code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' A: List[Any] = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A: Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] A: Dict = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' # Lint as: python3 import itertools import os import re A: List[Any] = re.compile(r"([A-Z]+)([A-Z][a-z])") A: Dict = re.compile(r"([a-z\d])([A-Z])") A: List[Any] = re.compile(r"(?<!_)_(?!_)") A: Tuple = re.compile(r"(_{2,})") A: List[str] = r"^\w+(\.\w+)*$" A: Any = r"<>:/\|?*" def _UpperCAmelCase ( a : Any ) -> List[str]: """simple docstring""" lowercase_ : str = _uppercase_uppercase_re.sub(R'\1_\2' , a ) lowercase_ : Dict = _lowercase_uppercase_re.sub(R'\1_\2' , a ) return name.lower() def _UpperCAmelCase ( a : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = _single_underscore_re.split(a ) lowercase_ : List[str] = [_multiple_underscores_re.split(a ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(a ) if n != '' ) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" if os.path.basename(a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(a ) def _UpperCAmelCase ( a : Optional[Any] , a : Optional[Any] ) -> Tuple: """simple docstring""" if os.path.basename(a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , a ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(a )}-{split}" def _UpperCAmelCase ( a : int , a : List[Any] , a : Optional[int] , a : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" lowercase_ : Dict = filename_prefix_for_split(a , a ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase_ : str = os.path.join(a , a ) return f"{filepath}*" def _UpperCAmelCase ( a : Dict , a : int , a : Optional[Any] , a : List[Any]=None , a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" lowercase_ : Any = filename_prefix_for_split(a , a ) lowercase_ : Dict = os.path.join(a , a ) if shard_lengths: lowercase_ : int = len(a ) lowercase_ : int = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(a )] if filetype_suffix: lowercase_ : Any = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase_ : Any = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowercase_ : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : int = DisjunctiveConstraint(_lowercase ) self.assertTrue(isinstance(dc.token_ids , _lowercase ) ) with self.assertRaises(_lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCamelCase__ ( self ) -> Union[str, Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowercase_ : Optional[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowercase ): DisjunctiveConstraint(_lowercase ) # fails here def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Any = DisjunctiveConstraint(_lowercase ) lowercase_ , lowercase_ , lowercase_ : List[Any] = dc.update(1 ) lowercase_ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) lowercase_ : Dict = stepped is True and completed is False and reset is False self.assertTrue(_lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(3 ) lowercase_ : int = stepped is True and completed is True and reset is False self.assertTrue(_lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : int = DisjunctiveConstraint(_lowercase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A: int = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __magic_name__ ( unittest.TestCase, UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[str] = load_tool('text-classification' ) self.tool.setup() lowercase_ : Dict = load_tool('text-classification' , remote=_lowercase ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[Any] = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Tuple = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Any = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_lowercase , 'positive' )
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' from math import factorial, pi def _UpperCAmelCase ( a : float , a : int = 3_0 ) -> float: """simple docstring""" if not isinstance(a , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(a , a ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) lowercase_ : Dict = float(a ) lowercase_ : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(a ) ) def _UpperCAmelCase ( a : float , a : int = 3_0 ) -> float: """simple docstring""" if not isinstance(a , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(a , a ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) lowercase_ : int = float(a ) lowercase_ : int = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(a ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: Tuple = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'altclip_text_model' def __init__( self , _lowercase=25_0002 , _lowercase=1024 , _lowercase=24 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=0.02 , _lowercase=0.02 , _lowercase=1E-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=768 , **_lowercase , ) -> str: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Tuple = vocab_size lowercase_ : str = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Any = initializer_range lowercase_ : str = initializer_factor lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : int = use_cache lowercase_ : List[Any] = project_dim class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'altclip_vision_model' def __init__( self , _lowercase=768 , _lowercase=3072 , _lowercase=512 , _lowercase=12 , _lowercase=12 , _lowercase=3 , _lowercase=224 , _lowercase=32 , _lowercase="quick_gelu" , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) lowercase_ : List[str] = hidden_size lowercase_ : Any = intermediate_size lowercase_ : int = projection_dim lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = num_channels lowercase_ : Optional[Any] = patch_size lowercase_ : Optional[Any] = image_size lowercase_ : Tuple = initializer_range lowercase_ : List[str] = initializer_factor lowercase_ : Any = attention_dropout lowercase_ : str = layer_norm_eps lowercase_ : Tuple = hidden_act @classmethod def lowerCamelCase__ ( cls , _lowercase , **_lowercase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase ) lowercase_ , lowercase_ : int = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": lowercase_ : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'altclip' SCREAMING_SNAKE_CASE_ : Any = True def __init__( self , _lowercase=None , _lowercase=None , _lowercase=768 , _lowercase=2.65_92 , **_lowercase ) -> int: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase_ : List[str] = kwargs.pop('text_config_dict' , _lowercase ) lowercase_ : Optional[Any] = kwargs.pop('vision_config_dict' , _lowercase ) super().__init__(**_lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase_ : List[str] = {} # This is the complete result when using `text_config_dict`. lowercase_ : str = AltCLIPTextConfig(**_lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase_ : int = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: lowercase_ : List[str] = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(_lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase_ : Dict = {} # This is the complete result when using `vision_config_dict`. lowercase_ : Optional[Any] = AltCLIPVisionConfig(**_lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase_ : List[str] = { str(_lowercase ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase_ : Union[str, Any] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: lowercase_ : Any = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(_lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase_ : List[Any] = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: lowercase_ : Optional[Any] = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) lowercase_ : int = AltCLIPTextConfig(**_lowercase ) lowercase_ : Any = AltCLIPVisionConfig(**_lowercase ) lowercase_ : Union[str, Any] = projection_dim lowercase_ : List[Any] = logit_scale_init_value lowercase_ : str = 1.0 @classmethod def lowerCamelCase__ ( cls , _lowercase , _lowercase , **_lowercase ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.text_config.to_dict() lowercase_ : int = self.vision_config.to_dict() lowercase_ : Optional[int] = self.__class__.model_type return output
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A: List[Any] = None A: Dict = logging.get_logger(__name__) A: Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A: List[str] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } A: Optional[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } A: str = "▁" # Segments (not really needed) A: str = 0 A: Any = 1 A: Union[str, Any] = 2 A: str = 3 A: List[str] = 4 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'left' SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<sep>" , _lowercase="<pad>" , _lowercase="<cls>" , _lowercase="<mask>" , _lowercase=["<eop>", "<eod>"] , **_lowercase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowercase_ : Optional[int] = 3 lowercase_ : List[str] = do_lower_case lowercase_ : Tuple = remove_space lowercase_ : List[Any] = keep_accents lowercase_ : int = vocab_file lowercase_ : List[Any] = False if not self.vocab_file else True def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : str = [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : int = [self.sep_token_id] lowercase_ : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : Any = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer A: Tuple = "bart" A: Optional[Any] = True @st.cache(allow_output_mutation=a ) def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: lowercase_ : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) lowercase_ : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) lowercase_ : Union[str, Any] = qar_model.eval() else: lowercase_ , lowercase_ : List[Any] = (None, None) if MODEL_TYPE == "bart": lowercase_ : List[str] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) lowercase_ : str = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) lowercase_ : List[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) lowercase_ : Union[str, Any] = sas_model.eval() else: lowercase_ , lowercase_ : List[Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _UpperCAmelCase ( ) -> List[str]: """simple docstring""" if LOAD_DENSE_INDEX: lowercase_ : Any = faiss.StandardGpuResources() lowercase_ : Any = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] lowercase_ : Optional[Any] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_2_8) , ) lowercase_ : List[str] = faiss.IndexFlatIP(1_2_8 ) lowercase_ : Tuple = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: lowercase_ , lowercase_ : Any = (None, None) lowercase_ : Any = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) lowercase_ : Tuple = elia['train_eli5'] lowercase_ : List[Any] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_2_8) ) lowercase_ : Optional[int] = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) A , A , A: List[str] = load_indexes() A , A , A , A: List[str] = load_models() A , A: List[str] = load_train_data() def _UpperCAmelCase ( a : Union[str, Any] , a : Any=1_0 ) -> Optional[Any]: """simple docstring""" lowercase_ : str = embed_questions_for_retrieval([question] , a , a ) lowercase_ , lowercase_ : Optional[int] = eli5_train_q_index.search(a , a ) lowercase_ : int = [elia_train[int(a )] for i in I[0]] return nn_examples def _UpperCAmelCase ( a : Dict , a : int="wiki40b" , a : Optional[int]="dense" , a : int=1_0 ) -> Dict: """simple docstring""" if source == "none": lowercase_ , lowercase_ : Dict = (' <P> '.join(['' for _ in range(1_1 )] ).strip(), []) else: if method == "dense": lowercase_ , lowercase_ : List[str] = query_qa_dense_index( a , a , a , a , a , a ) else: lowercase_ , lowercase_ : Any = query_es_index( a , a , index_name='english_wiki40b_snippets_100w' , n_results=a , ) lowercase_ : Optional[int] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] lowercase_ : Tuple = 'question: {} context: {}'.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _UpperCAmelCase ( a : Tuple , a : Optional[int] , a : List[Any] , a : List[Any]=6_4 , a : str=2_5_6 , a : List[str]=False , a : Optional[Any]=2 , a : Optional[int]=0.95 , a : Tuple=0.8 ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): lowercase_ : List[Any] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_0_2_4 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar A: int = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" A: int = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia A: Dict = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) A: List[str] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] A: Dict = st.sidebar.checkbox("Demo options") if demo_options: A: Optional[Any] = st.sidebar.selectbox( "", action_list, index=3, ) A: Optional[Any] = action_list.index(action_st) A: str = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) A: List[Any] = show_type == "Show full text of passages" else: A: Any = 3 A: str = True A: Optional[Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: A: List[str] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) A: Dict = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) A: Any = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: A: Dict = "wiki40b" A: List[str] = "dense" A: int = "beam" A: Optional[int] = 2 A: Dict = 6_4 A: Dict = 2_5_6 A: str = None A: Dict = None A: Optional[int] = st.sidebar.checkbox("Generation options") if generate_options: A: str = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) A: Optional[Any] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) A: Dict = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) A: Union[str, Any] = st.sidebar.slider( "Maximum generation length", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": A: Optional[Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: A: int = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) A: Optional[Any] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) A: Union[str, Any] = None # start main text A: Tuple = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] A: str = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": A: Any = st.text_input("Enter your question here:", "") else: A: Any = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": A , A: Optional[int] = make_support(question, source=wiki_source, method="dense", n_results=1_0) A , A: List[Any] = make_support(question, source=wiki_source, method="sparse", n_results=1_0) A: Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] A: int = support_list[:1_0] A: Optional[int] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: A , A: Dict = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: A , A: List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): A: Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) A: List[Any] = res[1].strip() if sec_titles == "": A: Tuple = "[{}]({})".format(res[0], wiki_url) else: A: int = sec_titles.split(" & ") A: Any = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: A: List[Any] = find_nearest_training(question) A: Union[str, Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) A: List[Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) A: Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A: Any = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: super().__init__(*_lowercase , **_lowercase ) requires_backends(self , 'vision' ) self.check_model_type(_lowercase ) def __call__( self , _lowercase , **_lowercase ) -> int: return super().__call__(_lowercase , **_lowercase ) def lowerCamelCase__ ( self , **_lowercase ) -> Optional[int]: return {}, {}, {} def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : List[Any] = load_image(_lowercase ) lowercase_ : str = image.size lowercase_ : Union[str, Any] = self.image_processor(images=_lowercase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.model(**_lowercase ) return model_outputs def lowerCamelCase__ ( self , _lowercase ) -> Tuple: lowercase_ : int = model_outputs.predicted_depth lowercase_ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_lowercase ) lowercase_ : str = prediction.squeeze().cpu().numpy() lowercase_ : List[str] = (output * 255 / np.max(_lowercase )).astype('uint8' ) lowercase_ : Union[str, Any] = Image.fromarray(_lowercase ) lowercase_ : List[Any] = {} lowercase_ : Dict = predicted_depth lowercase_ : Optional[Any] = depth return output_dict
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> int: """simple docstring""" lowercase_ : Union[str, Any] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def _UpperCAmelCase ( a : int = 1_0_0 ) -> int: """simple docstring""" lowercase_ : Dict = 1 lowercase_ : Optional[int] = 2 for i in range(2 , max_n + 1 ): lowercase_ : Any = pre_numerator lowercase_ : int = 2 * i // 3 if i % 3 == 0 else 1 lowercase_ : Optional[Any] = cur_numerator lowercase_ : int = e_cont * pre_numerator + temp return sum_digits(a ) if __name__ == "__main__": print(f"""{solution() = }""")
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' import math import qiskit def _UpperCAmelCase ( a : int = 1 , a : int = 1 , a : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(a , a ) or isinstance(a , a ) or isinstance(a , a ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(a ) != input_a) or (math.floor(a ) != input_a) or (math.floor(a ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers lowercase_ : Optional[Any] = qiskit.QuantumRegister(4 , 'qr' ) lowercase_ : Dict = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries lowercase_ : Dict = [input_a, input_a, carry_in] lowercase_ : Optional[Any] = qiskit.QuantumCircuit(a , a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a ) # measure the last two qbits lowercase_ : Dict = qiskit.Aer.get_backend('aer_simulator' ) lowercase_ : Tuple = qiskit.execute(a , a , shots=1_0_0_0 ) return job.result().get_counts(a ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A: List[str] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = b.T lowercase_ : str = np.sum(np.square(a ) , axis=1 ) lowercase_ : Optional[Any] = np.sum(np.square(a ) , axis=0 ) lowercase_ : Optional[int] = np.matmul(a , a ) lowercase_ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = x.reshape(-1 , 3 ) lowercase_ : Union[str, Any] = squared_euclidean_distance(a , a ) return np.argmin(a , axis=1 ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['pixel_values'] def __init__( self , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) lowercase_ : Optional[Any] = size if size is not None else {'height': 256, 'width': 256} lowercase_ : Optional[Any] = get_size_dict(_lowercase ) lowercase_ : List[str] = np.array(_lowercase ) if clusters is not None else None lowercase_ : Dict = do_resize lowercase_ : Dict = size lowercase_ : Optional[int] = resample lowercase_ : Dict = do_normalize lowercase_ : Tuple = do_color_quantize def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BILINEAR , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( _lowercase , size=(size['height'], size['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , ) -> np.ndarray: lowercase_ : Optional[Any] = rescale(image=_lowercase , scale=1 / 1_27.5 , data_format=_lowercase ) lowercase_ : Optional[Any] = image - 1 return image def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: lowercase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Any = get_size_dict(_lowercase ) lowercase_ : Any = resample if resample is not None else self.resample lowercase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ : Union[str, Any] = clusters if clusters is not None else self.clusters lowercase_ : Dict = np.array(_lowercase ) lowercase_ : str = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase_ : Dict = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_normalize: lowercase_ : str = [self.normalize(image=_lowercase ) for image in images] if do_color_quantize: lowercase_ : Tuple = [to_channel_dimension_format(_lowercase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ : List[Any] = np.array(_lowercase ) lowercase_ : Optional[int] = color_quantize(_lowercase , _lowercase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase_ : Optional[int] = images.shape[0] lowercase_ : Optional[Any] = images.reshape(_lowercase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ : List[str] = list(_lowercase ) else: lowercase_ : List[str] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase_ : int = {'input_ids': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> str: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_lowercase ): lowercase_ : Optional[Any] = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase_ : int = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_lowercase ): lowercase_ : List[str] = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase_ : Optional[Any] = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Tuple: for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase_ : List[Any] = AutoTokenizer.from_pretrained(_lowercase ) lowercase_ : Dict = FlaxBertModel.from_pretrained(_lowercase ) lowercase_ : int = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**_lowercase ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() @slow def lowerCamelCase__ ( self ) -> Optional[Any]: for model_name in ["roberta-base", "roberta-large"]: lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase ) lowercase_ : Optional[int] = FlaxRobertaModel.from_pretrained(_lowercase ) lowercase_ : int = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**_lowercase ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() def lowerCamelCase__ ( self ) -> Tuple: with self.assertRaisesRegex( _lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): lowercase_ : List[Any] = FlaxAutoModel.from_pretrained('bert-base' ) def lowerCamelCase__ ( self ) -> int: with self.assertRaisesRegex( _lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase_ : Union[str, Any] = FlaxAutoModel.from_pretrained(_lowercase , revision='aaaaaa' ) def lowerCamelCase__ ( self ) -> str: with self.assertRaisesRegex( _lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): lowercase_ : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCamelCase__ ( self ) -> Optional[int]: with self.assertRaisesRegex(_lowercase , 'Use `from_pt=True` to load this model' ): lowercase_ : Optional[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _UpperCAmelCase ( a : float ) -> str: """simple docstring""" assert type(a ) in (int, float) and decimal == int(a ) lowercase_ : Tuple = int(a ) lowercase_ : int = '' lowercase_ : Tuple = False if decimal < 0: lowercase_ : Optional[Any] = True decimal *= -1 while decimal > 0: lowercase_ , lowercase_ : Dict = divmod(a , 1_6 ) lowercase_ : Tuple = values[remainder] + hexadecimal lowercase_ : Optional[Any] = '0x' + hexadecimal if negative: lowercase_ : str = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int = 1_0_0_0 ) -> int: """simple docstring""" lowercase_ : List[Any] = 2**power lowercase_ : Tuple = str(a ) lowercase_ : Dict = list(a ) lowercase_ : Optional[Any] = 0 for i in list_num: sum_of_num += int(a ) return sum_of_num if __name__ == "__main__": A: Any = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A: List[Any] = solution(power) print("Sum of the digits is: ", result)
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' from collections.abc import Callable def _UpperCAmelCase ( a : Callable[[float], float] , a : float , a : float ) -> float: """simple docstring""" lowercase_ : float = a lowercase_ : float = b if function(a ) == 0: # one of the a or b is a root for the function return a elif function(a ) == 0: return b elif ( function(a ) * function(a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowercase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(a ) == 0: return mid elif function(a ) * function(a ) < 0: lowercase_ : Dict = mid else: lowercase_ : Optional[Any] = mid lowercase_ : Any = start + (end - start) / 2.0 return mid def _UpperCAmelCase ( a : float ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=3 , _lowercase=32 , _lowercase=3 , _lowercase=10 , _lowercase=[8, 16, 32, 64] , _lowercase=[1, 1, 2, 1] , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=3 , _lowercase=None , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=[2, 3, 4] , _lowercase=1 , ) -> str: lowercase_ : List[Any] = parent lowercase_ : str = batch_size lowercase_ : Optional[int] = image_size lowercase_ : Union[str, Any] = num_channels lowercase_ : Any = embeddings_size lowercase_ : List[Any] = hidden_sizes lowercase_ : str = depths lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_labels lowercase_ : Tuple = hidden_act lowercase_ : Optional[Any] = num_labels lowercase_ : Union[str, Any] = scope lowercase_ : Union[str, Any] = len(_lowercase ) lowercase_ : str = out_features lowercase_ : Optional[Any] = out_indices lowercase_ : List[Any] = num_groups def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ) -> Any: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : List[str] = BitModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Any = self.num_labels lowercase_ : List[Any] = BitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : int = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase_ : int = None lowercase_ : int = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[Any] = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Optional[Any] = config_and_inputs lowercase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ) -> str: lowercase_ : List[Any] = BitModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowerCamelCase__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ) -> List[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def lowerCamelCase__ ( self ) -> str: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def lowerCamelCase__ ( self ) -> Any: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def lowerCamelCase__ ( self ) -> Any: pass def lowerCamelCase__ ( self ) -> Any: lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(_lowercase ) lowercase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(config=_lowercase ) for name, module in model.named_modules(): if isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def lowerCamelCase__ ( self ) -> str: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): lowercase_ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase_ : Optional[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase_ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Dict = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : Dict = layer_type lowercase_ : Optional[int] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def lowerCamelCase__ ( self ) -> Tuple: pass def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def lowerCamelCase__ ( self ) -> Dict: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = BitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ) -> str: """simple docstring""" lowercase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ) -> Any: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : List[Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): lowercase_ : Union[str, Any] = model(**_lowercase ) # verify the logits lowercase_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowercase_ : Dict = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) ) @require_torch class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = BitConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : str = BitModelTester(self )
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' import doctest from collections import deque import numpy as np class __magic_name__ : """simple docstring""" def __init__( self ) -> None: lowercase_ : List[Any] = [2, 1, 2, -1] lowercase_ : str = [1, 2, 3, 4] def lowerCamelCase__ ( self ) -> list[float]: lowercase_ : Optional[int] = len(self.first_signal ) lowercase_ : List[str] = len(self.second_signal ) lowercase_ : List[str] = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length lowercase_ : Union[str, Any] = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): lowercase_ : Optional[int] = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal lowercase_ : List[str] = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A: Dict = logging.get_logger(__name__) set_seed(7_7_0) A: Optional[Any] = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } A: Dict = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } A: Dict = os.path.dirname(os.path.abspath(__file__)) A: Tuple = os.path.join(os.path.expanduser("~"), ".cache") A: List[str] = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _UpperCAmelCase ( a : List[Any] , a : Union[str, Any]=False ) -> Dict: """simple docstring""" lowercase_ : Optional[Any] = model_type if use_small: key += "_small" return os.path.join(a , REMOTE_MODEL_PATHS[key]['file_name'] ) def _UpperCAmelCase ( a : List[str] , a : Any ) -> Any: """simple docstring""" os.makedirs(a , exist_ok=a ) hf_hub_download(repo_id=a , filename=a , local_dir=a ) def _UpperCAmelCase ( a : Dict , a : Optional[Any] , a : Optional[int]=False , a : int="text" ) -> Union[str, Any]: """simple docstring""" if model_type == "text": lowercase_ : Tuple = BarkSemanticModel lowercase_ : List[str] = BarkSemanticConfig lowercase_ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase_ : int = BarkCoarseModel lowercase_ : str = BarkCoarseConfig lowercase_ : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": lowercase_ : Dict = BarkFineModel lowercase_ : Optional[int] = BarkFineConfig lowercase_ : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() lowercase_ : Optional[int] = f"{model_type}_small" if use_small else model_type lowercase_ : Optional[int] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a ): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowercase_ : Any = torch.load(a , map_location=a ) # this is a hack lowercase_ : Union[str, Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowercase_ : Union[str, Any] = model_args['vocab_size'] lowercase_ : str = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase_ : List[Any] = model_args.pop('n_head' ) lowercase_ : Optional[int] = model_args.pop('n_embd' ) lowercase_ : Optional[int] = model_args.pop('n_layer' ) lowercase_ : Union[str, Any] = ConfigClass(**checkpoint['model_args'] ) lowercase_ : Union[str, Any] = ModelClass(config=a ) lowercase_ : Any = GenerationConfigClass() lowercase_ : str = model_generation_config lowercase_ : List[str] = checkpoint['model'] # fixup checkpoint lowercase_ : List[str] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(a ): # replace part of the key with corresponding layer name in HF implementation lowercase_ : Dict = k[len(a ) :] for old_layer_name in new_layer_name_dict: lowercase_ : Any = new_k.replace(a , new_layer_name_dict[old_layer_name] ) lowercase_ : Dict = state_dict.pop(a ) lowercase_ : List[str] = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase_ : List[Any] = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowercase_ : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase_ : Union[str, Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(a ) != 0: raise ValueError(f"extra keys found: {extra_keys}" ) if len(a ) != 0: raise ValueError(f"missing keys: {missing_keys}" ) model.load_state_dict(a , strict=a ) lowercase_ : Optional[int] = model.num_parameters(exclude_embeddings=a ) lowercase_ : List[str] = checkpoint['best_val_loss'].item() logger.info(f"model loaded: {round(n_params/1e6 , 1 )}M params, {round(a , 3 )} loss" ) model.eval() model.to(a ) del checkpoint, state_dict return model def _UpperCAmelCase ( a : Any , a : Dict=False , a : List[str]="text" ) -> List[str]: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase_ : Tuple = 'cpu' # do conversion on cpu lowercase_ : Optional[Any] = _get_ckpt_path(a , use_small=a ) lowercase_ : int = _load_model(a , a , model_type=a , use_small=a ) # load bark initial model lowercase_ : str = _bark_load_model(a , 'cpu' , model_type=a , use_small=a ) if model_type == "text": lowercase_ : str = bark_model['model'] if model.num_parameters(exclude_embeddings=a ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowercase_ : Any = 5 lowercase_ : Optional[Any] = 1_0 if model_type in ["text", "coarse"]: lowercase_ : Dict = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) lowercase_ : Any = bark_model(a )[0] lowercase_ : Optional[Any] = model(a ) # take last logits lowercase_ : Any = output_new_model_total.logits[:, [-1], :] else: lowercase_ : Any = 3 lowercase_ : Dict = 8 lowercase_ : Dict = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase_ : Any = model(a , a ) lowercase_ : List[Any] = bark_model(a , a ) lowercase_ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) def _UpperCAmelCase ( a : Any , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : Dict , a : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase_ : str = os.path.join(a , a ) lowercase_ : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(a , 'config.json' ) ) lowercase_ : List[str] = BarkCoarseConfig.from_pretrained(os.path.join(a , 'config.json' ) ) lowercase_ : Optional[Any] = BarkFineConfig.from_pretrained(os.path.join(a , 'config.json' ) ) lowercase_ : str = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowercase_ : List[str] = BarkSemanticModel.from_pretrained(a ) lowercase_ : List[Any] = BarkCoarseModel.from_pretrained(a ) lowercase_ : Any = BarkFineModel.from_pretrained(a ) lowercase_ : Any = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowercase_ : Optional[Any] = BarkConfig.from_sub_model_configs( a , a , a , a ) lowercase_ : Tuple = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase_ : Any = BarkModel(a ) lowercase_ : List[Any] = semantic lowercase_ : Any = coarseAcoustic lowercase_ : Optional[Any] = fineAcoustic lowercase_ : int = codec lowercase_ : Tuple = bark_generation_config Path(a ).mkdir(exist_ok=a ) bark.save_pretrained(a , repo_id=a , push_to_hub=a ) if __name__ == "__main__": A: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") A: Any = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from collections.abc import Sequence def _UpperCAmelCase ( a : Sequence[float] , a : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowercase_ : Dict = 0 if allow_empty_subarrays else float('-inf' ) lowercase_ : str = 0.0 for num in arr: lowercase_ : int = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ : Tuple = max(a , a ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A: int = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' import math from datetime import datetime, timedelta def _UpperCAmelCase ( a : int ) -> datetime: """simple docstring""" lowercase_ : str = year % 1_9 lowercase_ : Optional[int] = year % 4 lowercase_ : int = year % 7 lowercase_ : int = math.floor(year / 1_0_0 ) lowercase_ : Optional[int] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) lowercase_ : List[Any] = leap_day_inhibits / 4 lowercase_ : Union[str, Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 lowercase_ : List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase_ : List[str] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon lowercase_ : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(a , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(a , 4 , 1_8 ) else: return datetime(a , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): A: Optional[Any] = "will be" if year > datetime.now().year else "was" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A: List[str] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys A: Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'bert-generation' def __init__( self , _lowercase=5_0358 , _lowercase=1024 , _lowercase=24 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ) -> Optional[Any]: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Any = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : str = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : str = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Dict = position_embedding_type lowercase_ : int = use_cache
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ShapEPipeline SCREAMING_SNAKE_CASE_ : List[Any] = ['prompt'] SCREAMING_SNAKE_CASE_ : Tuple = ['prompt'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ : int = False @property def lowerCamelCase__ ( self ) -> Dict: return 32 @property def lowerCamelCase__ ( self ) -> int: return 32 @property def lowerCamelCase__ ( self ) -> List[str]: return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ) -> str: return 8 @property def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowercase ) @property def lowerCamelCase__ ( self ) -> Any: torch.manual_seed(0 ) lowercase_ : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowercase_ : Union[str, Any] = PriorTransformer(**_lowercase ) return model @property def lowerCamelCase__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase_ : List[str] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } lowercase_ : Dict = ShapERenderer(**_lowercase ) return model def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[int] = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_text_encoder lowercase_ : Optional[int] = self.dummy_tokenizer lowercase_ : List[Any] = self.dummy_renderer lowercase_ : Any = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_lowercase , clip_sample=_lowercase , clip_sample_range=1.0 , ) lowercase_ : str = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Tuple: if str(_lowercase ).startswith('mps' ): lowercase_ : Union[str, Any] = torch.manual_seed(_lowercase ) else: lowercase_ : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Union[str, Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = 'cpu' lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : Optional[Any] = self.pipeline_class(**_lowercase ) lowercase_ : List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Dict = pipe(**self.get_dummy_inputs(_lowercase ) ) lowercase_ : Dict = output.images[0] lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ : int = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : str = torch_device == 'cpu' lowercase_ : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowercase , relax_max_difference=_lowercase , ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : int = self.get_dummy_components() lowercase_ : Any = self.pipeline_class(**_lowercase ) lowercase_ : Optional[int] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : List[Any] = 1 lowercase_ : int = 2 lowercase_ : Union[str, Any] = self.get_dummy_inputs(_lowercase ) for key in inputs.keys(): if key in self.batch_params: lowercase_ : List[Any] = batch_size * [inputs[key]] lowercase_ : Tuple = pipe(**_lowercase , num_images_per_prompt=_lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowercase_ : int = ShapEPipeline.from_pretrained('openai/shap-e' ) lowercase_ : str = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe( 'a shark' , generator=_lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A: Optional[Any] = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'albert' def __init__( self , _lowercase=3_0000 , _lowercase=128 , _lowercase=4096 , _lowercase=12 , _lowercase=1 , _lowercase=64 , _lowercase=1_6384 , _lowercase=1 , _lowercase="gelu_new" , _lowercase=0 , _lowercase=0 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0.1 , _lowercase="absolute" , _lowercase=0 , _lowercase=2 , _lowercase=3 , **_lowercase , ) -> Any: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Dict = vocab_size lowercase_ : List[str] = embedding_size lowercase_ : Any = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Tuple = num_hidden_groups lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : int = inner_group_num lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = intermediate_size lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : List[Any] = type_vocab_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : List[str] = classifier_dropout_prob lowercase_ : Optional[int] = position_embedding_type class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = StableUnCLIPPipeline SCREAMING_SNAKE_CASE_ : int = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Optional[Any] = 32 lowercase_ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase_ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowercase_ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ : Union[str, Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) lowercase_ : Optional[int] = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowercase_ : Tuple = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) lowercase_ : Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowercase_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowercase_ : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) lowercase_ : Optional[int] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ : str = AutoencoderKL() lowercase_ : Optional[Any] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def lowerCamelCase__ ( self , _lowercase , _lowercase=0 ) -> List[str]: if str(_lowercase ).startswith('mps' ): lowercase_ : Tuple = torch.manual_seed(_lowercase ) else: lowercase_ : List[str] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Any = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Tuple = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ) -> str: lowercase_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowercase_ : Optional[Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : Optional[int] = pipe('anime turle' , generator=_lowercase , output_type='np' ) lowercase_ : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ : List[Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowercase_ : List[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : Optional[Any] = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowercase_ : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A: Optional[int] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") A: Union[str, Any] = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) A: Tuple = "|".join(sys.argv[1:]) A: List[Any] = re.compile(rf"""^({joined_dirs}).*?\.py$""") A: int = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Optional[int] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'mvp' SCREAMING_SNAKE_CASE_ : str = ['past_key_values'] SCREAMING_SNAKE_CASE_ : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=5_0267 , _lowercase=1024 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase="gelu" , _lowercase=1024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=False , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=True , _lowercase=2 , _lowercase=2 , _lowercase=False , _lowercase=100 , _lowercase=800 , **_lowercase , ) -> Union[str, Any]: lowercase_ : Optional[Any] = vocab_size lowercase_ : List[str] = max_position_embeddings lowercase_ : str = d_model lowercase_ : Any = encoder_ffn_dim lowercase_ : Dict = encoder_layers lowercase_ : int = encoder_attention_heads lowercase_ : Any = decoder_ffn_dim lowercase_ : List[Any] = decoder_layers lowercase_ : Union[str, Any] = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : List[str] = attention_dropout lowercase_ : int = activation_dropout lowercase_ : List[str] = activation_function lowercase_ : int = init_std lowercase_ : str = encoder_layerdrop lowercase_ : str = decoder_layerdrop lowercase_ : List[str] = classifier_dropout lowercase_ : Any = use_cache lowercase_ : List[Any] = encoder_layers lowercase_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : int = use_prompt lowercase_ : List[str] = prompt_length lowercase_ : List[str] = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowercase ): lowercase_ : Any = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " 'The config can simply be saved and uploaded again to be fixed.' )
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: Dict = logging.get_logger(__name__) A: Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A: str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } A: Optional[Any] = {"facebook/blenderbot_small-90M": 5_1_2} def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = set() lowercase_ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : Union[str, Any] = char lowercase_ : List[Any] = set(a ) return pairs class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , _lowercase , _lowercase , _lowercase="__start__" , _lowercase="__end__" , _lowercase="__unk__" , _lowercase="__null__" , **_lowercase , ) -> Any: super().__init__(unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , **_lowercase ) with open(_lowercase , encoding='utf-8' ) as vocab_handle: lowercase_ : int = json.load(_lowercase ) lowercase_ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(_lowercase , encoding='utf-8' ) as merges_handle: lowercase_ : int = merges_handle.read().split('\n' )[1:-1] lowercase_ : Any = [tuple(merge.split() ) for merge in merges] lowercase_ : Optional[int] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase_ : Union[str, Any] = {} @property def lowerCamelCase__ ( self ) -> int: return len(self.encoder ) def lowerCamelCase__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self , _lowercase ) -> str: if token in self.cache: return self.cache[token] lowercase_ : Tuple = re.sub('([.,!?()])' , r' \1' , _lowercase ) lowercase_ : Union[str, Any] = re.sub('(\')' , r' \1 ' , _lowercase ) lowercase_ : Dict = re.sub(r'\s{2,}' , ' ' , _lowercase ) if "\n" in token: lowercase_ : str = token.replace('\n' , ' __newln__' ) lowercase_ : Tuple = token.split(' ' ) lowercase_ : int = [] for token in tokens: if not len(_lowercase ): continue lowercase_ : Dict = token.lower() lowercase_ : Optional[Any] = tuple(_lowercase ) lowercase_ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowercase_ : int = get_pairs(_lowercase ) if not pairs: words.append(_lowercase ) continue while True: lowercase_ : List[Any] = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : Any = bigram lowercase_ : int = [] lowercase_ : Dict = 0 while i < len(_lowercase ): try: lowercase_ : Optional[int] = word.index(_lowercase , _lowercase ) new_word.extend(word[i:j] ) lowercase_ : List[str] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : Tuple = tuple(_lowercase ) lowercase_ : Union[str, Any] = new_word if len(_lowercase ) == 1: break else: lowercase_ : List[Any] = get_pairs(_lowercase ) lowercase_ : Dict = '@@ '.join(_lowercase ) lowercase_ : int = word[:-4] lowercase_ : Tuple = word words.append(_lowercase ) return " ".join(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : str = [] lowercase_ : Union[str, Any] = re.findall(r'\S+\n?' , _lowercase ) for token in words: split_tokens.extend(list(self.bpe(_lowercase ).split(' ' ) ) ) return split_tokens def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : str = token.lower() return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self , _lowercase ) -> str: return self.decoder.get(_lowercase , self.unk_token ) def lowerCamelCase__ ( self , _lowercase ) -> str: lowercase_ : str = ' '.join(_lowercase ).replace('@@ ' , '' ).strip() return out_string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ : int = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : List[str] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '\n' ) lowercase_ : Union[str, Any] = 0 with open(_lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowercase_ : Optional[int] = token_index writer.write(' '.join(_lowercase ) + '\n' ) index += 1 return vocab_file, merge_file
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" lowercase_ : Union[str, Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' import math def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" if ( not isinstance(a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" if ( not isinstance(a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=2 , _lowercase=99 , _lowercase=0 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=2 , _lowercase=4 , _lowercase="last" , _lowercase=True , _lowercase=None , _lowercase=0 , ) -> Tuple: lowercase_ : Tuple = parent lowercase_ : Optional[Any] = batch_size lowercase_ : Tuple = seq_length lowercase_ : Optional[int] = is_training lowercase_ : Tuple = use_input_lengths lowercase_ : int = use_token_type_ids lowercase_ : int = use_labels lowercase_ : Union[str, Any] = gelu_activation lowercase_ : Union[str, Any] = sinusoidal_embeddings lowercase_ : Dict = causal lowercase_ : Tuple = asm lowercase_ : Union[str, Any] = n_langs lowercase_ : Union[str, Any] = vocab_size lowercase_ : Union[str, Any] = n_special lowercase_ : Optional[Any] = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Tuple = type_sequence_label_size lowercase_ : str = initializer_range lowercase_ : str = num_labels lowercase_ : Tuple = num_choices lowercase_ : Optional[Any] = summary_type lowercase_ : Dict = use_proj lowercase_ : str = scope lowercase_ : int = bos_token_id def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[Any] = None if self.use_input_lengths: lowercase_ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase_ : Dict = None if self.use_token_type_ids: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase_ : Union[str, Any] = None lowercase_ : str = None lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size] , 2 ).float() lowercase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ ( self ) -> Optional[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> int: lowercase_ : Any = XLMModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model(_lowercase , lengths=_lowercase , langs=_lowercase ) lowercase_ : Tuple = model(_lowercase , langs=_lowercase ) lowercase_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[Any]: lowercase_ : int = XLMWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Tuple: lowercase_ : Union[str, Any] = XLMForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase ) lowercase_ : str = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) lowercase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> int: lowercase_ : int = XLMForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(_lowercase ) lowercase_ : Any = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) lowercase_ : Any = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((lowercase_) , ) : str = result_with_labels.to_tuple() lowercase_ : Tuple = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((lowercase_) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: lowercase_ : str = XLMForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : int = model(_lowercase ) lowercase_ : Any = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: lowercase_ : int = self.num_labels lowercase_ : Any = XLMForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: lowercase_ : List[Any] = self.num_choices lowercase_ : int = XLMForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : str = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = config_and_inputs lowercase_ : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Optional[Any]: lowercase_ : Dict = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase_ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) lowercase_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[Any] = XLMModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=_lowercase , emb_dim=37 ) def lowerCamelCase__ ( self ) -> str: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowercase ) def lowerCamelCase__ ( self ) -> str: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False , _lowercase=1 ) -> int: self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_attentions in attentions] , [True] * len(_lowercase ) ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowercase ): # adds PAD dummy token lowercase_ : Optional[int] = min_length + idx + 1 lowercase_ : Optional[Any] = min_length + idx + 1 lowercase_ : int = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowercase ) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False , _lowercase=1 ) -> Any: self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_hidden_states in hidden_states] , [True] * len(_lowercase ) , ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowercase ): # adds PAD dummy token lowercase_ : Union[str, Any] = min_length + idx + 1 lowercase_ : Tuple = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowercase ) , ) pass @slow def lowerCamelCase__ ( self ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = XLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ) -> int: lowercase_ : str = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_lowercase ) lowercase_ : List[Any] = torch.tensor([[14, 447]] , dtype=torch.long , device=_lowercase ) # the president lowercase_ : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase_ : Optional[int] = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowercase )
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=64 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> str: lowercase_ : str = parent lowercase_ : Optional[int] = batch_size lowercase_ : Tuple = seq_length lowercase_ : str = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : int = use_labels lowercase_ : Tuple = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Any = embedding_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : int = type_sequence_label_size lowercase_ : List[str] = initializer_range lowercase_ : Union[str, Any] = num_labels lowercase_ : List[str] = num_choices lowercase_ : Dict = scope def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[str] = None if self.use_token_type_ids: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Tuple = None lowercase_ : Any = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ) -> List[str]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Tuple = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowercase_ : List[str] = model(_lowercase , token_type_ids=_lowercase ) lowercase_ : List[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: lowercase_ : Dict = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Optional[Any] = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Dict = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: lowercase_ : Tuple = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Union[str, Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: lowercase_ : Dict = self.num_labels lowercase_ : Optional[int] = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = self.num_labels lowercase_ : List[str] = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = self.num_choices lowercase_ : Tuple = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = config_and_inputs lowercase_ : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[str] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = True # test_resize_embeddings = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Dict: lowercase_ : Any = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowercase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) lowercase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[Any] = MegatronBertModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def _UpperCAmelCase ( a : List[Any] ) -> List[Any]: """simple docstring""" return torch.tensor( a , dtype=torch.long , device=a , ) A: Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.' ) def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Optional[int] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: lowercase_ : Optional[Any] = os.path.join(os.environ['MYDIR'] , _lowercase ) lowercase_ : List[str] = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() lowercase_ : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowercase_ : List[Any] = model(_lowercase )[0] lowercase_ : int = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _lowercase ) lowercase_ : Union[str, Any] = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): lowercase_ : int = output[0, ii, jj] lowercase_ : Any = expected[3 * ii + jj] lowercase_ : int = 'ii={} jj={} a={} b={}'.format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Optional[Any] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'rwkv' SCREAMING_SNAKE_CASE_ : int = {'max_position_embeddings': 'context_length'} def __init__( self , _lowercase=5_0277 , _lowercase=1024 , _lowercase=4096 , _lowercase=32 , _lowercase=None , _lowercase=None , _lowercase=1E-5 , _lowercase=0 , _lowercase=0 , _lowercase=6 , _lowercase=False , _lowercase=True , **_lowercase , ) -> int: lowercase_ : Any = vocab_size lowercase_ : List[str] = context_length lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase_ : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Any = rescale_every lowercase_ : List[str] = use_cache lowercase_ : Dict = bos_token_id lowercase_ : List[str] = eos_token_id super().__init__( tie_word_embeddings=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __magic_name__ ( yaml.SafeLoader ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Dict: lowercase_ : Tuple = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ : Dict = [tuple(_lowercase ) if isinstance(_lowercase , _lowercase ) else key for key in keys] lowercase_ : Dict = Counter(_lowercase ) lowercase_ : Dict = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False ) -> Optional[Any]: lowercase_ : Dict = super().construct_mapping(_lowercase , deep=_lowercase ) self._check_no_duplicates_on_constructed_node(_lowercase ) return mapping def _UpperCAmelCase ( a : str ) -> Tuple[Optional[str], str]: """simple docstring""" lowercase_ : List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ : Union[str, Any] = full_content[1:].index('---' ) + 1 lowercase_ : List[str] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls , _lowercase ) -> "DatasetMetadata": with open(_lowercase , encoding='utf-8' ) as readme_file: lowercase_ , lowercase_ : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_lowercase ) else: return cls() def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: if path.exists(): with open(_lowercase , encoding='utf-8' ) as readme_file: lowercase_ : Optional[Any] = readme_file.read() else: lowercase_ : Tuple = None lowercase_ : Any = self._to_readme(_lowercase ) with open(_lowercase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(_lowercase ) def lowerCamelCase__ ( self , _lowercase = None ) -> str: if readme_content is not None: lowercase_ , lowercase_ : Tuple = _split_yaml_from_readme(_lowercase ) lowercase_ : List[str] = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ : int = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def lowerCamelCase__ ( cls , _lowercase ) -> "DatasetMetadata": lowercase_ : Union[str, Any] = yaml.load(_lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ : Dict = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_lowercase ) def lowerCamelCase__ ( self ) -> str: return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_lowercase , allow_unicode=_lowercase , encoding='utf-8' , ).decode('utf-8' ) A: Union[str, Any] = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser A: Dict = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") A: Union[str, Any] = ap.parse_args() A: List[str] = Path(args.readme_filepath) A: Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A: str = random.Random() def _UpperCAmelCase ( a : List[str] , a : Dict=1.0 , a : str=None , a : int=None ) -> Tuple: """simple docstring""" if rng is None: lowercase_ : Any = global_rng lowercase_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=400 , _lowercase=2000 , _lowercase=1 , _lowercase=0.0 , _lowercase=1_6000 , _lowercase=True , _lowercase=True , ) -> Optional[Any]: lowercase_ : Dict = parent lowercase_ : int = batch_size lowercase_ : Tuple = min_seq_length lowercase_ : Dict = max_seq_length lowercase_ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ : str = feature_size lowercase_ : int = padding_value lowercase_ : Optional[Any] = sampling_rate lowercase_ : Dict = return_attention_mask lowercase_ : Any = do_normalize def lowerCamelCase__ ( self ) -> List[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ ( self , _lowercase=False , _lowercase=False ) -> Any: def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: lowercase_ : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase_ : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase_ : List[Any] = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaFeatureExtractor def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = WavaVecaFeatureExtractionTester(self ) def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(_lowercase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCamelCase__ ( self ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Optional[Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test not batched input lowercase_ : List[str] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowercase_ : int = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test batched lowercase_ : Dict = feat_extract(_lowercase , return_tensors='np' ).input_values lowercase_ : List[Any] = feat_extract(_lowercase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ : str = np.asarray(_lowercase ) lowercase_ : Optional[int] = feat_extract(_lowercase , return_tensors='np' ).input_values lowercase_ : Dict = feat_extract(_lowercase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Dict = ['longest', 'max_length', 'do_not_pad'] lowercase_ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(_lowercase , _lowercase ): lowercase_ : List[str] = feat_extract(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors='np' ) lowercase_ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : Any = range(800 , 1400 , 200 ) lowercase_ : Optional[int] = [floats_list((1, x) )[0] for x in lengths] lowercase_ : int = ['longest', 'max_length', 'do_not_pad'] lowercase_ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(_lowercase , _lowercase ): lowercase_ : Optional[Any] = feat_extract(_lowercase , max_length=_lowercase , padding=_lowercase ) lowercase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Optional[int] = feat_extract( _lowercase , truncation=_lowercase , max_length=1000 , padding='max_length' , return_tensors='np' ) lowercase_ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : Optional[int] = feat_extract( _lowercase , truncation=_lowercase , max_length=1000 , padding='longest' , return_tensors='np' ) lowercase_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase_ : List[str] = feat_extract( _lowercase , truncation=_lowercase , max_length=2000 , padding='longest' , return_tensors='np' ) lowercase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def lowerCamelCase__ ( self ) -> Dict: import torch lowercase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : Dict = np.random.rand(100 ).astype(np.floataa ) lowercase_ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ : List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase_ : List[str] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCamelCase__ ( self ) -> str: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase_ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowercase ) lowercase_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_lowercase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Dict = 'tokenizer_file' SCREAMING_SNAKE_CASE_ : List[str] = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase__ ( self ) -> List[Any]: super().setUp() lowercase_ : int = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , **_lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Any = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] lowercase_ : Dict = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase_ : List[Any] = tokenizer.batch_encode_plus(_lowercase )['input_ids'] self.assertListEqual(_lowercase , _lowercase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=6 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : int = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Dict = 'This is a simple input' lowercase_ : List[str] = ['This is a simple input 1', 'This is a simple input 2'] lowercase_ : List[Any] = ('This is a simple input', 'This is a pair') lowercase_ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) lowercase_ : List[Any] = None # Hotfixing padding = None self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.get_rust_tokenizer() lowercase_ : Dict = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_lowercase ) lowercase_ : Optional[Any] = next(iter(_lowercase ) )['premise'] # pick up one data lowercase_ : Any = list(sample_data.values() ) lowercase_ : int = list(map(tokenizer.encode , _lowercase ) ) lowercase_ : Optional[Any] = [tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) for x in output_tokens] self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> int: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _UpperCAmelCase ( a : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(a , 0 , a , args=(a) )[0] def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" return math.pow(a , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging A: int = logging.get_logger(__name__) A: Optional[int] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'trajectory_transformer' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=100 , _lowercase=5 , _lowercase=1 , _lowercase=1 , _lowercase=249 , _lowercase=6 , _lowercase=17 , _lowercase=25 , _lowercase=4 , _lowercase=4 , _lowercase=128 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.00_06 , _lowercase=512 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=1 , _lowercase=True , _lowercase=1 , _lowercase=5_0256 , _lowercase=5_0256 , **_lowercase , ) -> Tuple: lowercase_ : Optional[Any] = vocab_size lowercase_ : Union[str, Any] = action_weight lowercase_ : Any = reward_weight lowercase_ : str = value_weight lowercase_ : List[str] = max_position_embeddings lowercase_ : Dict = block_size lowercase_ : Union[str, Any] = action_dim lowercase_ : Tuple = observation_dim lowercase_ : Any = transition_dim lowercase_ : Optional[int] = learning_rate lowercase_ : Optional[int] = n_layer lowercase_ : Tuple = n_head lowercase_ : int = n_embd lowercase_ : List[str] = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : Tuple = resid_pdrop lowercase_ : List[str] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : int = kaiming_initializer_range lowercase_ : int = use_cache super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' A: Optional[Any] = tuple[float, float, float] A: Union[str, Any] = tuple[float, float, float] def _UpperCAmelCase ( a : Pointad , a : Pointad ) -> Vectorad: """simple docstring""" lowercase_ : int = end_pointa[0] - end_pointa[0] lowercase_ : Tuple = end_pointa[1] - end_pointa[1] lowercase_ : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCAmelCase ( a : Vectorad , a : Vectorad ) -> Vectorad: """simple docstring""" lowercase_ : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ : Union[str, Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ : Optional[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCAmelCase ( a : Vectorad , a : int ) -> bool: """simple docstring""" return tuple(round(a , a ) for x in vector ) == (0, 0, 0) def _UpperCAmelCase ( a : Pointad , a : Pointad , a : Pointad , a : int = 1_0 ) -> bool: """simple docstring""" lowercase_ : Union[str, Any] = create_vector(a , a ) lowercase_ : Union[str, Any] = create_vector(a , a ) return is_zero_vector(get_ad_vectors_cross(a , a ) , a )
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" lowercase_ : str = tau * frequency / samplerate lowercase_ : Tuple = sin(a ) lowercase_ : List[str] = cos(a ) lowercase_ : str = _sin / (2 * q_factor) lowercase_ : Tuple = (1 - _cos) / 2 lowercase_ : Any = 1 - _cos lowercase_ : List[Any] = 1 + alpha lowercase_ : Optional[Any] = -2 * _cos lowercase_ : List[str] = 1 - alpha lowercase_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" lowercase_ : List[str] = tau * frequency / samplerate lowercase_ : Optional[int] = sin(a ) lowercase_ : Dict = cos(a ) lowercase_ : List[str] = _sin / (2 * q_factor) lowercase_ : Any = (1 + _cos) / 2 lowercase_ : Any = -1 - _cos lowercase_ : int = 1 + alpha lowercase_ : Dict = -2 * _cos lowercase_ : Dict = 1 - alpha lowercase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" lowercase_ : Optional[Any] = tau * frequency / samplerate lowercase_ : List[Any] = sin(a ) lowercase_ : Any = cos(a ) lowercase_ : List[str] = _sin / (2 * q_factor) lowercase_ : List[Any] = _sin / 2 lowercase_ : Optional[int] = 0 lowercase_ : Dict = -ba lowercase_ : Optional[Any] = 1 + alpha lowercase_ : Dict = -2 * _cos lowercase_ : str = 1 - alpha lowercase_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Optional[int] = sin(a ) lowercase_ : Union[str, Any] = cos(a ) lowercase_ : List[Any] = _sin / (2 * q_factor) lowercase_ : int = 1 - alpha lowercase_ : Dict = -2 * _cos lowercase_ : List[Any] = 1 + alpha lowercase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" lowercase_ : Dict = tau * frequency / samplerate lowercase_ : Optional[Any] = sin(a ) lowercase_ : Any = cos(a ) lowercase_ : str = _sin / (2 * q_factor) lowercase_ : List[str] = 1_0 ** (gain_db / 4_0) lowercase_ : List[Any] = 1 + alpha * big_a lowercase_ : Tuple = -2 * _cos lowercase_ : Any = 1 - alpha * big_a lowercase_ : Dict = 1 + alpha / big_a lowercase_ : Optional[int] = -2 * _cos lowercase_ : Optional[int] = 1 - alpha / big_a lowercase_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" lowercase_ : Tuple = tau * frequency / samplerate lowercase_ : Union[str, Any] = sin(a ) lowercase_ : Any = cos(a ) lowercase_ : Optional[int] = _sin / (2 * q_factor) lowercase_ : str = 1_0 ** (gain_db / 4_0) lowercase_ : str = (big_a + 1) - (big_a - 1) * _cos lowercase_ : Any = (big_a + 1) + (big_a - 1) * _cos lowercase_ : List[str] = (big_a - 1) - (big_a + 1) * _cos lowercase_ : Any = (big_a - 1) + (big_a + 1) * _cos lowercase_ : List[str] = 2 * sqrt(a ) * alpha lowercase_ : Optional[Any] = big_a * (pmc + aaa) lowercase_ : Dict = 2 * big_a * mpc lowercase_ : List[str] = big_a * (pmc - aaa) lowercase_ : Optional[int] = ppmc + aaa lowercase_ : List[str] = -2 * pmpc lowercase_ : List[Any] = ppmc - aaa lowercase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" lowercase_ : str = tau * frequency / samplerate lowercase_ : str = sin(a ) lowercase_ : Tuple = cos(a ) lowercase_ : Tuple = _sin / (2 * q_factor) lowercase_ : int = 1_0 ** (gain_db / 4_0) lowercase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos lowercase_ : str = (big_a + 1) + (big_a - 1) * _cos lowercase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos lowercase_ : str = (big_a - 1) + (big_a + 1) * _cos lowercase_ : Tuple = 2 * sqrt(a ) * alpha lowercase_ : List[str] = big_a * (ppmc + aaa) lowercase_ : Optional[Any] = -2 * big_a * pmpc lowercase_ : Union[str, Any] = big_a * (ppmc - aaa) lowercase_ : Optional[int] = pmc + aaa lowercase_ : Any = 2 * mpc lowercase_ : Optional[int] = pmc - aaa lowercase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> list: """simple docstring""" lowercase_ : List[Any] = [0] * len(a ) for i in range(1 , len(a ) ): # use last results for better performance - dynamic programming lowercase_ : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase_ : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase_ : Any = j return prefix_result def _UpperCAmelCase ( a : str ) -> int: """simple docstring""" return max(prefix_function(a ) ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A: List[Any] = 1_0 def _UpperCAmelCase ( a : int , a : int , a : list[int] , a : int ) -> int: """simple docstring""" for i in range(a , a ): if array[i] == target: return i return -1 def _UpperCAmelCase ( a : list[int] , a : int ) -> int: """simple docstring""" lowercase_ : List[str] = 0 lowercase_ : Any = len(a ) while left <= right: if right - left < precision: return lin_search(a , a , a , a ) lowercase_ : Optional[Any] = (left + right) // 3 + 1 lowercase_ : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase_ : List[str] = one_third - 1 elif array[two_third] < target: lowercase_ : Optional[int] = two_third + 1 else: lowercase_ : Optional[int] = one_third + 1 lowercase_ : Any = two_third - 1 else: return -1 def _UpperCAmelCase ( a : int , a : int , a : list[int] , a : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(a , a , a , a ) lowercase_ : Tuple = (left + right) // 3 + 1 lowercase_ : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a , one_third - 1 , a , a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a , a , a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a , a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by comma:\n").strip() A: Optional[Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." A: Dict = int(input("Enter the number to be found in the list:\n").strip()) A: int = ite_ternary_search(collection, target) A: List[str] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'nllb-moe' SCREAMING_SNAKE_CASE_ : Optional[int] = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=12_8112 , _lowercase=1024 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=12 , _lowercase=4096 , _lowercase=16 , _lowercase=0.05 , _lowercase=0.05 , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=1024 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=2 , _lowercase=True , _lowercase=False , _lowercase="float32" , _lowercase=False , _lowercase=128 , _lowercase=64 , _lowercase=4 , _lowercase=4 , _lowercase=0.0_01 , _lowercase=0.0_01 , _lowercase="all" , _lowercase=False , _lowercase=False , _lowercase=1.0 , _lowercase=0.2 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=False , **_lowercase , ) -> Optional[int]: lowercase_ : List[str] = vocab_size lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Optional[int] = d_model lowercase_ : Dict = encoder_ffn_dim lowercase_ : str = encoder_layers lowercase_ : Union[str, Any] = encoder_attention_heads lowercase_ : Any = decoder_ffn_dim lowercase_ : str = decoder_layers lowercase_ : Optional[Any] = decoder_attention_heads lowercase_ : Optional[Any] = dropout lowercase_ : Any = attention_dropout lowercase_ : Any = activation_dropout lowercase_ : List[Any] = activation_function lowercase_ : List[str] = init_std lowercase_ : Dict = encoder_layerdrop lowercase_ : Dict = decoder_layerdrop lowercase_ : Dict = use_cache lowercase_ : Optional[int] = encoder_layers lowercase_ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : List[Any] = router_z_loss_coef lowercase_ : Union[str, Any] = router_aux_loss_coef lowercase_ : List[str] = decoder_sparse_step lowercase_ : Any = encoder_sparse_step lowercase_ : List[str] = num_experts lowercase_ : Optional[Any] = expert_capacity lowercase_ : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) lowercase_ : Optional[Any] = router_dtype lowercase_ : List[Any] = router_ignore_padding_tokens lowercase_ : Dict = batch_prioritized_routing lowercase_ : Optional[int] = second_expert_policy lowercase_ : Any = normalize_router_prob_before_dropping lowercase_ : int = moe_eval_capacity_token_fraction lowercase_ : Union[str, Any] = moe_token_dropout lowercase_ : int = output_router_logits super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json A: Optional[int] = "sshleifer/mar_enro_6_3_student" class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[int]: super().setUp() lowercase_ : List[Any] = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_lowercase , ) lowercase_ : Optional[Any] = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def lowerCamelCase__ ( self ) -> Tuple: MarianMTModel.from_pretrained(_lowercase ) @slow @require_torch_gpu def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Union[str, Any] = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowercase_ : int = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowercase_ : str = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowercase_ : Tuple = bash_script.replace(_lowercase , str(_lowercase ) ) lowercase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase_ : Any = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase_ : Union[str, Any] = ['finetune.py'] + bash_script.split() + args with patch.object(_lowercase , 'argv' , _lowercase ): lowercase_ : str = argparse.ArgumentParser() lowercase_ : Tuple = pl.Trainer.add_argparse_args(_lowercase ) lowercase_ : List[str] = SummarizationModule.add_model_specific_args(_lowercase , os.getcwd() ) lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : Tuple = main(_lowercase ) # Check metrics lowercase_ : Dict = load_json(model.metrics_save_path ) lowercase_ : Tuple = metrics['val'][0] lowercase_ : Tuple = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _lowercase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase_ : Optional[Any] = os.listdir(_lowercase ) lowercase_ : Union[str, Any] = [x for x in contents if x.endswith('.ckpt' )][0] lowercase_ : Any = os.path.join(args.output_dir , _lowercase ) lowercase_ : List[Any] = torch.load(_lowercase , map_location='cpu' ) lowercase_ : Dict = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase_ : int = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowerCamelCase__ ( self ) -> str: lowercase_ : str = f"{self.test_file_dir_str}/test_data/wmt_en_ro" lowercase_ : List[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowercase_ : List[Any] = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowercase_ : Optional[int] = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowercase_ : int = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowercase_ : int = bash_script.replace(_lowercase , str(_lowercase ) ) lowercase_ : Dict = self.get_auto_remove_tmp_dir() lowercase_ : Optional[Any] = bash_script.replace('--fp16' , '' ) lowercase_ : Optional[Any] = 6 lowercase_ : str = ( ['distillation.py'] + bash_script.split() + [ f"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', f"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_lowercase , 'argv' , _lowercase ): lowercase_ : Optional[int] = argparse.ArgumentParser() lowercase_ : List[Any] = pl.Trainer.add_argparse_args(_lowercase ) lowercase_ : int = SummarizationDistiller.add_model_specific_args(_lowercase , os.getcwd() ) lowercase_ : Tuple = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase_ : Optional[int] = distill_main(_lowercase ) # Check metrics lowercase_ : Any = load_json(model.metrics_save_path ) lowercase_ : Tuple = metrics['val'][0] lowercase_ : Optional[Any] = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase_ : List[Any] = os.listdir(_lowercase ) lowercase_ : List[str] = [x for x in contents if x.endswith('.ckpt' )][0] lowercase_ : int = os.path.join(args.output_dir , _lowercase ) lowercase_ : str = torch.load(_lowercase , map_location='cpu' ) lowercase_ : Any = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase_ : int = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A: Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' import requests A: Tuple = "YOUR API KEY" def _UpperCAmelCase ( a : str , a : str = giphy_api_key ) -> list: """simple docstring""" lowercase_ : Dict = '+'.join(query.split() ) lowercase_ : str = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" lowercase_ : str = requests.get(a ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE_ : str = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE_ : Tuple = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def lowerCamelCase__ ( self ) -> List[str]: torch.manual_seed(0 ) lowercase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) lowercase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) lowercase_ : Dict = CLIPTextModel(_lowercase ) lowercase_ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase__ ( self , _lowercase , _lowercase=0 ) -> int: if str(_lowercase ).startswith('mps' ): lowercase_ : Tuple = torch.manual_seed(_lowercase ) else: lowercase_ : List[str] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase_ : List[str] = self.get_dummy_components() lowercase_ : int = TextToVideoSDPipeline(**_lowercase ) lowercase_ : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) lowercase_ : Optional[Any] = self.get_dummy_inputs(_lowercase ) lowercase_ : Any = 'np' lowercase_ : Union[str, Any] = sd_pipe(**_lowercase ).frames lowercase_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase_ : List[str] = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ) -> Optional[int]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase__ ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowerCamelCase__ ( self ) -> Optional[int]: pass def lowerCamelCase__ ( self ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: lowercase_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) lowercase_ : List[str] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) lowercase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ : int = pipe.to('cuda' ) lowercase_ : int = 'Spiderman is surfing' lowercase_ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : int = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type='pt' ).frames lowercase_ : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase__ ( self ) -> int: lowercase_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) lowercase_ : Union[str, Any] = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) lowercase_ : List[str] = pipe.to('cuda' ) lowercase_ : str = 'Spiderman is surfing' lowercase_ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : List[str] = pipe(_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='pt' ).frames lowercase_ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A: Optional[Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['input_features', 'attention_mask'] def __init__( self , _lowercase=80 , _lowercase=1_6000 , _lowercase=0.0 , _lowercase=10 , _lowercase=25 , _lowercase="hamming_window" , _lowercase=3_27_68.0 , _lowercase=0.97 , _lowercase=1.0 , _lowercase=True , _lowercase=True , _lowercase=False , **_lowercase , ) -> int: super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) lowercase_ : str = feature_size lowercase_ : Optional[Any] = sampling_rate lowercase_ : str = padding_value lowercase_ : Optional[int] = hop_length lowercase_ : Optional[int] = win_length lowercase_ : Optional[int] = frame_signal_scale lowercase_ : List[Any] = preemphasis_coeff lowercase_ : str = mel_floor lowercase_ : Tuple = normalize_means lowercase_ : List[Any] = normalize_vars lowercase_ : Optional[int] = win_function lowercase_ : List[Any] = return_attention_mask lowercase_ : Optional[int] = win_length * sampling_rate // 1000 lowercase_ : Dict = hop_length * sampling_rate // 1000 lowercase_ : Union[str, Any] = optimal_fft_length(self.sample_size ) lowercase_ : str = (self.n_fft // 2) + 1 def lowerCamelCase__ ( self , _lowercase ) -> np.ndarray: if self.win_function == "hamming_window": lowercase_ : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: lowercase_ : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function ) lowercase_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase_ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: # make sure we normalize float32 arrays if self.normalize_means: lowercase_ : Any = x[:input_length].mean(axis=0 ) lowercase_ : Optional[Any] = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: lowercase_ : List[Any] = x[:input_length].std(axis=0 ) lowercase_ : List[str] = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: lowercase_ : List[Any] = padding_value # make sure array is in float32 lowercase_ : Optional[Any] = x.astype(np.floataa ) return x def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[np.ndarray]: lowercase_ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self , _lowercase , _lowercase = False , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase_ : Optional[Any] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowercase_ : Optional[Any] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : str = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): lowercase_ : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : List[Any] = [raw_speech] # extract fbank features lowercase_ : str = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding lowercase_ : Any = BatchFeature({'input_features': features} ) lowercase_ : Any = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format lowercase_ : str = padded_inputs.get('input_features' ) if isinstance(input_features[0] , _lowercase ): lowercase_ : Optional[Any] = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] lowercase_ : str = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase_ : Dict = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase_ : Optional[int] = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase_ : Any = self.normalize( padded_inputs['input_features'] , attention_mask=_lowercase ) if return_tensors is not None: lowercase_ : Optional[int] = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A: int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A: str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A: Any = None A: Optional[int] = logging.get_logger(__name__) A: List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: Dict = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A: Tuple = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off A: Optional[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : str = MBartTokenizer SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowercase_ : List[Any] = vocab_file lowercase_ : List[Any] = False if not self.vocab_file else True lowercase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : Tuple = { lang_code: self.convert_tokens_to_ids(_lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : List[Any] = src_lang if src_lang is not None else 'en_XX' lowercase_ : int = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : int = src_lang lowercase_ : Any = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Optional[int] = tgt_lang_id return inputs def lowerCamelCase__ ( self , _lowercase , _lowercase = "en_XX" , _lowercase = None , _lowercase = "ro_RO" , **_lowercase , ) -> BatchEncoding: lowercase_ : Optional[int] = src_lang lowercase_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : str = self.convert_tokens_to_ids(_lowercase ) lowercase_ : Any = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowercase_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self , _lowercase ) -> None: lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(_lowercase ) lowercase_ : List[str] = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] lowercase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return lowercase_ : Tuple = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import random def _UpperCAmelCase ( a : Union[str, Any] , a : str , a : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = a[left_index] lowercase_ : Tuple = left_index + 1 for j in range(left_index + 1 , a ): if a[j] < pivot: lowercase_ , lowercase_ : Optional[Any] = a[i], a[j] i += 1 lowercase_ , lowercase_ : Tuple = a[i - 1], a[left_index] return i - 1 def _UpperCAmelCase ( a : Any , a : str , a : Any ) -> Any: """simple docstring""" if left < right: lowercase_ : List[Any] = random.randint(a , right - 1 ) lowercase_ , lowercase_ : Tuple = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase_ : int = partition(a , a , a ) quick_sort_random( a , a , a ) # recursive quicksort to the left of the pivot point quick_sort_random( a , pivot_index + 1 , a ) # recursive quicksort to the right of the pivot point def _UpperCAmelCase ( ) -> Any: """simple docstring""" lowercase_ : Optional[Any] = input('Enter numbers separated by a comma:\n' ).strip() lowercase_ : List[Any] = [int(a ) for item in user_input.split(',' )] quick_sort_random(a , 0 , len(a ) ) print(a ) if __name__ == "__main__": main()
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A: str = logging.get_logger() @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : nn.Module SCREAMING_SNAKE_CASE_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : list = field(default_factory=UpperCAmelCase_ ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Dict: lowercase_ : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(_lowercase , nn.Convad ) or isinstance(_lowercase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowercase ) def __call__( self , _lowercase ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowercase ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__ ( self ) -> Any: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _lowercase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : nn.Module SCREAMING_SNAKE_CASE_ : nn.Module SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List = field(default_factory=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self , _lowercase ) -> Any: lowercase_ : List[str] = Tracker(self.dest )(_lowercase ).parametrized lowercase_ : Any = Tracker(self.src )(_lowercase ).parametrized lowercase_ : Optional[Any] = list(filter(lambda _lowercase : type(_lowercase ) not in self.src_skip , _lowercase ) ) lowercase_ : Tuple = list(filter(lambda _lowercase : type(_lowercase ) not in self.dest_skip , _lowercase ) ) if len(_lowercase ) != len(_lowercase ): raise Exception( f"Numbers of operations are different. Source module has {len(_lowercase )} operations while" f" destination module has {len(_lowercase )}." ) for dest_m, src_m in zip(_lowercase , _lowercase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def _UpperCAmelCase ( a : str , a : ResNetConfig , a : Path , a : bool = True ) -> Any: """simple docstring""" print(f"Converting {name}..." ) with torch.no_grad(): lowercase_ : List[str] = timm.create_model(a , pretrained=a ).eval() lowercase_ : List[str] = ResNetForImageClassification(a ).eval() lowercase_ : Tuple = ModuleTransfer(src=a , dest=a ) lowercase_ : Optional[int] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(a ) assert torch.allclose(from_model(a ) , our_model(a ).logits ), "The model logits don't match the original one." lowercase_ : Optional[Any] = f"resnet{'-'.join(name.split('resnet' ) )}" print(a ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=a , ) # we can use the convnext one lowercase_ : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=a , ) print(f"Pushed {checkpoint_name}" ) def _UpperCAmelCase ( a : Path , a : str = None , a : bool = True ) -> Any: """simple docstring""" lowercase_ : List[Any] = 'imagenet-1k-id2label.json' lowercase_ : Union[str, Any] = 1_0_0_0 lowercase_ : str = (1, num_labels) lowercase_ : List[str] = 'huggingface/label-files' lowercase_ : Optional[Any] = num_labels lowercase_ : Optional[Any] = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(a ): v for k, v in idalabel.items()} lowercase_ : Any = idalabel lowercase_ : int = {v: k for k, v in idalabel.items()} lowercase_ : List[str] = partial(a , num_labels=a , idalabel=a , labelaid=a ) lowercase_ : List[str] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(a , names_to_config[model_name] , a , a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a , a , a , a ) return config, expected_shape if __name__ == "__main__": A: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) A: Union[str, Any] = parser.parse_args() A: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' A: Any = 8.314_462 # Unit - J mol-1 K-1 def _UpperCAmelCase ( a : float , a : float , a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _UpperCAmelCase ( a : float , a : float , a : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' import math import os import sys def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : str = '' try: with open(a , 'rb' ) as binary_file: lowercase_ : Union[str, Any] = binary_file.read() for dat in data: lowercase_ : str = f"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _UpperCAmelCase ( a : dict[str, str] , a : str , a : int , a : str ) -> None: """simple docstring""" lexicon.pop(a ) lowercase_ : Dict = last_match_id if math.loga(a ).is_integer(): for curr_key in lexicon: lowercase_ : Dict = '0' + lexicon[curr_key] lowercase_ : str = bin(a )[2:] def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Optional[Any] = {'0': '0', '1': '1'} lowercase_ , lowercase_ : Union[str, Any] = '', '' lowercase_ : List[str] = len(a ) for i in range(len(a ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase_ : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(a , a , a , a ) index += 1 lowercase_ : Any = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase_ : Optional[int] = lexicon[curr_string] result += last_match_id return result def _UpperCAmelCase ( a : str , a : str ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = os.path.getsize(a ) lowercase_ : Dict = bin(a )[2:] lowercase_ : int = len(a ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCAmelCase ( a : str , a : str ) -> None: """simple docstring""" lowercase_ : List[str] = 8 try: with open(a , 'wb' ) as opened_file: lowercase_ : str = [ to_write[i : i + byte_length] for i in range(0 , len(a ) , a ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(a , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _UpperCAmelCase ( a : str , a : str ) -> None: """simple docstring""" lowercase_ : Tuple = read_file_binary(a ) lowercase_ : List[str] = compress_data(a ) lowercase_ : Any = add_file_length(a , a ) write_file_binary(a , a ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A: List[Any] = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCAmelCase ( a : Optional[int] ) -> str: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCAmelCase ( a : List[str] , a : List[Any] ) -> int: """simple docstring""" if args.student_type == "roberta": lowercase_ : int = False elif args.student_type == "gpt2": lowercase_ : List[Any] = False def _UpperCAmelCase ( a : Union[str, Any] , a : str ) -> Tuple: """simple docstring""" if args.student_type == "roberta": lowercase_ : Optional[Any] = False def _UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=a , required=a , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=a , required=a , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=a , choices=['distilbert', 'roberta', 'gpt2'] , required=a , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=a , required=a , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=a , type=a , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=a , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=a , required=a , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=a , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=a , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=a , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=a , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=a , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=a , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=a , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=a , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=a , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=a , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=a , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=a , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=a , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=a , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=a , default=5_0 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=a , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=a , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=a , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=a , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=a , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=a , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=a , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=a , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=a , default=5_6 , help='Random seed' ) parser.add_argument('--log_interval' , type=a , default=5_0_0 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=a , default=4_0_0_0 , help='Checkpoint interval.' ) lowercase_ : str = parser.parse_args() sanity_checks(a ) # ARGS # init_gpu_params(a ) set_seed(a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(a ) , a , indent=4 ) git_log(args.dump_path ) lowercase_ , lowercase_ , lowercase_ : Any = MODEL_CLASSES[args.student_type] lowercase_ , lowercase_ , lowercase_ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase_ : List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase_ : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase_ : str = tokenizer.all_special_tokens.index(a ) lowercase_ : str = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) lowercase_ : Union[str, Any] = special_tok_ids lowercase_ : Optional[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , 'rb' ) as fp: lowercase_ : Union[str, Any] = pickle.load(a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , 'rb' ) as fp: lowercase_ : Optional[int] = pickle.load(a ) lowercase_ : List[Any] = np.maximum(a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase_ : Dict = 0.0 # do not predict special tokens lowercase_ : List[str] = torch.from_numpy(a ) else: lowercase_ : int = None lowercase_ : Optional[int] = LmSeqsDataset(params=a , data=a ) logger.info('Data loader created.' ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) lowercase_ : str = student_config_class.from_pretrained(args.student_config ) lowercase_ : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) lowercase_ : Any = student_model_class.from_pretrained(args.student_pretrained_weights , config=a ) else: lowercase_ : List[Any] = student_model_class(a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info('Student loaded.' ) # TEACHER # lowercase_ : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a , a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a , a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase_ : Optional[Any] = Distiller( params=a , dataset=a , token_probs=a , student=a , teacher=a ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : list , a : int ) -> Optional[Any]: """simple docstring""" # Checks if the entire collection has been sorted if len(a ) <= 1 or n <= 1: return insert_next(a , n - 1 ) rec_insertion_sort(a , n - 1 ) def _UpperCAmelCase ( a : list , a : int ) -> Dict: """simple docstring""" # Checks order between adjacent elements if index >= len(a ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase_ , lowercase_ : Tuple = ( collection[index], collection[index - 1], ) insert_next(a , index + 1 ) if __name__ == "__main__": A: str = input("Enter integers separated by spaces: ") A: list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A: Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str ) -> YolosConfig: """simple docstring""" lowercase_ : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase_ : Any = 1_9_2 lowercase_ : Tuple = 7_6_8 lowercase_ : Dict = 1_2 lowercase_ : Optional[Any] = 3 lowercase_ : Any = [8_0_0, 1_3_3_3] lowercase_ : Optional[int] = False elif yolos_name == "yolos_s_dWr": lowercase_ : Any = 3_3_0 lowercase_ : int = 1_4 lowercase_ : Dict = 6 lowercase_ : Optional[int] = 1_3_2_0 elif "yolos_s" in yolos_name: lowercase_ : List[str] = 3_8_4 lowercase_ : List[Any] = 1_5_3_6 lowercase_ : Dict = 1_2 lowercase_ : Any = 6 elif "yolos_b" in yolos_name: lowercase_ : Any = [8_0_0, 1_3_4_4] lowercase_ : Optional[Any] = 9_1 lowercase_ : Optional[int] = 'huggingface/label-files' lowercase_ : Tuple = 'coco-detection-id2label.json' lowercase_ : Dict = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[str] = {int(a ): v for k, v in idalabel.items()} lowercase_ : Union[str, Any] = idalabel lowercase_ : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( a : dict , a : YolosConfig , a : bool = False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : Any = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowercase_ : str = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : List[Any] = in_proj_weight[: config.hidden_size, :] lowercase_ : Any = in_proj_bias[: config.hidden_size] lowercase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : List[Any] = in_proj_weight[-config.hidden_size :, :] lowercase_ : Tuple = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if "backbone" in name: lowercase_ : str = name.replace('backbone' , 'vit' ) if "cls_token" in name: lowercase_ : Optional[int] = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: lowercase_ : Any = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: lowercase_ : int = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: lowercase_ : Tuple = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase_ : Optional[int] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: lowercase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase_ : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : List[str] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : str = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: lowercase_ : Optional[int] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: lowercase_ : Optional[Any] = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: lowercase_ : Optional[Any] = name.replace('vit.norm' , 'vit.layernorm' ) return name def _UpperCAmelCase ( a : dict , a : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase_ : List[str] = orig_state_dict.pop(a ) if "qkv" in key: lowercase_ : Optional[Any] = key.split('.' ) lowercase_ : Tuple = int(key_split[2] ) lowercase_ : Dict = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase_ : str = val[:dim, :] lowercase_ : Optional[Any] = val[ dim : dim * 2, : ] lowercase_ : List[str] = val[-dim:, :] else: lowercase_ : Tuple = val[:dim] lowercase_ : Union[str, Any] = val[dim : dim * 2] lowercase_ : Union[str, Any] = val[-dim:] else: lowercase_ : str = val return orig_state_dict def _UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" lowercase_ : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Tuple = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( a : str , a : str , a : str , a : bool = False ) -> Dict: """simple docstring""" lowercase_ : Tuple = get_yolos_config(a ) # load original state_dict lowercase_ : Union[str, Any] = torch.load(a , map_location='cpu' )['model'] # load 🤗 model lowercase_ : Tuple = YolosForObjectDetection(a ) model.eval() lowercase_ : Tuple = convert_state_dict(a , a ) model.load_state_dict(a ) # Check outputs on an image, prepared by YolosImageProcessor lowercase_ : Optional[Any] = 8_0_0 if yolos_name != 'yolos_ti' else 5_1_2 lowercase_ : Any = YolosImageProcessor(format='coco_detection' , size=a ) lowercase_ : Any = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : int = model(**a ) lowercase_ , lowercase_ : str = outputs.logits, outputs.pred_boxes lowercase_ , lowercase_ : int = None, None if yolos_name == "yolos_ti": lowercase_ : Tuple = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowercase_ : Tuple = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowercase_ : List[str] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowercase_ : List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowercase_ : Union[str, Any] = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowercase_ : List[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowercase_ : List[str] = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowercase_ : List[Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowercase_ : Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowercase_ : Optional[Any] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , a , atol=1e-4 ) Path(a ).mkdir(exist_ok=a ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a ) if push_to_hub: lowercase_ : List[str] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) lowercase_ : Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a , organization='hustvl' ) model.push_to_hub(a , organization='hustvl' ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A: Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _UpperCAmelCase ( a : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(a , a ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 1_0: raise ValueError('number of qubits too large to simulate(>10).' ) lowercase_ : str = QuantumRegister(a , 'qr' ) lowercase_ : int = ClassicalRegister(a , 'cr' ) lowercase_ : Tuple = QuantumCircuit(a , a ) lowercase_ : Union[str, Any] = number_of_qubits for i in range(a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , a , a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a , a ) # simulate with 10000 shots lowercase_ : int = Aer.get_backend('qasm_simulator' ) lowercase_ : Tuple = execute(a , a , shots=1_0_0_0_0 ) return job.result().get_counts(a ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: Optional[int] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A: Dict = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) lowercase_ : Any = '' while len(a ) % 3 != 0: lowercase_ : str = '0' + bin_string lowercase_ : Any = [ bin_string[index : index + 3] for index in range(len(a ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase_ : Optional[Any] = 0 for index, val in enumerate(a ): oct_val += int(2 ** (2 - index) * int(a ) ) oct_string += str(a ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A: Tuple = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SpeechTaTokenizer SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Dict = SpeechTaTokenizer(_lowercase ) lowercase_ : Tuple = AddedToken('<mask>' , lstrip=_lowercase , rstrip=_lowercase ) lowercase_ : List[str] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Union[str, Any] = 'this is a test' lowercase_ : Dict = 'this is a test' return input_text, output_text def lowerCamelCase__ ( self , _lowercase , _lowercase=False , _lowercase=20 , _lowercase=5 ) -> List[Any]: lowercase_ , lowercase_ : Optional[Any] = self.get_input_output_texts(_lowercase ) lowercase_ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) lowercase_ : Optional[int] = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) return text, ids def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = '<pad>' lowercase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_lowercase ) , 81 ) def lowerCamelCase__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Tuple = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase_ : List[Any] = tokenizer.vocab_size lowercase_ : List[str] = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase_ : int = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowercase_ : str = tokenizer.add_tokens(_lowercase ) lowercase_ : Optional[int] = tokenizer.vocab_size lowercase_ : Optional[int] = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size + len(_lowercase ) ) lowercase_ : Any = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowercase_ : Tuple = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowercase_ : Tuple = tokenizer.add_special_tokens(_lowercase ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : List[Any] = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size_a + len(_lowercase ) ) lowercase_ : Union[str, Any] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase__ ( self ) -> Optional[int]: pass def lowerCamelCase__ ( self ) -> Optional[Any]: pass def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Any = self.get_tokenizer() lowercase_ : Tuple = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_lowercase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowercase_ : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) # fmt: off self.assertListEqual(_lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCamelCase__ ( self ) -> str: # Use custom sequence because this tokenizer does not handle numbers. lowercase_ : List[Any] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off lowercase_ : Tuple = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_lowercase , )
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) A: Optional[int] = logging.getLogger(__name__) A: str = tf.data.AUTOTUNE def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" lowercase_ : int = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=a , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=a , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=a , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=a , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=a , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=a , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=a , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=a , default=2**1_8 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=a , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=a , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=a , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=a , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=a , default=5_1_2 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=a , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=a , required=a , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=a , help='Model ID to upload to on the Hugging Face Hub.' ) lowercase_ : Any = parser.parse_args() return args def _UpperCAmelCase ( a : Tuple ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: lowercase_ : Any = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase_ : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(a ) tf.tpu.experimental.initialize_tpu_system(a ) return tpu def _UpperCAmelCase ( a : Tuple ) -> List[Any]: """simple docstring""" lowercase_ : List[Any] = 0 for file in file_list: lowercase_ : Optional[int] = file.split('/' )[-1] lowercase_ : List[str] = re.search(R'-\d+-(\d+)\.tfrecord' , a ).group(1 ) lowercase_ : Optional[int] = int(a ) num_samples += sample_count return num_samples def _UpperCAmelCase ( a : Dict , a : List[Any] , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : List[Any]=None ) -> List[str]: """simple docstring""" lowercase_ : Optional[int] = count_samples(a ) lowercase_ : List[Any] = tf.data.Dataset.from_tensor_slices(a ) if shuffle: lowercase_ : Union[str, Any] = dataset.shuffle(len(a ) ) lowercase_ : Dict = tf.data.TFRecordDataset(a , num_parallel_reads=a ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase_ : Optional[Any] = dataset.apply(tf.data.experimental.assert_cardinality(a ) ) lowercase_ : int = dataset.map(a , num_parallel_calls=a ) if shuffle: assert shuffle_buffer_size is not None lowercase_ : Union[str, Any] = dataset.shuffle(args.shuffle_buffer_size ) lowercase_ : List[str] = dataset.batch(a , drop_remainder=a ) lowercase_ : List[Any] = dataset.map(a , num_parallel_calls=a ) lowercase_ : List[str] = dataset.prefetch(a ) return dataset def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[int]: """simple docstring""" if not args.no_tpu: lowercase_ : Optional[Any] = initialize_tpu(a ) lowercase_ : Optional[int] = tf.distribute.TPUStrategy(a ) else: lowercase_ : Dict = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase_ : Any = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase_ : str = tokenizer.vocab_size lowercase_ : int = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) lowercase_ : str = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) lowercase_ : Any = count_samples(a ) lowercase_ : List[Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase_ : Optional[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase_ : List[Any] = TFAutoModelForMaskedLM.from_config(a ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase_ , lowercase_ : Optional[int] = create_optimizer( num_train_steps=a , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=a , metrics=['accuracy'] ) def decode_fn(a : Any ): lowercase_ : int = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(a , a ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=a , mlm_probability=args.mlm_probability , mlm=a , return_tensors='tf' ) def mask_with_collator(a : int ): # TF really needs an isin() function lowercase_ : Union[str, Any] = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) lowercase_ , lowercase_ : List[str] = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(a ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=a , ) return batch lowercase_ : Union[str, Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase_ : str = prepare_dataset( a , decode_fn=a , mask_fn=a , batch_size=a , shuffle=a , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase_ : List[str] = prepare_dataset( a , decode_fn=a , mask_fn=a , batch_size=a , shuffle=a , ) lowercase_ : List[str] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=a ) ) model.fit( a , validation_data=a , epochs=args.num_epochs , callbacks=a , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": A: Tuple = parse_args() main(args)
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : UNetaDModel SCREAMING_SNAKE_CASE_ : KarrasVeScheduler def __init__( self , _lowercase , _lowercase ) -> Any: super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , **_lowercase , ) -> Union[Tuple, ImagePipelineOutput]: lowercase_ : int = self.unet.config.sample_size lowercase_ : Optional[Any] = (batch_size, 3, img_size, img_size) lowercase_ : Union[str, Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowercase_ : Any = self.scheduler.schedule[t] lowercase_ : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowercase_ , lowercase_ : Union[str, Any] = self.scheduler.add_noise_to_input(_lowercase , _lowercase , generator=_lowercase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase_ : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowercase_ : Optional[Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase_ : Dict = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowercase_ : Tuple = self.scheduler.step_correct( _lowercase , _lowercase , _lowercase , _lowercase , step_output.prev_sample , step_output['derivative'] , ) lowercase_ : Dict = step_output.prev_sample lowercase_ : Tuple = (sample / 2 + 0.5).clamp(0 , 1 ) lowercase_ : Tuple = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ : Optional[int] = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : list[float] , a : list[float] ) -> float: """simple docstring""" lowercase_ : Any = sorted(numsa + numsa ) lowercase_ , lowercase_ : List[str] = divmod(len(a ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A: int = [float(x) for x in input("Enter the elements of first array: ").split()] A: Any = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A: Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A: int = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A: int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _UpperCAmelCase ( a : str , a : str ) -> tuple[str, float]: """simple docstring""" lowercase_ : List[str] = len([g for position, g in enumerate(a ) if g == main_target[position]] ) return (item, float(a )) def _UpperCAmelCase ( a : str , a : str ) -> tuple[str, str]: """simple docstring""" lowercase_ : Dict = random.randint(0 , len(a ) - 1 ) lowercase_ : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] lowercase_ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _UpperCAmelCase ( a : str , a : list[str] ) -> str: """simple docstring""" lowercase_ : int = list(a ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowercase_ : List[str] = random.choice(a ) return "".join(a ) def _UpperCAmelCase ( a : tuple[str, float] , a : list[tuple[str, float]] , a : list[str] , ) -> list[str]: """simple docstring""" lowercase_ : int = [] # Generate more children proportionally to the fitness score. lowercase_ : List[str] = int(parent_a[1] * 1_0_0 ) + 1 lowercase_ : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(a ): lowercase_ : List[str] = population_score[random.randint(0 , a )][0] lowercase_ , lowercase_ : str = crossover(parent_a[0] , a ) # Append new string to the population list. pop.append(mutate(a , a ) ) pop.append(mutate(a , a ) ) return pop def _UpperCAmelCase ( a : str , a : list[str] , a : bool = True ) -> tuple[int, int, str]: """simple docstring""" # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowercase_ : str = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a ) # Verify that the target contains no genes besides the ones inside genes variable. lowercase_ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowercase_ : Any = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a ) # Generate random starting population. lowercase_ : Tuple = [] for _ in range(a ): population.append(''.join([random.choice(a ) for i in range(len(a ) )] ) ) # Just some logs to know what the algorithms is doing. lowercase_ , lowercase_ : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowercase_ : Optional[Any] = [evaluate(a , a ) for item in population] # Check if there is a matching evolution. lowercase_ : int = sorted(a , key=lambda a : x[1] , reverse=a ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowercase_ : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a ) # Normalize population score to be between 0 and 1. lowercase_ : Union[str, Any] = [ (item, score / len(a )) for item, score in population_score ] # This is selection for i in range(a ): population.extend(select(population_score[int(a )] , a , a ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a ) > N_POPULATION: break if __name__ == "__main__": A: Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) A: Any = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) A , A , A: Union[str, Any] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
7
'''simple docstring''' def _UpperCAmelCase ( a : str , a : str ) -> float: """simple docstring""" def get_matched_characters(a : str , a : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ : Optional[int] = int(max(0 , i - limit ) ) lowercase_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) lowercase_ : Union[str, Any] = f"{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}" return "".join(a ) # matching characters lowercase_ : Union[str, Any] = get_matched_characters(a , a ) lowercase_ : Optional[Any] = get_matched_characters(a , a ) lowercase_ : Optional[int] = len(a ) # transposition lowercase_ : Dict = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: lowercase_ : List[str] = 0.0 else: lowercase_ : Any = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
7
1
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A: Optional[int] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase=125 , _lowercase=None , **_lowercase , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase_ : Dict = [f"<extra_id_{i}>" for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase_ : Union[str, Any] = len(set(filter(lambda _lowercase : bool('extra_id' in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) lowercase_ : Optional[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token lowercase_ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token lowercase_ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token super().__init__( eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowercase_ : Dict = extra_ids lowercase_ : List[str] = 2**8 # utf is 8 bits # define special tokens dict lowercase_ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowercase_ : Optional[Any] = len(self.special_tokens_encoder ) lowercase_ : Optional[int] = len(_lowercase ) for i, token in enumerate(_lowercase ): lowercase_ : Dict = self.vocab_size + i - n lowercase_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCamelCase__ ( self ) -> Dict: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowercase )) + [1] return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def lowerCamelCase__ ( self , _lowercase ) -> List[int]: if len(_lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: lowercase_ : List[Any] = self._add_eos_if_not_present(_lowercase ) if token_ids_a is None: return token_ids_a else: lowercase_ : List[str] = self._add_eos_if_not_present(_lowercase ) return token_ids_a + token_ids_a def lowerCamelCase__ ( self , _lowercase ) -> List[str]: lowercase_ : Optional[int] = [chr(_lowercase ) for i in text.encode('utf-8' )] return tokens def lowerCamelCase__ ( self , _lowercase ) -> str: if token in self.special_tokens_encoder: lowercase_ : Dict = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowercase_ : str = self.added_tokens_encoder[token] elif len(_lowercase ) != 1: lowercase_ : Tuple = self.unk_token_id else: lowercase_ : Optional[Any] = ord(_lowercase ) + self._num_special_tokens return token_id def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: if index in self.special_tokens_decoder: lowercase_ : Optional[int] = self.special_tokens_decoder[index] else: lowercase_ : Tuple = chr(index - self._num_special_tokens ) return token def lowerCamelCase__ ( self , _lowercase ) -> int: lowercase_ : Optional[Any] = B'' for token in tokens: if token in self.special_tokens_decoder: lowercase_ : Tuple = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: lowercase_ : Any = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: lowercase_ : Dict = token.encode('utf-8' ) elif token in self.added_tokens_encoder: lowercase_ : Dict = token.encode('utf-8' ) else: lowercase_ : Union[str, Any] = bytes([ord(_lowercase )] ) bstring += tok_string lowercase_ : List[str] = bstring.decode('utf-8' , errors='ignore' ) return string def lowerCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: return ()
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _UpperCAmelCase ( a : SplitDict ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = split_dict._to_yaml_list() assert len(a ) == len(a ) lowercase_ : Optional[Any] = SplitDict._from_yaml_list(a ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase_ : Optional[int] = None # the split name of split_dict takes over the name of the split info object lowercase_ : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=a ), SplitInfo(dataset_name='my_dataset' )] ) def _UpperCAmelCase ( a : Union[str, Any] ) -> int: """simple docstring""" # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowercase_ : List[str] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
7
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( a : Dict , a : Optional[int] , a : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } lowercase_ : Optional[Any] = f"{src_lang}-{tgt_lang}" lowercase_ : Optional[Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(a , exist_ok=a ) lowercase_ : int = os.path.join(a , 'README.md' ) print(f"Generating {path}" ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(a ) # make sure we are under the root of the project A: List[str] = Path(__file__).resolve().parent.parent.parent A: List[str] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A , A , A: Any = model_name.split("-") A: int = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: Optional[int] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'transfo-xl' SCREAMING_SNAKE_CASE_ : int = ['mems'] SCREAMING_SNAKE_CASE_ : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=26_7735 , _lowercase=[2_0000, 4_0000, 20_0000] , _lowercase=1024 , _lowercase=1024 , _lowercase=16 , _lowercase=64 , _lowercase=4096 , _lowercase=4 , _lowercase=False , _lowercase=18 , _lowercase=1600 , _lowercase=1000 , _lowercase=True , _lowercase=True , _lowercase=0 , _lowercase=-1 , _lowercase=True , _lowercase=0.1 , _lowercase=0.0 , _lowercase=True , _lowercase="normal" , _lowercase=0.01 , _lowercase=0.01 , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0 , **_lowercase , ) -> Optional[Any]: lowercase_ : Union[str, Any] = vocab_size lowercase_ : str = [] self.cutoffs.extend(_lowercase ) if proj_share_all_but_first: lowercase_ : List[Any] = [False] + [True] * len(self.cutoffs ) else: lowercase_ : List[str] = [False] + [False] * len(self.cutoffs ) lowercase_ : str = d_model lowercase_ : int = d_embed lowercase_ : Dict = d_head lowercase_ : Optional[int] = d_inner lowercase_ : int = div_val lowercase_ : List[str] = pre_lnorm lowercase_ : Any = n_layer lowercase_ : Dict = n_head lowercase_ : Tuple = mem_len lowercase_ : Optional[int] = same_length lowercase_ : List[str] = attn_type lowercase_ : Optional[int] = clamp_len lowercase_ : int = sample_softmax lowercase_ : List[str] = adaptive lowercase_ : List[str] = dropout lowercase_ : Union[str, Any] = dropatt lowercase_ : int = untie_r lowercase_ : Optional[Any] = init lowercase_ : Union[str, Any] = init_range lowercase_ : Any = proj_init_std lowercase_ : List[Any] = init_std lowercase_ : Optional[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowercase , **_lowercase ) @property def lowerCamelCase__ ( self ) -> int: # Message copied from Transformer-XL documentation logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def lowerCamelCase__ ( self , _lowercase ) -> Tuple: # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
7
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A: Any = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
'''simple docstring''' import unittest import numpy as np def _UpperCAmelCase ( a : np.ndarray , a : np.ndarray , a : np.ndarray , a : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" lowercase_ : str = np.shape(a ) lowercase_ : int = np.shape(a ) lowercase_ : Optional[int] = np.shape(a ) if shape_a[0] != shape_b[0]: lowercase_ : Any = ( 'Expected the same number of rows for A and B. ' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(a ) if shape_b[1] != shape_c[1]: lowercase_ : Dict = ( 'Expected the same number of columns for B and C. ' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(a ) lowercase_ : Dict = pseudo_inv if a_inv is None: try: lowercase_ : Optional[int] = np.linalg.inv(a ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> None: lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Dict = np.array([[2, 1], [6, 3]] ) lowercase_ : Any = schur_complement(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[int] = np.block([[a, b], [b.T, c]] ) lowercase_ : str = np.linalg.det(_lowercase ) lowercase_ : Optional[int] = np.linalg.det(_lowercase ) lowercase_ : Tuple = np.linalg.det(_lowercase ) self.assertAlmostEqual(_lowercase , det_a * det_s ) def lowerCamelCase__ ( self ) -> None: lowercase_ : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> None: lowercase_ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
7
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A: int = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" A: List[str] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" A: Union[str, Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( a : str , a : Union[str, Any] , a : Dict , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> str: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ : Union[str, Any] = new_id # turn into Numpy arrays lowercase_ : List[Any] = np.array(a ) lowercase_ : Optional[Any] = np.array(a ) if reduce_labels: lowercase_ : Any = 2_5_5 lowercase_ : Dict = label - 1 lowercase_ : List[Any] = 2_5_5 lowercase_ : Any = label != ignore_index lowercase_ : List[Any] = np.not_equal(a , a ) lowercase_ : Optional[int] = pred_label[mask] lowercase_ : Union[str, Any] = np.array(a )[mask] lowercase_ : Optional[int] = pred_label[pred_label == label] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[int] = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Dict = np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] lowercase_ : Optional[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( a : int , a : Optional[Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Dict: """simple docstring""" lowercase_ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Optional[int]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = total_intersect_and_union( a , a , a , a , a , a ) # compute metrics lowercase_ : str = {} lowercase_ : str = total_area_intersect.sum() / total_area_label.sum() lowercase_ : Optional[Any] = total_area_intersect / total_area_union lowercase_ : List[Any] = total_area_intersect / total_area_label lowercase_ : Any = np.nanmean(a ) lowercase_ : Optional[Any] = np.nanmean(a ) lowercase_ : int = all_acc lowercase_ : Union[str, Any] = iou lowercase_ : Optional[Any] = acc if nan_to_num is not None: lowercase_ : Optional[int] = {metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: lowercase_ : Optional[int] = mean_iou( results=_lowercase , gt_seg_maps=_lowercase , num_labels=_lowercase , ignore_index=_lowercase , nan_to_num=_lowercase , label_map=_lowercase , reduce_labels=_lowercase , ) return iou_result
7
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor A: Dict = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
7
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
1
'''simple docstring''' def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(1_0_0, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
'''simple docstring''' A: str = 2_5_6 # Modulus to hash a string A: List[Any] = 1_0_0_0_0_0_3 def _UpperCAmelCase ( a : str , a : str ) -> bool: """simple docstring""" lowercase_ : Optional[Any] = len(a ) lowercase_ : List[str] = len(a ) if p_len > t_len: return False lowercase_ : Tuple = 0 lowercase_ : Tuple = 0 lowercase_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(a ): lowercase_ : Union[str, Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase_ : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase_ : Union[str, Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase_ : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _UpperCAmelCase ( ) -> None: """simple docstring""" lowercase_ : List[Any] = 'abc1abc12' lowercase_ : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase_ : List[Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(a , a ) and not rabin_karp(a , a ) # Test 2) lowercase_ : List[str] = 'ABABX' lowercase_ : Optional[Any] = 'ABABZABABYABABX' assert rabin_karp(a , a ) # Test 3) lowercase_ : str = 'AAAB' lowercase_ : Union[str, Any] = 'ABAAAAAB' assert rabin_karp(a , a ) # Test 4) lowercase_ : Dict = 'abcdabcy' lowercase_ : str = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(a , a ) # Test 5) lowercase_ : List[str] = 'Lü' lowercase_ : List[str] = 'Lüsai' assert rabin_karp(a , a ) lowercase_ : str = 'Lue' assert not rabin_karp(a , a ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vit' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=16 , **_lowercase , ) -> List[str]: super().__init__(**_lowercase ) lowercase_ : Optional[int] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : str = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Any = image_size lowercase_ : Tuple = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : str = qkv_bias lowercase_ : List[str] = encoder_stride class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self ) -> float: return 1E-4
7
'''simple docstring''' import argparse A: List[Any] = "docs/source/_static/js/custom.js" def _UpperCAmelCase ( a : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(a , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[Any] = f.readlines() lowercase_ : Dict = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowercase_ : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(a , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a ) if __name__ == "__main__": A: str = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A: List[str] = parser.parse_args() update_custom_js(args.version)
7
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A: Optional[int] = logging.get_logger(__name__) A: Optional[Any] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'xmod' def __init__( self , _lowercase=3_0522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=2 , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=("en_XX",) , _lowercase=None , **_lowercase , ) -> Dict: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Dict = vocab_size lowercase_ : int = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : str = hidden_act lowercase_ : List[Any] = intermediate_size lowercase_ : Dict = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : List[Any] = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : Optional[Any] = position_embedding_type lowercase_ : Any = use_cache lowercase_ : int = classifier_dropout lowercase_ : Union[str, Any] = pre_norm lowercase_ : str = adapter_reduction_factor lowercase_ : List[Any] = adapter_layer_norm lowercase_ : str = adapter_reuse_layer_norm lowercase_ : str = ln_before_adapter lowercase_ : Any = list(_lowercase ) lowercase_ : Dict = default_language class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
'''simple docstring''' def _UpperCAmelCase ( a : list[list[float]] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(a ): if len(a ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a ) ) return data_lists def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : list[list[float]] = [] for dlist, weight in zip(a , a ): lowercase_ : Tuple = min(a ) lowercase_ : Any = max(a ) lowercase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase_ : str = f"Invalid weight of {weight:f} provided" raise ValueError(a ) score_lists.append(a ) return score_lists def _UpperCAmelCase ( a : list[list[float]] ) -> list[float]: """simple docstring""" lowercase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a ): lowercase_ : List[Any] = final_scores[j] + ele return final_scores def _UpperCAmelCase ( a : list[list[float]] , a : list[int] ) -> list[list[float]]: """simple docstring""" lowercase_ : int = get_data(a ) lowercase_ : Optional[int] = calculate_each_score(a , a ) lowercase_ : Dict = generate_final_scores(a ) # append scores to source data for i, ele in enumerate(a ): source_data[i].append(a ) return source_data
7
1
'''simple docstring''' def _UpperCAmelCase ( a : list[list[int]] , a : int , a : int , a : set ) -> int: """simple docstring""" lowercase_ , lowercase_ : int = len(a ), len(grid[0] ) if ( min(a , a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase_ : List[Any] = 0 count += depth_first_search(a , row + 1 , a , a ) count += depth_first_search(a , row - 1 , a , a ) count += depth_first_search(a , a , col + 1 , a ) count += depth_first_search(a , a , col - 1 , a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : int , a : int ) -> int: """simple docstring""" while second != 0: lowercase_ : Any = first & second first ^= second lowercase_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = int(input("Enter the first number: ").strip()) A: Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
7
1
'''simple docstring''' A: str = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
7
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (DPMSolverSinglestepScheduler,) SCREAMING_SNAKE_CASE_ : Any = (('num_inference_steps', 2_5),) def lowerCamelCase__ ( self , **_lowercase ) -> Tuple: lowercase_ : Union[str, Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_lowercase ) return config def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> Dict: lowercase_ : Union[str, Any] = dict(self.forward_default_kwargs ) lowercase_ : List[Any] = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : List[str] = self.dummy_sample lowercase_ : Dict = 0.1 * sample lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[int] = self.get_scheduler_config(**_lowercase ) lowercase_ : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : int = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase_ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ , lowercase_ : Any = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1 ): lowercase_ : Optional[int] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : List[Any] = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) -> List[str]: pass def lowerCamelCase__ ( self , _lowercase=0 , **_lowercase ) -> List[str]: lowercase_ : int = dict(self.forward_default_kwargs ) lowercase_ : int = kwargs.pop('num_inference_steps' , _lowercase ) lowercase_ : Any = self.dummy_sample lowercase_ : Optional[Any] = 0.1 * sample lowercase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : List[str] = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase_ : Any = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase_ : Union[str, Any] = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , _lowercase=None , **_lowercase ) -> Optional[Any]: if scheduler is None: lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : str = scheduler_class(**_lowercase ) lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config(**_lowercase ) lowercase_ : int = scheduler_class(**_lowercase ) lowercase_ : Tuple = 10 lowercase_ : List[Any] = self.dummy_model() lowercase_ : Any = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : str = model(_lowercase , _lowercase ) lowercase_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase_ : Tuple = 50 lowercase_ : int = self.dummy_model() lowercase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase_ : int = model(_lowercase , _lowercase ) lowercase_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample lowercase_ : Any = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowerCamelCase__ ( self ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase_ : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase_ : List[str] = self.full_loop(scheduler=_lowercase ) lowercase_ : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 lowercase_ : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase_ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase_ : int = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase_ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase_ : Any = self.full_loop(scheduler=_lowercase ) lowercase_ : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: self.check_over_configs(thresholding=_lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='dpmsolver++' , solver_order=_lowercase , solver_type=_lowercase , ) def lowerCamelCase__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def lowerCamelCase__ ( self ) -> Dict: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) lowercase_ : Union[str, Any] = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase ).any(), "Samples have nan numbers" def lowerCamelCase__ ( self ) -> int: self.check_over_configs(lower_order_final=_lowercase ) self.check_over_configs(lower_order_final=_lowercase ) def lowerCamelCase__ ( self ) -> Union[str, Any]: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase__ ( self ) -> Tuple: self.check_over_configs(variance_type=_lowercase ) self.check_over_configs(variance_type='learned_range' ) def lowerCamelCase__ ( self ) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0 ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Tuple = self.full_loop() lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[Any] = self.full_loop(use_karras_sigmas=_lowercase ) lowercase_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def lowerCamelCase__ ( self ) -> Tuple: lowercase_ : Union[str, Any] = self.full_loop(prediction_type='v_prediction' ) lowercase_ : str = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_lowercase ) lowercase_ : List[str] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : List[str] = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0 ) lowercase_ : Optional[int] = scheduler_class(**_lowercase ) lowercase_ : str = 10 lowercase_ : List[str] = self.dummy_model() lowercase_ : int = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Optional[int] = model(_lowercase , _lowercase ) lowercase_ : int = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample assert sample.dtype == torch.floataa
7
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A: Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _UpperCAmelCase ( a : Tuple , a : Union[str, Any] , a : List[Any]=8 ) -> Dict: """simple docstring""" lowercase_ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( a : Any , a : Dict=5_1_2 , a : Optional[Any]=5_1_2 ) -> Tuple: """simple docstring""" lowercase_ : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 1_27.5 - 1 lowercase_ : Any = np.transpose(a , [2, 0, 1] ) lowercase_ : Any = torch.from_numpy(a ).unsqueeze(0 ) return image class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , ) -> List[Any]: super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: # get the original timestep using init_timestep lowercase_ : List[Any] = min(int(num_inference_steps * strength ) , _lowercase ) lowercase_ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Any: if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}" ) lowercase_ : Dict = image.to(device=_lowercase , dtype=_lowercase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_lowercase , _lowercase ): lowercase_ : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) else: lowercase_ : Union[str, Any] = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) lowercase_ : str = self.movq.config.scaling_factor * init_latents lowercase_ : int = torch.cat([init_latents] , dim=0 ) lowercase_ : Dict = init_latents.shape lowercase_ : Dict = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents lowercase_ : List[str] = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) lowercase_ : Optional[Any] = init_latents return latents def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=0 ) -> int: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Dict = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ) -> str: lowercase_ : List[Any] = self._execution_device lowercase_ : List[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = torch.cat(_lowercase , dim=0 ) lowercase_ : Optional[Any] = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): lowercase_ : List[str] = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowercase_ : List[Any] = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) lowercase_ : Dict = image.to(dtype=image_embeds.dtype , device=_lowercase ) lowercase_ : Dict = self.movq.encode(_lowercase )['latents'] lowercase_ : Optional[Any] = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase_ , lowercase_ : str = self.get_timesteps(_lowercase , _lowercase , _lowercase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Union[str, Any] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) lowercase_ : List[str] = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : str = {'image_embeds': image_embeds} lowercase_ : str = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase_ : Any = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase_ : Dict = image * 0.5 + 0.5 lowercase_ : Dict = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
7
1
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") A: List[Any] = int(input("Enter number: ").strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
7
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule A: int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( a : str = "AAPL" ) -> str: """simple docstring""" lowercase_ : str = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowercase_ : List[str] = BeautifulSoup(requests.get(a ).text , 'html.parser' ) lowercase_ : str = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
7
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A: Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A: List[Any] = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase ) -> Tuple: return FSMTTokenizer.from_pretrained(_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : str = FSMTForConditionalGeneration.from_pretrained(_lowercase ).to(_lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowercase_ : Optional[Any] = f"facebook/wmt19-{pair}" lowercase_ : str = self.get_tokenizer(_lowercase ) lowercase_ : Any = self.get_model(_lowercase ) lowercase_ : Any = bleu_data[pair]['src'] lowercase_ : Any = bleu_data[pair]['tgt'] lowercase_ : Dict = tokenizer(_lowercase , return_tensors='pt' , truncation=_lowercase , padding='longest' ).to(_lowercase ) lowercase_ : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase_ : Any = tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) lowercase_ : Union[str, Any] = calculate_bleu(_lowercase , _lowercase ) print(_lowercase ) self.assertGreaterEqual(scores['bleu'] , _lowercase )
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: Dict = logging.get_logger(__name__) A: Optional[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'speech_to_text' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowercase=1_0000 , _lowercase=12 , _lowercase=2048 , _lowercase=4 , _lowercase=6 , _lowercase=2048 , _lowercase=4 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=256 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=2 , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=6000 , _lowercase=1024 , _lowercase=2 , _lowercase=(5, 5) , _lowercase=1024 , _lowercase=80 , _lowercase=1 , **_lowercase , ) -> List[str]: lowercase_ : List[Any] = vocab_size lowercase_ : str = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : Tuple = encoder_layers lowercase_ : int = encoder_attention_heads lowercase_ : List[str] = decoder_ffn_dim lowercase_ : List[str] = decoder_layers lowercase_ : List[str] = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : List[Any] = attention_dropout lowercase_ : List[str] = activation_dropout lowercase_ : List[Any] = activation_function lowercase_ : Any = init_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : Dict = decoder_layerdrop lowercase_ : str = use_cache lowercase_ : List[Any] = encoder_layers lowercase_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Any = max_source_positions lowercase_ : str = max_target_positions lowercase_ : Dict = num_conv_layers lowercase_ : List[str] = list(_lowercase ) lowercase_ : Optional[int] = conv_channels lowercase_ : Optional[int] = input_feat_per_channel lowercase_ : int = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _UpperCAmelCase ( a : Tuple , a : Union[str, Any]=1_0 ) -> List[str]: """simple docstring""" lowercase_ : int = [] for _ in range(a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _UpperCAmelCase ( a : List[Any] , a : Union[str, Any]=1_0 ) -> Optional[int]: """simple docstring""" lowercase_ : Optional[Any] = [] for step in range(a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Dict = os.path.join(a , 'schedule.bin' ) torch.save(scheduler.state_dict() , a ) lowercase_ : Tuple = torch.load(a ) scheduler.load_state_dict(a ) return lrs @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) lowercase_ : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ : int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): lowercase_ : Optional[Any] = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) lowercase_ : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ : Optional[Any] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowercase , weight_decay=0.0 , relative_step=_lowercase , scale_parameter=_lowercase , warmup_init=_lowercase , ) for _ in range(1000 ): lowercase_ : str = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(5_0, 5_0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(m.parameters(), lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_0 def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Union[str, Any]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase , msg=_lowercase ) def lowerCamelCase__ ( self ) -> int: lowercase_ : int = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase_ : Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowercase_ , lowercase_ : Union[str, Any] = data lowercase_ : Tuple = scheduler_func(self.optimizer , **_lowercase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowercase_ : Union[str, Any] = unwrap_schedule(_lowercase , self.num_steps ) self.assertListAlmostEqual( _lowercase , _lowercase , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) lowercase_ : int = scheduler_func(self.optimizer , **_lowercase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowercase ) # wrap to test picklability of the schedule lowercase_ : List[Any] = unwrap_and_save_reload_schedule(_lowercase , self.num_steps ) self.assertListEqual(_lowercase , _lowercase , msg=f"failed for {scheduler_func} in save and reload" ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> int: lowercase_ : Dict = fn def __call__( self , *_lowercase , **_lowercase ) -> List[str]: return self.fn(*_lowercase , **_lowercase ) @classmethod def lowerCamelCase__ ( self , _lowercase ) -> Union[str, Any]: lowercase_ : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
7
'''simple docstring''' def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Dict = '' lowercase_ : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ , lowercase_ : Dict = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : List[Any] = [1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(a ) ): lowercase_ : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : Tuple = j - k + 1 # noqa: E741 lowercase_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Tuple = length[j] lowercase_ : List[Any] = j # create that string lowercase_ : str = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
1
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def _UpperCAmelCase ( a : Iterable[str] , a : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" lowercase_ : Union[str, Any] = iter(a ) while True: lowercase_ : Optional[int] = tuple(itertools.islice(a , a ) ) if not chunk: return yield chunk def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" lowercase_ : int = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowercase_ : int = '' if len(a ) < 2: return dirty for i in range(len(a ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(a ) & 1: clean += "X" return clean def _UpperCAmelCase ( a : str ) -> list[str]: """simple docstring""" # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowercase_ : Tuple = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowercase_ : Any = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(a ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(a ) return table def _UpperCAmelCase ( a : str , a : str ) -> str: """simple docstring""" lowercase_ : List[str] = generate_table(a ) lowercase_ : Optional[Any] = prepare_input(a ) lowercase_ : Any = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a , 2 ): lowercase_ , lowercase_ : Tuple = divmod(table.index(a ) , 5 ) lowercase_ , lowercase_ : List[Any] = divmod(table.index(a ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _UpperCAmelCase ( a : str , a : str ) -> str: """simple docstring""" lowercase_ : Optional[int] = generate_table(a ) lowercase_ : int = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a , 2 ): lowercase_ , lowercase_ : Union[str, Any] = divmod(table.index(a ) , 5 ) lowercase_ , lowercase_ : str = divmod(table.index(a ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
7
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowercase = None , _lowercase = None , **_lowercase , ) -> Optional[Any]: super().__init__(self , **_lowercase ) lowercase_ : int = repo_info lowercase_ : List[Any] = token lowercase_ : Union[str, Any] = None def lowerCamelCase__ ( self ) -> Optional[Any]: if self.dir_cache is None: lowercase_ : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ : str = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowercase ): {'name': str(_lowercase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase__ ( self , _lowercase , _lowercase = "rb" , **_lowercase , ) -> Dict: if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) lowercase_ : Optional[int] = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase__ ( self , _lowercase , **_lowercase ) -> Tuple: self._get_dirs() lowercase_ : str = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: self._get_dirs() lowercase_ : List[str] = PurePosixPath(path.strip('/' ) ) lowercase_ : List[str] = {} for p, f in self.dir_cache.items(): lowercase_ : Tuple = PurePosixPath(p.strip('/' ) ) lowercase_ : Optional[int] = p.parent if root == path: lowercase_ : List[str] = f lowercase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
7
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = DebertaTokenizer SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[Any] = DebertaTokenizerFast def lowerCamelCase__ ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] lowercase_ : Any = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase_ : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase_ : int = {'unk_token': '[UNK]'} lowercase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowercase ) ) def lowerCamelCase__ ( self , **_lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCamelCase__ ( self , _lowercase ) -> Any: lowercase_ : str = 'lower newer' lowercase_ : List[str] = 'lower newer' return input_text, output_text def lowerCamelCase__ ( self ) -> str: lowercase_ : int = self.get_tokenizer() lowercase_ : Any = 'lower newer' lowercase_ : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase_ : Optional[Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) lowercase_ : Any = tokens + [tokenizer.unk_token] lowercase_ : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = self.get_tokenizer() lowercase_ : int = tokenizer('Hello' , 'World' ) lowercase_ : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , _lowercase ) @slow def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : List[Any] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) lowercase_ : Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=_lowercase ) lowercase_ : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowercase ) lowercase_ : Tuple = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) lowercase_ : Dict = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowercase ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase_ : List[Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) lowercase_ : str = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] lowercase_ : Union[str, Any] = tokenizer(_lowercase , padding=_lowercase ) lowercase_ : Optional[int] = [tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) for seq in encoding['input_ids']] # fmt: off lowercase_ : Any = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase_ : Any = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , _lowercase ) for expected, decoded in zip(_lowercase , _lowercase ): self.assertEqual(_lowercase , _lowercase )
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1
'''simple docstring''' import re def _UpperCAmelCase ( a : str ) -> str: """simple docstring""" if len(re.findall('[ATCG]' , a ) ) != len(a ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
7
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
1