCase__ )] for x in range(UpperCAmelCase__ )] lowerCamelCase__ = [[0 for x in range(UpperCAmelCase__ )] for x in range(UpperCAmelCase__ )] for chain_length in range(2 , UpperCAmelCase__ ): for a in range(1 , n - chain_length + 1 ): lowerCamelCase__ = a + chain_length - 1 lowerCamelCase__ = sys.maxsize for c in range(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase__ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCamelCase__ = cost lowerCamelCase__ = c return matrix, sol def snake_case ( _a: Optional[Any] , _a: Any , _a: Dict )-> str: '''simple docstring''' if i == j: print('A' + str(UpperCAmelCase__ ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(UpperCAmelCase__ , UpperCAmelCase__ , optimal_solution[i][j] ) print_optiomal_solution(UpperCAmelCase__ , optimal_solution[i][j] + 1 , UpperCAmelCase__ ) print(')' , end=' ' ) def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [30, 35, 15, 5, 10, 20, 25] lowerCamelCase__ = len(UpperCAmelCase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCamelCase__ = matrix_chain_order(UpperCAmelCase__ ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(UpperCAmelCase__ , 1 , n - 1 ) if __name__ == "__main__": main()
708
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
0
"""simple docstring""" import string from math import logaa def snake_case ( _a: str , _a: str )-> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase__ = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case ( _a: str , _a: str )-> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('\n' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowercase )) def snake_case ( _a: int , _a: int , _a: Union[str, Any]=False )-> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def snake_case ( _a: int , _a: int )-> float: '''simple docstring''' return round(tf * idf , 3 )
709
"""simple docstring""" import argparse import json from tqdm import tqdm def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_a , help='where to store parsed gold_data_path file' , ) lowerCamelCase__ = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowerCamelCase__ = json.load(_a ) for dpr_record in tqdm(_a ): lowerCamelCase__ = dpr_record['question'] lowerCamelCase__ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_a ) + '\n' ) if __name__ == "__main__": main()
659
0