code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase (A__ ): """simple docstring""" _UpperCAmelCase :List[str] = ["image_processor", "tokenizer"] _UpperCAmelCase :str = "ViltImageProcessor" _UpperCAmelCase :str = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): lowercase__: Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) lowercase__: Optional[Any] = kwargs.pop('''feature_extractor''' ) lowercase__: Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) lowercase__: Optional[int] = self.image_processor def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: int = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask lowercase__: int = self.image_processor(__A , return_tensors=__A ) encoding.update(__A ) return encoding def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): lowercase__: Dict = self.tokenizer.model_input_names lowercase__: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __A , ) return self.image_processor_class @property def _snake_case ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __A , ) return self.image_processor
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } __A = { "AI-Sweden/gpt-sw3-126m": 2_0_4_8, "AI-Sweden/gpt-sw3-350m": 2_0_4_8, "AI-Sweden/gpt-sw3-1.6b": 2_0_4_8, "AI-Sweden/gpt-sw3-6.7b": 2_0_4_8, "AI-Sweden/gpt-sw3-20b": 2_0_4_8, } class UpperCAmelCase (A__ ): """simple docstring""" _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :str = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__: Dict = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowercase__: Optional[int] = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowercase__: Any = '''<|endoftext|>''' if eos_token is None else eos_token lowercase__: Union[str, Any] = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowercase__: List[str] = unk_token if pad_token is None else pad_token lowercase__: Tuple = eos_token if bos_token is None else bos_token else: lowercase__: List[Any] = '''<pad>''' if pad_token is None else pad_token lowercase__: Optional[int] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowercase__: Optional[int] = do_lower_case lowercase__: List[str] = remove_space lowercase__: Any = keep_accents lowercase__: int = vocab_file lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # Used for whitespace normalization in input texts # fmt : off lowercase__: Optional[Any] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowercase__: Any = re.compile( F"""[{''.join(map(__snake_case , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ): lowercase__: int = self.__dict__.copy() lowercase__: Union[str, Any] = None return state def __setstate__( self , _UpperCAmelCase ): lowercase__: Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__: Dict = {} lowercase__: Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Any = self.non_printing_characters_re.sub('''''' , __snake_case ) # Normalize whitespaces lowercase__: str = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowercase__: Tuple = unicodedata.normalize('''NFC''' , __snake_case ) return text def _snake_case ( self , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Tuple = self.preprocess_text(__snake_case ) return self.sp_model.encode(__snake_case , out_type=__snake_case ) def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(__snake_case ) def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(__snake_case ) @staticmethod def _snake_case ( _UpperCAmelCase ): return out_string def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = [] lowercase__: Tuple = '''''' lowercase__: Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token lowercase__: Any = True lowercase__: int = [] else: current_sub_tokens.append(__snake_case ) lowercase__: int = False out_string += self.sp_model.decode(__snake_case ) return out_string def _snake_case ( self ): lowercase__: List[str] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: Optional[int] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: lowercase__: Optional[int] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = False ): if isinstance(__snake_case , __snake_case ): lowercase__: Optional[int] = self.preprocess_text(__snake_case ) lowercase__: str = self.sp_model.encode(__snake_case ) else: lowercase__: List[Any] = [self.preprocess_text(__snake_case ) for t in text] lowercase__: Tuple = self.sp_model.encode(__snake_case ) if return_tensors is True or return_tensors == "pt": lowercase__: List[str] = torch.tensor(__snake_case ) return token_ids def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.decode(__snake_case ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowercase__: Tuple = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__snake_case ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__snake_case )
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __A = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off __A = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase (a__ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[int] = ["input_ids", "attention_mask"] _UpperCAmelCase :Any = NllbTokenizer _UpperCAmelCase :List[Any] = [] _UpperCAmelCase :Dict = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token lowercase__: Union[str, Any] = legacy_behaviour super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , legacy_behaviour=_lowerCamelCase , **_lowerCamelCase , ) lowercase__: str = vocab_file lowercase__: int = False if not self.vocab_file else True lowercase__: Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowercase__: str = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__: Any = src_lang if src_lang is not None else '''eng_Latn''' lowercase__: Tuple = self.convert_tokens_to_ids(self._src_lang ) lowercase__: Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Dict = [self.sep_token_id] lowercase__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__: List[Any] = src_lang lowercase__: List[Any] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) lowercase__: str = self.convert_tokens_to_ids(_lowerCamelCase ) lowercase__: Tuple = tgt_lang_id return inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = "eng_Latn" , _UpperCAmelCase = None , _UpperCAmelCase = "fra_Latn" , **_UpperCAmelCase , ): lowercase__: Dict = src_lang lowercase__: Any = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = self.convert_tokens_to_ids(_lowerCamelCase ) if self.legacy_behaviour: lowercase__: Tuple = [] lowercase__: int = [self.eos_token_id, self.cur_lang_code] else: lowercase__: Any = [self.cur_lang_code] lowercase__: str = [self.eos_token_id] lowercase__: Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: str = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = self.convert_tokens_to_ids(_lowerCamelCase ) if self.legacy_behaviour: lowercase__: Tuple = [] lowercase__: Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: lowercase__: Dict = [self.cur_lang_code] lowercase__: Tuple = [self.eos_token_id] lowercase__: List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowercase__: Any = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase (lowercase__ ): """simple docstring""" _UpperCAmelCase :List[Any] = '''vivit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=32 , _UpperCAmelCase=[2, 16, 16] , _UpperCAmelCase=3 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu_fast" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-0_6 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Any = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: List[str] = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Union[str, Any] = initializer_range lowercase__: Any = layer_norm_eps lowercase__: Dict = image_size lowercase__: Optional[int] = num_frames lowercase__: str = tubelet_size lowercase__: Dict = num_channels lowercase__: Optional[Any] = qkv_bias super().__init__(**_a )
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __A = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __A = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCAmelCase , hypotheses=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase ) }
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list: lowercase__: int = length or len(__A ) lowercase__: List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase__, lowercase__: int = list_data[i + 1], list_data[i] lowercase__: List[str] = True return list_data if not swapped else bubble_sort(__A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import numpy as np from transformers import Pipeline def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: List[str] = np.max(lowerCamelCase_ , axis=-1 , keepdims=lowerCamelCase_ ) lowercase__: List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase_ ) class UpperCAmelCase (lowercase__ ): """simple docstring""" def _snake_case ( self , **_UpperCAmelCase ): lowercase__: Any = {} if "second_text" in kwargs: lowercase__: Tuple = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): return self.tokenizer(_UpperCamelCase , text_pair=_UpperCamelCase , return_tensors=self.framework ) def _snake_case ( self , _UpperCAmelCase ): return self.model(**_UpperCamelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = model_outputs.logits[0].numpy() lowercase__: Optional[int] = softmax(_UpperCamelCase ) lowercase__: Dict = np.argmax(_UpperCamelCase ) lowercase__: Any = self.model.config.idalabel[best_class] lowercase__: Tuple = probabilities[best_class].item() lowercase__: Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__UpperCAmelCase , '''rb''' ) as fp: lowercase__: str = pickle.load(__UpperCAmelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase__: Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase__: Tuple = corpus.vocab.__dict__ torch.save(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Any = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __UpperCAmelCase ) lowercase__: Optional[int] = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase__: List[Any] = os.path.abspath(__UpperCAmelCase ) lowercase__: List[Any] = os.path.abspath(__UpperCAmelCase ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase__: Optional[Any] = TransfoXLConfig() else: lowercase__: Any = TransfoXLConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: Optional[Any] = TransfoXLLMHeadModel(__UpperCAmelCase ) lowercase__: Optional[Any] = load_tf_weights_in_transfo_xl(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model lowercase__: List[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) print(F"""Save PyTorch model to {os.path.abspath(__UpperCAmelCase )}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) print(F"""Save configuration file to {os.path.abspath(__UpperCAmelCase )}""" ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowercase__: List[str] = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=7_0_0_0_0 ) -> Union[str, Any]: lowercase__: Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): lowercase__: int = np.dot(__lowerCamelCase , __lowerCamelCase ) lowercase__: List[str] = sigmoid_function(__lowerCamelCase ) lowercase__: Tuple = np.dot(x.T , h - y ) / y.size lowercase__: Union[str, Any] = theta - alpha * gradient # updating the weights lowercase__: Optional[int] = np.dot(__lowerCamelCase , __lowerCamelCase ) lowercase__: List[Any] = sigmoid_function(__lowerCamelCase ) lowercase__: Optional[int] = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_0_0 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __A = datasets.load_iris() __A = iris.data[:, :2] __A = (iris.target != 0) * 1 __A = 0.1 __A = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print("theta: ", theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__A) ,(__A)) = (x[:, 0].min(), x[:, 0].max()) ((__A) ,(__A)) = (x[:, 1].min(), x[:, 1].max()) ((__A) ,(__A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __A = np.c_[xxa.ravel(), xxa.ravel()] __A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('''foo.json''',)] ) def _snake_case ( self , _UpperCAmelCase ): lowercase__ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , config_name=_a ) lowercase__ = GenerationConfig.from_pretrained(_a , config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _a ) def _snake_case ( self ): lowercase__ = AutoConfig.from_pretrained('''gpt2''' ) lowercase__ = GenerationConfig.from_model_config(_a ) lowercase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a , _a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _snake_case ( self ): lowercase__ = GenerationConfig() lowercase__ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowercase__ = copy.deepcopy(_a ) lowercase__ = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a , _a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a , {'''foo''': '''bar'''} ) def _snake_case ( self ): lowercase__ = GenerationConfig() lowercase__ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(_a ) lowercase__ = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowercase__ = GenerationConfig.from_model_config(_a ) assert not hasattr(_a , '''foo''' ) # no new kwargs should be initialized if from config def _snake_case ( self ): lowercase__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _a ) self.assertEqual(default_config.num_beams , 1 ) lowercase__ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) lowercase__ = GenerationConfig.from_pretrained(_a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @classmethod def _snake_case ( cls ): lowercase__ = TOKEN HfFolder.save_token(_a ) @classmethod def _snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def _snake_case ( self ): lowercase__ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id='''test-generation-config''' , push_to_hub=_a , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def _snake_case ( self ): lowercase__ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_a , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) )
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): lowercase__: List[str] = parent lowercase__: Tuple = batch_size lowercase__: Optional[Any] = image_size lowercase__: Dict = num_channels lowercase__: List[Any] = embeddings_size lowercase__: Any = hidden_sizes lowercase__: Dict = depths lowercase__: Union[str, Any] = is_training lowercase__: str = use_labels lowercase__: Optional[int] = hidden_act lowercase__: Optional[Any] = num_labels lowercase__: Tuple = scope lowercase__: Optional[Any] = len(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[str] = self.get_config() return config, pixel_values def _snake_case ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = FlaxRegNetModel(config=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_labels lowercase__: Optional[Any] = FlaxRegNetForImageClassification(config=_UpperCAmelCase ) lowercase__: List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() lowercase__: Tuple = config_and_inputs lowercase__: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _UpperCAmelCase :int = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :str = False def _snake_case ( self ): lowercase__: Union[str, Any] = FlaxRegNetModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[int] = model_class(_UpperCAmelCase ) lowercase__: Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: int = [*signature.parameters.keys()] lowercase__: Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = model_class(_UpperCAmelCase ) lowercase__: Optional[int] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: List[str] = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__: Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase ): return model(pixel_values=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest('''JIT Enabled''' ): lowercase__: str = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__: Optional[int] = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _snake_case ( self ): lowercase__: int = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowercase__: Union[str, Any] = self.default_image_processor lowercase__: Dict = prepare_img() lowercase__: Dict = image_processor(images=_UpperCAmelCase , return_tensors='''np''' ) lowercase__: List[str] = model(**_UpperCAmelCase ) # verify the logits lowercase__: Optional[int] = (1, 1000) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: Optional[Any] = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase (__lowercase ): """simple docstring""" _UpperCAmelCase :Optional[int] = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Optional[int] = size if size is not None else {"""shortest_edge""": 224} lowercase__: int = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__: int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__: Dict = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='''crop_size''' ) lowercase__: Dict = do_resize lowercase__: Tuple = size lowercase__: Union[str, Any] = resample lowercase__: Optional[Any] = do_center_crop lowercase__: List[str] = crop_size lowercase__: Dict = do_rescale lowercase__: Optional[Any] = rescale_factor lowercase__: int = do_normalize lowercase__: Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__: List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__: List[str] = do_convert_rgb def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__: Dict = get_resize_output_image_size(_UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: Any = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): lowercase__: Tuple = do_resize if do_resize is not None else self.do_resize lowercase__: Union[str, Any] = size if size is not None else self.size lowercase__: Tuple = get_size_dict(_UpperCAmelCase , param_name='''size''' , default_to_square=_UpperCAmelCase ) lowercase__: Optional[Any] = resample if resample is not None else self.resample lowercase__: Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__: List[str] = crop_size if crop_size is not None else self.crop_size lowercase__: Union[str, Any] = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' , default_to_square=_UpperCAmelCase ) lowercase__: Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__: int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__: List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase__: Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase__: Any = image_std if image_std is not None else self.image_std lowercase__: int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__: Optional[int] = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__: int = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__: List[str] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__: Optional[int] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowercase__: Optional[Any] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__: Optional[int] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__: Tuple = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowercase__: Tuple = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__: int = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: Dict = args.pruning_method lowercase__: Union[str, Any] = args.threshold lowercase__: Dict = args.model_name_or_path.rstrip('''/''' ) lowercase__: Union[str, Any] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__: Union[str, Any] = torch.load(os.path.join(a_ , '''pytorch_model.bin''' ) ) lowercase__: str = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__: Any = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__: List[str] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: lowercase__: List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__: List[Any] = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) lowercase__: Optional[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__: Union[str, Any] = name[:-6] lowercase__: Dict = model[F"""{prefix_}mask_scores"""] lowercase__: Dict = TopKBinarizer.apply(a_ , a_ ) lowercase__: Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__: Optional[int] = name[:-6] lowercase__: str = model[F"""{prefix_}mask_scores"""] lowercase__: List[Any] = ThresholdBinarizer.apply(a_ , a_ , a_ ) lowercase__: Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__: str = name[:-6] lowercase__: str = model[F"""{prefix_}mask_scores"""] lowercase__, lowercase__: Optional[int] = -0.1, 1.1 lowercase__: List[Any] = torch.sigmoid(a_ ) lowercase__: Optional[int] = s * (r - l) + l lowercase__: List[str] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__: List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: lowercase__: Union[str, Any] = os.path.join( os.path.dirname(a_ ) , F"""bertarized_{os.path.basename(a_ )}""" ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(a_ , os.path.join(a_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __A = parser.parse_args() main(args)
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __A = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=True ) -> Optional[int]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase (__lowercase ): """simple docstring""" _UpperCAmelCase :int = None _UpperCAmelCase :int = None def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): with TemporaryDirectory() as tmp_dir: lowercase__: Union[str, Any] = dataset_module_factory(_a , cache_dir=_a ) lowercase__: Tuple = import_main_class(dataset_module.module_path , dataset=_a ) lowercase__: DatasetBuilder = builder_cls( cache_dir=_a , config_name=_a , hash=dataset_module.hash , ) lowercase__: Union[str, Any] = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_a ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) lowercase__: Dict = cached_path(_a , cache_dir=_a ) self.assertTrue(os.path.exists(_a ) ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' lowercase__: str = dataset_module_factory('''wikipedia''' , cache_dir=__a ) lowercase__: Dict = import_main_class(dataset_module.module_path ) lowercase__: DatasetBuilder = builder_cls( cache_dir=__a , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowercase__: Union[str, Any] = None builder_instance.download_and_prepare() lowercase__: Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: Optional[Any] = dataset_module_factory('''wikipedia''' , cache_dir=__a ) lowercase__: Any = import_main_class(dataset_module.module_path , dataset=__a ) lowercase__: DatasetBuilder = builder_cls( cache_dir=__a , config_name='''20220301.frr''' , hash=dataset_module.hash , ) lowercase__: Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(__a , __a ) assert "train" in ds assert isinstance(ds['''train'''] , __a ) assert next(iter(ds['''train'''] ) )
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :str = "blip_2_vision_model" def __init__( self , _UpperCAmelCase=1408 , _UpperCAmelCase=6144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.00_001 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-1_0 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Any = intermediate_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Union[str, Any] = num_attention_heads lowercase__: List[Any] = patch_size lowercase__: Tuple = image_size lowercase__: Tuple = initializer_range lowercase__: Optional[int] = attention_dropout lowercase__: Any = layer_norm_eps lowercase__: Dict = hidden_act lowercase__: List[Any] = qkv_bias @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(__UpperCAmelCase ) lowercase__: int = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase__: List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :Dict = "blip_2_qformer" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowercase__: Dict = vocab_size lowercase__: int = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: Any = hidden_act lowercase__: Dict = intermediate_size lowercase__: Union[str, Any] = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: Optional[int] = initializer_range lowercase__: Dict = layer_norm_eps lowercase__: Tuple = position_embedding_type lowercase__: List[str] = cross_attention_frequency lowercase__: Tuple = encoder_hidden_size @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(__UpperCAmelCase ) lowercase__: Any = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowercase__: int = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :List[Any] = "blip-2" _UpperCAmelCase :str = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**__UpperCAmelCase ) if vision_config is None: lowercase__: Dict = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowercase__: Dict = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowercase__: Tuple = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowercase__: Dict = BlipaVisionConfig(**__UpperCAmelCase ) lowercase__: str = BlipaQFormerConfig(**__UpperCAmelCase ) lowercase__: Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase__: str = CONFIG_MAPPING[text_model_type](**__UpperCAmelCase ) lowercase__: str = self.text_config.tie_word_embeddings lowercase__: Any = self.text_config.is_encoder_decoder lowercase__: Dict = num_query_tokens lowercase__: str = self.vision_config.hidden_size lowercase__: Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase__: List[Any] = 1.0 lowercase__: Optional[Any] = 0.02 @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCAmelCase , ) def _snake_case ( self ): lowercase__: str = copy.deepcopy(self.__dict__ ) lowercase__: str = self.vision_config.to_dict() lowercase__: Tuple = self.qformer_config.to_dict() lowercase__: str = self.text_config.to_dict() lowercase__: Tuple = self.__class__.model_type return output
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: return " ".join( ''''''.join(word[::-1] ) if len(a_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: if args.student_type == "roberta": lowercase__: Dict = False elif args.student_type == "gpt2": lowercase__: Optional[int] = False def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: if args.student_type == "roberta": lowercase__: List[Any] = False def SCREAMING_SNAKE_CASE__ ( ) -> str: lowercase__: Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=_UpperCamelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=_UpperCamelCase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=_UpperCamelCase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=_UpperCamelCase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=_UpperCamelCase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=_UpperCamelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=_UpperCamelCase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=_UpperCamelCase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=_UpperCamelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.1_5 , type=_UpperCamelCase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=_UpperCamelCase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=_UpperCamelCase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=_UpperCamelCase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=_UpperCamelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=_UpperCamelCase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=_UpperCamelCase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=_UpperCamelCase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCamelCase , default=5_0 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=_UpperCamelCase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_UpperCamelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=_UpperCamelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=_UpperCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=_UpperCamelCase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.0_2 , type=_UpperCamelCase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_UpperCamelCase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=_UpperCamelCase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=_UpperCamelCase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=_UpperCamelCase , default=5_6 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=_UpperCamelCase , default=5_0_0 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=_UpperCamelCase , default=4_0_0_0 , help='''Checkpoint interval.''' ) lowercase__: List[str] = parser.parse_args() sanity_checks(_UpperCamelCase ) # ARGS # init_gpu_params(_UpperCamelCase ) set_seed(_UpperCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(_UpperCamelCase ) , _UpperCamelCase , indent=4 ) git_log(args.dump_path ) lowercase__, lowercase__, lowercase__: Tuple = MODEL_CLASSES[args.student_type] lowercase__, lowercase__, lowercase__: Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase__: List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase__: int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase__: str = tokenizer.all_special_tokens.index(_UpperCamelCase ) lowercase__: Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) lowercase__: str = special_tok_ids lowercase__: Tuple = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: lowercase__: Dict = pickle.load(_UpperCamelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: lowercase__: int = pickle.load(_UpperCamelCase ) lowercase__: Any = np.maximum(_UpperCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase__: int = 0.0 # do not predict special tokens lowercase__: Optional[int] = torch.from_numpy(_UpperCamelCase ) else: lowercase__: Any = None lowercase__: int = LmSeqsDataset(params=_UpperCamelCase , data=_UpperCamelCase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) lowercase__: int = student_config_class.from_pretrained(args.student_config ) lowercase__: Tuple = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) lowercase__: Dict = student_model_class.from_pretrained(args.student_pretrained_weights , config=_UpperCamelCase ) else: lowercase__: Optional[Any] = student_model_class(_UpperCamelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # lowercase__: Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_UpperCamelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_UpperCamelCase , _UpperCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_UpperCamelCase , _UpperCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase__: str = Distiller( params=_UpperCamelCase , dataset=_UpperCamelCase , token_probs=_UpperCamelCase , student=_UpperCamelCase , teacher=_UpperCamelCase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase (a__ ,a__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = StableDiffusionSAGPipeline _UpperCAmelCase :Dict = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :Tuple = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :int = False def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) lowercase__: str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: Union[str, Any] = CLIPTextModel(_lowerCamelCase ) lowercase__: str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): lowercase__: List[Any] = torch.manual_seed(_lowerCamelCase ) else: lowercase__: List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase__: str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase__: Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__: List[str] = '''.''' lowercase__: Dict = torch.manual_seed(0 ) lowercase__: List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__: int = output.images lowercase__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__: Optional[int] = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self ): lowercase__: Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__: int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__: Dict = '''.''' lowercase__: str = torch.manual_seed(0 ) lowercase__: Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__: List[str] = output.images lowercase__: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__: str = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__: Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__: int = '''.''' lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowercase__: List[Any] = output.images assert image.shape == (1, 512, 768, 3)
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __A = logging.get_logger(__name__) @add_end_docstrings( __UpperCamelCase ,R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " ,) class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase ): if self.framework == "tf": lowercase__: List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase__: Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = self.get_masked_index(_lowerCAmelCase ) lowercase__: Any = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): if return_tensors is None: lowercase__: Union[str, Any] = self.framework lowercase__: Any = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = self.model(**_lowerCAmelCase ) lowercase__: Optional[int] = model_inputs["""input_ids"""] return model_outputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowercase__: Optional[int] = target_ids.shape[0] lowercase__: Dict = model_outputs["""input_ids"""][0] lowercase__: List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase__: str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase__: Optional[Any] = outputs.numpy() lowercase__: Optional[int] = outputs[0, masked_index, :] lowercase__: int = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: lowercase__: Any = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowercase__: Any = tf.expand_dims(_lowerCAmelCase , 0 ) lowercase__: Tuple = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) lowercase__: List[Any] = topk.values.numpy(), topk.indices.numpy() else: lowercase__: Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase__: Dict = outputs[0, masked_index, :] lowercase__: str = logits.softmax(dim=-1 ) if target_ids is not None: lowercase__: Optional[Any] = probs[..., target_ids] lowercase__: Tuple = probs.topk(_lowerCAmelCase ) lowercase__: Tuple = [] lowercase__: str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowercase__: List[str] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowercase__: Tuple = input_ids.numpy().copy() if target_ids is not None: lowercase__: List[str] = target_ids[p].tolist() lowercase__: Any = p # Filter padding out: lowercase__: List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase__: int = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowercase__: str = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__: Any = [targets] try: lowercase__: List[Any] = self.tokenizer.get_vocab() except Exception: lowercase__: Optional[Any] = {} lowercase__: Optional[int] = [] for target in targets: lowercase__: int = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: lowercase__: Tuple = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )["""input_ids"""] if len(_lowerCAmelCase ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowercase__: Optional[int] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) lowercase__: Optional[Any] = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowercase__: Dict = np.array(_lowerCAmelCase ) return target_ids def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None ): lowercase__: Tuple = {} if targets is not None: lowercase__: int = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) lowercase__: Optional[int] = target_ids if top_k is not None: lowercase__: Tuple = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: List[str] = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase__: Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase__: Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-5 , __UpperCAmelCase=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowercase__: List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase__: List[Any] = [1] * inputs.shape.rank lowercase__: List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase__: List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase__: List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase__: str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase__: List[Any] = tf.shape(UpperCAmelCase__ ) lowercase__: Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase__: Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase__: List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase__: Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase__: List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase__: Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding """ F"""layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: int = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase__: Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) lowercase__: Any = np.asarray(UpperCAmelCase__ ) lowercase__: Union[str, Any] = 1 lowercase__: Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase__: Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase__: Union[str, Any] = chunk_data else: lowercase__: Any = data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if name in group.attrs: lowercase__: Optional[Any] = [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs[name]] else: lowercase__: int = [] lowercase__: Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(UpperCAmelCase__ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: def _expand_single_ad_tensor(__UpperCAmelCase ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCAmelCase (lowercase__ ): """simple docstring""" _UpperCAmelCase :Dict = """lxmert""" _UpperCAmelCase :Tuple = {} def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Tuple = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = hidden_act lowercase__: List[str] = intermediate_size lowercase__: Optional[Any] = hidden_dropout_prob lowercase__: List[str] = attention_probs_dropout_prob lowercase__: List[str] = max_position_embeddings lowercase__: Union[str, Any] = type_vocab_size lowercase__: Tuple = initializer_range lowercase__: Optional[Any] = layer_norm_eps lowercase__: Tuple = num_qa_labels lowercase__: Optional[Any] = num_object_labels lowercase__: List[Any] = num_attr_labels lowercase__: Optional[Any] = l_layers lowercase__: Tuple = x_layers lowercase__: Tuple = r_layers lowercase__: Union[str, Any] = visual_feat_dim lowercase__: Optional[Any] = visual_pos_dim lowercase__: Union[str, Any] = visual_loss_normalizer lowercase__: Optional[Any] = task_matched lowercase__: Tuple = task_mask_lm lowercase__: int = task_obj_predict lowercase__: str = task_qa lowercase__: str = visual_obj_loss lowercase__: Union[str, Any] = visual_attr_loss lowercase__: Any = visual_feat_loss lowercase__: Dict = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowercase_ )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase (__snake_case ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase="None" , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Dict = batch_size lowercase__: Optional[int] = seq_length lowercase__: Union[str, Any] = is_training lowercase__: int = use_input_mask lowercase__: int = use_token_type_ids lowercase__: Tuple = use_labels lowercase__: Any = vocab_size lowercase__: Union[str, Any] = hidden_size lowercase__: Optional[Any] = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Tuple = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Any = max_position_embeddings lowercase__: Union[str, Any] = type_vocab_size lowercase__: Optional[int] = type_sequence_label_size lowercase__: int = initializer_range lowercase__: Dict = num_labels lowercase__: List[str] = num_choices lowercase__: int = relative_attention lowercase__: List[Any] = position_biased_input lowercase__: Dict = pos_att_type lowercase__: Optional[Any] = scope def _snake_case ( self ): lowercase__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: str = None if self.use_input_mask: lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase__: Dict = None if self.use_token_type_ids: lowercase__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Any = None lowercase__: int = None lowercase__: Tuple = None if self.use_labels: lowercase__: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self ): lowercase__: Tuple = self.get_config() lowercase__: str = 300 return config def _snake_case ( self , _UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() lowercase__: Optional[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] lowercase__: str = model(a_ , token_type_ids=a_ )[0] lowercase__: Dict = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowercase__: List[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_labels lowercase__: Union[str, Any] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase__: Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = self.num_labels lowercase__: str = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowercase__: Union[str, Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowercase__: Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() ( lowercase__ ): Tuple = config_and_inputs lowercase__: Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (__snake_case ,__snake_case ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :List[Any] = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Dict = False def _snake_case ( self ): lowercase__: List[str] = DebertaModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def _snake_case ( self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _snake_case ( self ): pass @slow def _snake_case ( self ): lowercase__: Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) lowercase__: str = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowercase__: Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__: Optional[int] = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. lowercase__: int = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: List[str] = tempfile.mkdtemp() lowercase__: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowercase__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__: List[str] = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } lowercase__: Dict = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(snake_case__ , snake_case__ ) def _snake_case ( self , **_UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _snake_case ( self , **_UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def _snake_case ( self , **_UpperCAmelCase ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _snake_case ( self ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): lowercase__: Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__: Dict = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): lowercase__: Tuple = self.get_tokenizer() lowercase__: Any = self.get_rust_tokenizer() lowercase__: Optional[int] = self.get_image_processor() lowercase__: str = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__: Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) lowercase__: List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__: Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def _snake_case ( self ): lowercase__: Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__: Dict = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowercase__: int = self.get_image_processor(do_normalize=snake_case__ ) lowercase__: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=snake_case__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _snake_case ( self ): lowercase__: Any = self.get_image_processor() lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__: str = self.prepare_image_inputs() lowercase__: Dict = image_processor(snake_case__ , return_tensors='''np''' ) lowercase__: Tuple = processor(images=snake_case__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): lowercase__: Optional[Any] = self.get_image_processor() lowercase__: List[Any] = self.get_tokenizer() lowercase__: Any = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__: List[Any] = 'Alexandra,T-shirt的价格是15便士。' lowercase__: List[Any] = processor(text=snake_case__ ) lowercase__: List[Any] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ): lowercase__: str = self.get_image_processor() lowercase__: Tuple = self.get_tokenizer() lowercase__: Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__: int = 'Alexandra,T-shirt的价格是15便士。' lowercase__: List[str] = self.prepare_image_inputs() lowercase__: Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _snake_case ( self ): lowercase__: int = self.get_image_processor() lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: int = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__: int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__: str = processor.batch_decode(snake_case__ ) lowercase__: Optional[Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.get_image_processor() lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: Optional[int] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowercase__: str = 'Alexandra,T-shirt的价格是15便士。' lowercase__: Tuple = self.prepare_image_inputs() lowercase__: List[Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["audio_values", "audio_mask"] def __init__( self , _UpperCAmelCase=2048 , _UpperCAmelCase=1 , _UpperCAmelCase=[16, 16] , _UpperCAmelCase=128 , _UpperCAmelCase=44100 , _UpperCAmelCase=86 , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0 , **_UpperCAmelCase , ): super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase , ) lowercase__: List[Any] = spectrogram_length lowercase__: int = num_channels lowercase__: Optional[int] = patch_size lowercase__: Tuple = feature_size // self.patch_size[1] lowercase__: Any = n_fft lowercase__: List[Any] = sampling_rate // hop_length_to_sampling_rate lowercase__: Tuple = sampling_rate lowercase__: Union[str, Any] = padding_value lowercase__: List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCAmelCase , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=__UpperCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T def _snake_case ( self , _UpperCAmelCase ): lowercase__: Tuple = spectrogram( __UpperCAmelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) lowercase__: Optional[int] = log_spec[:, :-1] lowercase__: str = log_spec - 20.0 lowercase__: Any = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , **_UpperCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__: Dict = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__: Any = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Optional[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): lowercase__: int = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__: str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __UpperCAmelCase ): lowercase__: Optional[Any] = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__: int = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__: Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__: int = np.array(__UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__: Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__: List[str] = np.ones([len(__UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__: Dict = padded_audio_features * self.padding_value for i in range(len(__UpperCAmelCase ) ): lowercase__: Optional[Any] = audio_features[i] lowercase__: List[str] = feature # return as BatchFeature if return_attention_mask: lowercase__: List[str] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: lowercase__: Union[str, Any] = {'''audio_values''': padded_audio_features} lowercase__: Tuple = BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) return encoded_inputs
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A = "\nHuman: <<task>>\n\nAssistant: " __A = "huggingface-tools/default-prompts" __A = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="run" ) -> Any: if prompt_or_repo_id is None: lowercase__: int = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , lowercase__ ) is not None: return prompt_or_repo_id lowercase__: Optional[Any] = cached_file( lowercase__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(lowercase__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 2_0_4_8, } class UpperCAmelCase (__lowerCamelCase ): """simple docstring""" _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowercase__: Optional[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowercase__: List[str] = add_prefix_space lowercase__: Dict = pre_tok_class(**UpperCamelCase_ ) lowercase__: Optional[Any] = add_prefix_space def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Tuple = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: lowercase__: str = input_ids[-self.model_max_length :] return input_ids
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __A = logging.get_logger(__name__) class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str _UpperCAmelCase :str = None @staticmethod def _snake_case ( ): raise NotImplementedError def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): raise NotImplementedError def _snake_case ( self , _UpperCAmelCase ): raise NotImplementedError def _snake_case ( self ): if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _snake_case ( cls ): return F"""`pip install {cls.pip_package or cls.name}`""" class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Any = 'optuna' @staticmethod def _snake_case ( ): return is_optuna_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_optuna(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[int] = 'ray' _UpperCAmelCase :Dict = '\'ray[tune]\'' @staticmethod def _snake_case ( ): return is_ray_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_ray(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = 'sigopt' @staticmethod def _snake_case ( ): return is_sigopt_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_sigopt(__lowerCAmelCase ) class UpperCAmelCase (lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = 'wandb' @staticmethod def _snake_case ( ): return is_wandb_available() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): return default_hp_space_wandb(__lowerCAmelCase ) __A = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__UpperCAmelCase ) > 0: lowercase__: Union[str, Any] = available_backends[0].name if len(__UpperCAmelCase ) > 1: logger.info( F"""{len(__UpperCAmelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import math import os import sys def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: lowercase__: Any = '''''' try: with open(_UpperCamelCase , '''rb''' ) as binary_file: lowercase__: List[Any] = binary_file.read() for dat in data: lowercase__: Union[str, Any] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: lexicon.pop(_UpperCamelCase ) lowercase__: Optional[Any] = last_match_id if math.loga(_UpperCamelCase ).is_integer(): for curr_key in lexicon: lowercase__: Dict = '''0''' + lexicon[curr_key] lowercase__: Dict = bin(_UpperCamelCase )[2:] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: lowercase__: List[Any] = {'''0''': '''0''', '''1''': '''1'''} lowercase__, lowercase__: int = '''''', '''''' lowercase__: Dict = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__: str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) index += 1 lowercase__: Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase__: Optional[int] = lexicon[curr_string] result += last_match_id return result def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Tuple = os.path.getsize(_UpperCamelCase ) lowercase__: int = bin(_UpperCamelCase )[2:] lowercase__: List[str] = len(_UpperCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: lowercase__: List[str] = 8 try: with open(_UpperCamelCase , '''wb''' ) as opened_file: lowercase__: Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: lowercase__: List[str] = read_file_binary(_UpperCamelCase ) lowercase__: List[str] = compress_data(_UpperCamelCase ) lowercase__: List[Any] = add_file_length(_UpperCamelCase , _UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __A = threading.Lock() __A = None __A = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __A = logging.WARNING __A = True def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: Any = os.getenv('''TRANSFORMERS_VERBOSITY''' , lowerCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def SCREAMING_SNAKE_CASE__ ( ) -> str: return __name__.split('''.''' )[0] def SCREAMING_SNAKE_CASE__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowercase__: List[Any] = logging.StreamHandler() # Set sys.stderr as stream. lowercase__: Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. lowercase__: Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowercase__: List[str] = False def SCREAMING_SNAKE_CASE__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return lowercase__: Optional[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowercase__: Optional[int] = None def SCREAMING_SNAKE_CASE__ ( ) -> str: return log_levels def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = None ) -> logging.Logger: if name is None: lowercase__: Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: return set_verbosity(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: return set_verbosity(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> str: return set_verbosity(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> str: return set_verbosity(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> None: _configure_library_root_logger() lowercase__: Dict = False def SCREAMING_SNAKE_CASE__ ( ) -> None: _configure_library_root_logger() lowercase__: Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: str = _get_library_root_logger().handlers for handler in handlers: lowercase__: List[Any] = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: lowercase__: Optional[Any] = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , lowerCAmelCase__ ) if no_advisory_warnings: return self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) __A = warning_advice @functools.lru_cache(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) __A = warning_once class UpperCAmelCase : """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # pylint: disable=unused-argument lowercase__: List[str] = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _UpperCAmelCase ): def empty_fn(*_UpperCAmelCase , **_UpperCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return class UpperCAmelCase : """simple docstring""" def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): if _tqdm_active: return tqdm_lib.tqdm(*__lowerCAmelCase , **__lowerCAmelCase ) else: return EmptyTqdm(*__lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): lowercase__: str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCAmelCase , **__lowerCAmelCase ) def _snake_case ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A = _tqdm_cls() def SCREAMING_SNAKE_CASE__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: global _tqdm_active lowercase__: Optional[int] = True hf_hub_utils.enable_progress_bars() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: global _tqdm_active lowercase__: Dict = False hf_hub_utils.disable_progress_bars()
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowercase__: int = False if num < 0: lowercase__: List[Any] = True lowercase__: Optional[Any] = -num lowercase__: Any = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(lowercase_ ) for e in binary ) return "0b" + "".join(str(lowercase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=100 , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , ): lowercase__: int = parent lowercase__: str = vocab_size lowercase__: Tuple = batch_size lowercase__: Tuple = image_size lowercase__: List[str] = patch_size lowercase__: List[Any] = num_channels lowercase__: Dict = is_training lowercase__: int = use_labels lowercase__: Dict = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Any = intermediate_size lowercase__: List[str] = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Union[str, Any] = attention_probs_dropout_prob lowercase__: int = type_sequence_label_size lowercase__: Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__: Union[str, Any] = (image_size // patch_size) ** 2 lowercase__: str = num_patches + 1 def _snake_case ( self ): lowercase__: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: Dict = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = FlaxBeitModel(config=_a ) lowercase__: List[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = FlaxBeitForMaskedImageModeling(config=_a ) lowercase__: Union[str, Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = self.type_sequence_label_size lowercase__: Optional[Any] = FlaxBeitForImageClassification(config=_a ) lowercase__: str = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__: List[Any] = 1 lowercase__: int = FlaxBeitForImageClassification(_a ) lowercase__: Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: Tuple = model(_a ) def _snake_case ( self ): lowercase__: List[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Any = config_and_inputs lowercase__: Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _snake_case ( self ): lowercase__: int = FlaxBeitModelTester(self ) lowercase__: List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: str = model_class(_a ) lowercase__: Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Tuple = [*signature.parameters.keys()] lowercase__: List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def _snake_case ( self ): lowercase__, lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__: List[str] = self._prepare_for_class(_a , _a ) lowercase__: Optional[Any] = model_class(_a ) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase ): return model(pixel_values=_a , **_a ) with self.subTest('''JIT Enabled''' ): lowercase__: str = model_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__: Union[str, Any] = model_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: lowercase__: int = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowercase__: str = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _snake_case ( self ): lowercase__: Optional[Any] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowercase__: Dict = self.default_image_processor lowercase__: Tuple = prepare_img() lowercase__: int = image_processor(images=_a , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowercase__: str = np.ones((1, 196) , dtype=_a ) # forward pass lowercase__: Optional[Any] = model(pixel_values=_a , bool_masked_pos=_a ) lowercase__: int = outputs.logits # verify the logits lowercase__: int = (1, 196, 8192) self.assertEqual(logits.shape , _a ) lowercase__: List[str] = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _a , atol=1e-2 ) ) @slow def _snake_case ( self ): lowercase__: Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowercase__: str = self.default_image_processor lowercase__: List[Any] = prepare_img() lowercase__: List[str] = image_processor(images=_a , return_tensors='''np''' ) # forward pass lowercase__: Optional[Any] = model(**_a ) lowercase__: Optional[int] = outputs.logits # verify the logits lowercase__: Optional[Any] = (1, 1000) self.assertEqual(logits.shape , _a ) lowercase__: Optional[int] = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , _a , atol=1e-4 ) ) lowercase__: Optional[Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def _snake_case ( self ): lowercase__: Optional[int] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowercase__: Dict = self.default_image_processor lowercase__: Dict = prepare_img() lowercase__: List[Any] = image_processor(images=_a , return_tensors='''np''' ) # forward pass lowercase__: Any = model(**_a ) lowercase__: Union[str, Any] = outputs.logits # verify the logits lowercase__: Any = (1, 21841) self.assertEqual(logits.shape , _a ) lowercase__: Union[str, Any] = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , _a , atol=1e-4 ) ) lowercase__: int = 2396 self.assertEqual(logits.argmax(-1 ).item() , _a )
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A = ['''gpt2'''] __A = '''gpt2''' if is_tf_available(): class UpperCAmelCase (tf.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__() lowercase__: Optional[Any] = tokenizer lowercase__: Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowercase__: int = TFGPTaLMHeadModel.from_config(_SCREAMING_SNAKE_CASE ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE ) lowercase__: Optional[int] = tokenized["input_ids"].to_tensor() lowercase__: Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__: Dict = self.model(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().setUp() lowercase__: List[str] = [GPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__: List[str] = [TFGPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__: Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowercase__: List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__: Any = tokenizer([test_inputs] , return_tensors='''tf''' ) lowercase__: str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__: Any = python_outputs[key].numpy() lowercase__: Optional[int] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(_SCREAMING_SNAKE_CASE , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase__: List[str] = tf.function(_SCREAMING_SNAKE_CASE ) for test_inputs in self.test_sentences: lowercase__: str = tf.constant(_SCREAMING_SNAKE_CASE ) lowercase__: Tuple = compiled_tokenizer(_SCREAMING_SNAKE_CASE ) lowercase__: List[Any] = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase__: Optional[int] = ModelToSave(tokenizer=_SCREAMING_SNAKE_CASE ) lowercase__: Any = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__: Optional[int] = model.serving(_SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__: int = Path(_SCREAMING_SNAKE_CASE ) / "saved.model" tf.saved_model.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , signatures={'''serving_default''': model.serving} ) lowercase__: int = tf.saved_model.load(_SCREAMING_SNAKE_CASE ) lowercase__: Tuple = loaded_model.signatures["serving_default"](_SCREAMING_SNAKE_CASE )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase__: str = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__: Tuple = tf_tokenizer(_SCREAMING_SNAKE_CASE ) # Build model with some sample inputs lowercase__: Optional[int] = tf_tokenizer.get_config() lowercase__: List[Any] = TFGPTaTokenizer.from_config(_SCREAMING_SNAKE_CASE ) lowercase__: Dict = model_from_config(_SCREAMING_SNAKE_CASE ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__: int = 123123 for max_length in [3, 5, 1024]: lowercase__: List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__: List[str] = tf_tokenizer(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) lowercase__: List[str] = out["input_ids"].numpy().shape[1] assert out_length == max_length
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" import torch from transformers import AutoModel class UpperCAmelCase (torch.nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase="sayef/fsner-bert-base-uncased" ): super(UpperCAmelCase_ , self ).__init__() lowercase__: int = AutoModel.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) lowercase__: Any = torch.nn.CosineSimilarity(3 , 1e-0_8 ) lowercase__: Tuple = torch.nn.Softmax(dim=1 ) def _snake_case ( self , **_UpperCAmelCase ): return self.bert(**UpperCAmelCase_ ).last_hidden_state def _snake_case ( self , _UpperCAmelCase ): return token_embeddings.sum(2 , keepdim=UpperCAmelCase_ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1 ): return self.softmax(T * self.cos(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = W_supports["sizes"].tolist() lowercase__: Tuple = W_supports["start_token_id"].item() lowercase__: str = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase__: List[Any] = self.BERT(**UpperCAmelCase_ ) lowercase__: List[Any] = self.BERT(**UpperCAmelCase_ ) lowercase__: List[str] = None lowercase__: Dict = None lowercase__: List[Any] = W_supports["input_ids"] == start_token_id lowercase__: List[Any] = W_supports["input_ids"] == end_token_id for i, size in enumerate(UpperCAmelCase_ ): if i == 0: lowercase__: Dict = 0 else: lowercase__: Tuple = support_sizes[i - 1] lowercase__: Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] lowercase__: Optional[Any] = S[s : s + size][end_token_masks[s : s + size]] lowercase__: Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase__: Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase__: str = torch.vstack((p_starts, p_start) ) lowercase__: List[str] = torch.vstack((p_ends, p_end) ) else: lowercase__: List[Any] = p_start lowercase__: List[Any] = p_end return p_starts, p_ends
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if n == 1 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return 0 elif n == 2: return 1 else: lowercase__: List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: str = 0 lowercase__: Any = 2 while digits < n: index += 1 lowercase__: Optional[int] = len(str(fibonacci(SCREAMING_SNAKE_CASE_ ) ) ) return index def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> int: return fibonacci_digits_index(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): lowercase__: Union[str, Any] = size if size is not None else {'''shortest_edge''': 18} lowercase__: Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__: Optional[int] = parent lowercase__: List[str] = batch_size lowercase__: Optional[int] = num_channels lowercase__: Dict = image_size lowercase__: int = min_resolution lowercase__: Tuple = max_resolution lowercase__: Optional[int] = do_resize lowercase__: Union[str, Any] = size lowercase__: int = do_center_crop lowercase__: Tuple = crop_size lowercase__: List[str] = do_normalize lowercase__: Optional[Any] = image_mean lowercase__: Dict = image_std def _snake_case ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase (UpperCamelCase__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = LevitImageProcessor if is_vision_available() else None def _snake_case ( self ): lowercase__: List[str] = LevitImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): lowercase__: int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def _snake_case ( self ): lowercase__: Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase__: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing lowercase__: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowercase__: Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: Dict = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowercase__: Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: Any = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowercase__: List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: int = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase (metaclass=A_ ): """simple docstring""" _UpperCAmelCase :Optional[Any] = ["torch", "torchsde"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def _snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def _snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''torch''', '''torchsde'''] )
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A = logging.get_logger(__name__) __A = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__: Optional[int] = model_type_to_module_name(_snake_case ) lowercase__: Union[str, Any] = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_snake_case , _snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_snake_case , '''__name__''' , _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__: Union[str, Any] = importlib.import_module('''transformers''' ) if hasattr(_snake_case , _snake_case ): return getattr(_snake_case , _snake_case ) return None def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , **__UpperCAmelCase , ) -> Union[str, Any]: lowercase__: List[Any] = get_file_from_repo( _snake_case , _snake_case , cache_dir=_snake_case , force_download=_snake_case , resume_download=_snake_case , proxies=_snake_case , use_auth_token=_snake_case , revision=_snake_case , local_files_only=_snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_snake_case , encoding='''utf-8''' ) as reader: return json.load(_snake_case ) class UpperCAmelCase : """simple docstring""" def __init__( self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_a ) def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Optional[Any] = kwargs.pop('''config''' , _a ) lowercase__: List[Any] = kwargs.pop('''trust_remote_code''' , _a ) lowercase__: List[Any] = True lowercase__: List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) lowercase__: Optional[Any] = config_dict.get('''feature_extractor_type''' , _a ) lowercase__: Tuple = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowercase__: int = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): lowercase__: Dict = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` lowercase__: Union[str, Any] = getattr(_a , '''feature_extractor_type''' , _a ) if hasattr(_a , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowercase__: Tuple = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: lowercase__: List[str] = feature_extractor_class_from_name(_a ) lowercase__: Dict = feature_extractor_auto_map is not None lowercase__: str = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING lowercase__: Dict = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: lowercase__: Union[str, Any] = get_class_from_dynamic_module( _a , _a , **_a ) lowercase__: Union[str, Any] = kwargs.pop('''code_revision''' , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: lowercase__: Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _snake_case ( _UpperCAmelCase , _UpperCAmelCase ): FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 5_1_2, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase (_a ): """simple docstring""" _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[Any] = RetriBertTokenizer _UpperCAmelCase :str = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) lowercase__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): lowercase__: Optional[Any] = getattr(_a , normalizer_state.pop('''type''' ) ) lowercase__: List[Any] = do_lower_case lowercase__: List[str] = strip_accents lowercase__: Any = tokenize_chinese_chars lowercase__: List[str] = normalizer_class(**_a ) lowercase__: List[str] = do_lower_case def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): lowercase__: List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: int = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[int]: return [ord(_lowerCAmelCase ) - 9_6 for elem in plain] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: List[str] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _lowerCAmelCase ) print('''Decoded:''' , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (__lowerCamelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = ReformerTokenizer _UpperCAmelCase :Dict = ReformerTokenizerFast _UpperCAmelCase :Optional[int] = True _UpperCAmelCase :Tuple = False _UpperCAmelCase :Optional[int] = True def _snake_case ( self ): super().setUp() lowercase__: List[str] = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): lowercase__: Union[str, Any] = '''<s>''' lowercase__: Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def _snake_case ( self ): lowercase__: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__lowercase ) , 1000 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self ): if not self.test_rust_tokenizer: return lowercase__: List[str] = self.get_tokenizer() lowercase__: Tuple = self.get_rust_tokenizer() lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: List[Any] = tokenizer.tokenize(__lowercase ) lowercase__: Optional[Any] = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) lowercase__: int = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) lowercase__: List[Any] = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) lowercase__: Optional[int] = self.get_rust_tokenizer() lowercase__: Any = tokenizer.encode(__lowercase ) lowercase__: List[str] = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case ( self , _UpperCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # Simple input lowercase__: List[str] = '''This is a simple input''' lowercase__: str = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__: Dict = ('''This is a simple input''', '''This is a pair''') lowercase__: Optional[int] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding='''max_length''' ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding='''max_length''' ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' , ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__: List[Any] = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) lowercase__: Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [285, 46, 10, 170, 382] , ) lowercase__: List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase__: Any = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase__: str = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _snake_case ( self ): return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def _snake_case ( self ): lowercase__: str = '''Hello World!''' lowercase__: int = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def _snake_case ( self ): lowercase__: int = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase__: List[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def _snake_case ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase__: int = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__: Tuple = ''' '''.join(__lowercase ) lowercase__: Optional[Any] = self.big_tokenizer.encode_plus(__lowercase , return_tensors='''pt''' ) lowercase__: Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) lowercase__: List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase__: Optional[int] = encoded_sequence['''input_ids'''].shape lowercase__: Optional[Any] = ReformerModel(__lowercase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase__: List[Any] = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=__lowercase , sequences=__lowercase , )
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A = logging.get_logger(__name__) # General docstring __A = """MobileNetV1Config""" # Base docstring __A = """google/mobilenet_v1_1.0_224""" __A = [1, 1_0_2_4, 7, 7] # Image classification docstring __A = """google/mobilenet_v1_1.0_224""" __A = """tabby, tabby cat""" __A = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> str: lowercase__: str = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = model.mobilenet_va else: lowercase__: Any = model lowercase__: Any = 'MobilenetV1/Conv2d_0/' lowercase__: List[Any] = backbone.conv_stem.convolution.weight lowercase__: int = backbone.conv_stem.normalization.bias lowercase__: List[Any] = backbone.conv_stem.normalization.weight lowercase__: Tuple = backbone.conv_stem.normalization.running_mean lowercase__: Tuple = backbone.conv_stem.normalization.running_var for i in range(1_3 ): lowercase__: List[str] = i + 1 lowercase__: int = i * 2 lowercase__: Optional[int] = backbone.layer[pt_index] lowercase__: List[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowercase__: Optional[int] = pointer.convolution.weight lowercase__: Any = pointer.normalization.bias lowercase__: Union[str, Any] = pointer.normalization.weight lowercase__: Dict = pointer.normalization.running_mean lowercase__: Optional[Any] = pointer.normalization.running_var lowercase__: Union[str, Any] = backbone.layer[pt_index + 1] lowercase__: Tuple = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowercase__: Any = pointer.convolution.weight lowercase__: List[Any] = pointer.normalization.bias lowercase__: int = pointer.normalization.weight lowercase__: str = pointer.normalization.running_mean lowercase__: Optional[int] = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowercase__: Any = model.classifier.weight lowercase__: int = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowercase__: List[str] = tf.train.list_variables(_UpperCAmelCase ) lowercase__: Tuple = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) lowercase__: Optional[int] = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = array # Build TF to PyTorch weights loading map lowercase__: int = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue lowercase__: Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowercase__: Any = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowercase__: Optional[int] = array.squeeze().transpose() else: lowercase__: Tuple = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) lowercase__: List[str] = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp''' , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp_1''' , _UpperCAmelCase ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , _UpperCAmelCase ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> torch.Tensor: lowercase__: Dict = features.shape[-2:] lowercase__: str = conv_layer.stride lowercase__: Any = conv_layer.kernel_size if in_height % stride_height == 0: lowercase__: str = max(kernel_height - stride_height , 0 ) else: lowercase__: Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase__: int = max(kernel_width - stride_width , 0 ) else: lowercase__: Tuple = max(kernel_width - (in_width % stride_width) , 0 ) lowercase__: Any = pad_along_width // 2 lowercase__: Optional[Any] = pad_along_width - pad_left lowercase__: Any = pad_along_height // 2 lowercase__: Optional[int] = pad_along_height - pad_top lowercase__: str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , '''constant''' , 0.0 ) class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = True , ): super().__init__() lowercase__: Dict = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowercase__: List[str] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase__: Any = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=_UpperCAmelCase , groups=_UpperCAmelCase , bias=_UpperCAmelCase , padding_mode='''zeros''' , ) if use_normalization: lowercase__: Optional[int] = nn.BatchNormad( num_features=_UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_UpperCAmelCase , track_running_stats=_UpperCAmelCase , ) else: lowercase__: Tuple = None if use_activation: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , _UpperCAmelCase ): lowercase__: Any = ACTaFN[config.hidden_act] else: lowercase__: Dict = config.hidden_act else: lowercase__: Optional[int] = None def _snake_case ( self , _UpperCAmelCase ): if self.config.tf_padding: lowercase__: Dict = apply_tf_padding(_UpperCAmelCase , self.convolution ) lowercase__: Union[str, Any] = self.convolution(_UpperCAmelCase ) if self.normalization is not None: lowercase__: Union[str, Any] = self.normalization(_UpperCAmelCase ) if self.activation is not None: lowercase__: List[str] = self.activation(_UpperCAmelCase ) return features class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" _UpperCAmelCase :int = MobileNetVaConfig _UpperCAmelCase :Any = load_tf_weights_in_mobilenet_va _UpperCAmelCase :Optional[Any] = "mobilenet_v1" _UpperCAmelCase :List[Any] = "pixel_values" _UpperCAmelCase :Tuple = False def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_UpperCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,__UpperCamelCase ,) class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = True ): super().__init__(_UpperCAmelCase ) lowercase__: Optional[Any] = config lowercase__: Dict = 32 lowercase__: List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase__: str = MobileNetVaConvLayer( _UpperCAmelCase , in_channels=config.num_channels , out_channels=_UpperCAmelCase , kernel_size=3 , stride=2 , ) lowercase__: List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase__: Any = nn.ModuleList() for i in range(13 ): lowercase__: Tuple = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase__: List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=_UpperCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( _UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=1 , ) ) lowercase__: Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case ( self , _UpperCAmelCase ): raise NotImplementedError @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase__: Tuple = self.conv_stem(_UpperCAmelCase ) lowercase__: Optional[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase__: Any = layer_module(_UpperCAmelCase ) if output_hidden_states: lowercase__: Union[str, Any] = all_hidden_states + (hidden_states,) lowercase__: List[Any] = hidden_states if self.pooler is not None: lowercase__: Tuple = torch.flatten(self.pooler(_UpperCAmelCase ) , start_dim=1 ) else: lowercase__: Any = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=_UpperCAmelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,__UpperCamelCase ,) class UpperCAmelCase (__UpperCamelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: List[str] = config.num_labels lowercase__: Dict = MobileNetVaModel(_UpperCAmelCase ) lowercase__: Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase__: str = nn.Dropout(config.classifier_dropout_prob , inplace=_UpperCAmelCase ) lowercase__: str = nn.Linear(_UpperCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: List[str] = self.mobilenet_va(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) lowercase__: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__: List[Any] = self.classifier(self.dropout(_UpperCAmelCase ) ) lowercase__: Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__: Dict = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__: Tuple = 'single_label_classification' else: lowercase__: Dict = 'multi_label_classification' if self.config.problem_type == "regression": lowercase__: Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__: int = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__: Dict = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": lowercase__: Optional[int] = CrossEntropyLoss() lowercase__: List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__: Union[str, Any] = BCEWithLogitsLoss() lowercase__: int = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: lowercase__: Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: return x + 2 class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Optional[int] = '''x = 3''' lowercase__: str = {} lowercase__: str = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3} ) lowercase__: Optional[int] = '''x = y''' lowercase__: Optional[Any] = {'''y''': 5} lowercase__: Any = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 5, '''y''': 5} ) def _snake_case ( self ): lowercase__: Tuple = '''y = add_two(x)''' lowercase__: int = {'''x''': 3} lowercase__: Optional[int] = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__: Union[str, Any] = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def _snake_case ( self ): lowercase__: Any = '''x = 3''' lowercase__: Any = {} lowercase__: List[str] = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3} ) def _snake_case ( self ): lowercase__: Union[str, Any] = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' lowercase__: Optional[Any] = {'''x''': 3} lowercase__: Any = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def _snake_case ( self ): lowercase__: List[str] = '''x = 3\ny = 5''' lowercase__: Optional[Any] = {} lowercase__: Dict = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) def _snake_case ( self ): lowercase__: Optional[int] = '''text = f\'This is x: {x}.\'''' lowercase__: Tuple = {'''x''': 3} lowercase__: Tuple = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def _snake_case ( self ): lowercase__: List[str] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' lowercase__: Union[str, Any] = {'''x''': 3} lowercase__: Any = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 2} ) lowercase__: Optional[Any] = {'''x''': 8} lowercase__: List[str] = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 8, '''y''': 5} ) def _snake_case ( self ): lowercase__: Any = '''test_list = [x, add_two(x)]''' lowercase__: Dict = {'''x''': 3} lowercase__: int = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) def _snake_case ( self ): lowercase__: List[str] = '''y = x''' lowercase__: List[str] = {'''x''': 3} lowercase__: Optional[int] = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 3} ) def _snake_case ( self ): lowercase__: List[Any] = '''test_list = [x, add_two(x)]\ntest_list[1]''' lowercase__: Optional[Any] = {'''x''': 3} lowercase__: List[str] = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) lowercase__: Union[str, Any] = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' lowercase__: Union[str, Any] = {'''x''': 3} lowercase__: Dict = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def _snake_case ( self ): lowercase__: Tuple = '''x = 0\nfor i in range(3):\n x = i''' lowercase__: List[str] = {} lowercase__: Union[str, Any] = evaluate(__SCREAMING_SNAKE_CASE , {'''range''': range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 2, '''i''': 2} )
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: return math.pow(lowerCamelCase__ , 2 ) - a def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: return 2 * x def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: lowercase__: str = 2.0 while start <= a: lowercase__: List[Any] = math.pow(lowerCamelCase__ , 2 ) return start def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 9_9_9_9 , __UpperCAmelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> Union[str, Any]: if a < 0: raise ValueError('''math domain error''' ) lowercase__: Optional[int] = get_initial_point(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): lowercase__: Any = value lowercase__: int = value - fx(lowerCamelCase__ , lowerCamelCase__ ) / fx_derivative(lowerCamelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowercase__: Tuple = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) ,"Tatoeba directory does not exist." ) class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): lowercase__: Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): self.resolver.convert_models(['''heb-eng'''] ) @slow def _snake_case ( self ): lowercase__, lowercase__: List[str] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_SCREAMING_SNAKE_CASE ) assert mmeta["long_pair"] == "heb-eng"
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=None , ): lowercase__: Optional[int] = size if size is not None else {'shortest_edge': 18} lowercase__: Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowercase__: Union[str, Any] = parent lowercase__: int = batch_size lowercase__: List[Any] = num_channels lowercase__: str = num_frames lowercase__: Tuple = image_size lowercase__: Tuple = min_resolution lowercase__: List[Any] = max_resolution lowercase__: int = do_resize lowercase__: str = size lowercase__: str = do_normalize lowercase__: Optional[Any] = image_mean lowercase__: List[Any] = image_std lowercase__: Optional[int] = crop_size def _snake_case ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase (snake_case_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = VivitImageProcessor if is_vision_available() else None def _snake_case ( self ): lowercase__: Optional[Any] = VivitImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): lowercase__: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _snake_case ( self ): lowercase__: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase__: Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase__: List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowercase__: Union[str, Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case ( self ): lowercase__: int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowercase__: List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _snake_case ( self ): lowercase__: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: str = prepare_video_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowercase__: Any = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__: Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: Optional[int] = {} lowercase__: List[str] = job['''started_at'''] lowercase__: Optional[int] = job['''completed_at'''] lowercase__: List[Any] = date_parser.parse(__UpperCAmelCase ) lowercase__: int = date_parser.parse(__UpperCAmelCase ) lowercase__: Dict = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) lowercase__: List[str] = start lowercase__: List[str] = end lowercase__: List[str] = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: lowercase__: Dict = None if token is not None: lowercase__: Dict = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} lowercase__: Any = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowercase__: Tuple = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() lowercase__: Optional[int] = {} try: job_time.update({job['''name''']: extract_time_from_single_job(__UpperCAmelCase ) for job in result['''jobs''']} ) lowercase__: Tuple = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(__UpperCAmelCase ): lowercase__: List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=__UpperCAmelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(__UpperCAmelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __A = parser.parse_args() __A = get_job_time(args.workflow_run_id) __A = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: lowercase__: Optional[int] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowercase__: List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowercase__: Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: lowercase__: Optional[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: lowercase__: str = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="relu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): lowercase__: Optional[Any] = parent lowercase__: Optional[Any] = batch_size lowercase__: Optional[int] = seq_length lowercase__: Union[str, Any] = is_training lowercase__: Optional[int] = use_labels lowercase__: List[str] = vocab_size lowercase__: int = hidden_size lowercase__: Tuple = num_hidden_layers lowercase__: Tuple = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: Any = attention_probs_dropout_prob lowercase__: Tuple = encoder_layerdrop lowercase__: str = decoder_layerdrop lowercase__: Dict = max_position_embeddings lowercase__: Any = eos_token_id lowercase__: Tuple = pad_token_id lowercase__: Union[str, Any] = bos_token_id def _snake_case ( self ): lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: str = self.eos_token_id # Eos Token lowercase__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase__: List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowercase__: int = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowercase__: Dict = self.get_config() lowercase__: Any = prepare_mam_aaa_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def _snake_case ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _snake_case ( self ): lowercase__, lowercase__: Any = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = MaMaaaModel(config=lowercase__ ).get_decoder().to(lowercase__ ).eval() lowercase__: Optional[Any] = inputs_dict['''input_ids'''] lowercase__: Optional[int] = inputs_dict['''attention_mask'''] lowercase__: Union[str, Any] = inputs_dict['''head_mask'''] # first forward pass lowercase__: Dict = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__ ) lowercase__, lowercase__: Any = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowercase__: List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__: List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowercase__: List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__: Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowercase__: str = model(lowercase__ , attention_mask=lowercase__ )['''last_hidden_state'''] lowercase__: Optional[int] = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[ '''last_hidden_state''' ] # select random slice lowercase__: Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__: Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__: Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-2 ) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MaMaaaModel(config=lowercase__ ).to(lowercase__ ).eval() lowercase__: Tuple = model(**lowercase__ ) lowercase__: Dict = outputs.encoder_last_hidden_state lowercase__: Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: int = model.get_encoder() encoder.save_pretrained(lowercase__ ) lowercase__: List[str] = MaMaaaEncoder.from_pretrained(lowercase__ ).to(lowercase__ ) lowercase__: int = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__: str = model.get_decoder() decoder.save_pretrained(lowercase__ ) lowercase__: str = MaMaaaDecoder.from_pretrained(lowercase__ ).to(lowercase__ ) lowercase__: List[str] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=lowercase__ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase (lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _UpperCAmelCase :Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _UpperCAmelCase :Optional[int] = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _UpperCAmelCase :int = True _UpperCAmelCase :List[Any] = True _UpperCAmelCase :List[Any] = False _UpperCAmelCase :Dict = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _snake_case ( self ): lowercase__: Optional[Any] = MaMaaaModelTester(self ) lowercase__: str = ConfigTester(self , config_class=lowercase__ ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__, lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase__: Optional[Any] = model_class(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) lowercase__, lowercase__: Union[str, Any] = model_class.from_pretrained(lowercase__ , output_loading_info=lowercase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase__ ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase__ ) def _snake_case ( self ): lowercase__, lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowercase__: Any = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() lowercase__: List[str] = copy.deepcopy(self._prepare_for_class(lowercase__ , lowercase__ ) ) if not self.is_encoder_decoder: lowercase__: Optional[int] = inputs['''input_ids'''] del inputs["input_ids"] else: lowercase__: Optional[Any] = inputs['''input_ids'''] lowercase__: Dict = inputs.get('''decoder_input_ids''' , lowercase__ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , lowercase__ ) lowercase__: List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: lowercase__: Dict = wte(lowercase__ ) else: lowercase__: Tuple = wte(lowercase__ ) lowercase__: Union[str, Any] = wte(lowercase__ ) with torch.no_grad(): model(**lowercase__ )[0] def _snake_case ( self ): lowercase__, lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() lowercase__: Optional[int] = input_dict['''input_ids'''] lowercase__: Any = input_ids.ne(1 ).to(lowercase__ ) lowercase__: Dict = MaMaaaForConditionalGeneration(lowercase__ ).eval().to(lowercase__ ) if torch_device == "cuda": model.half() model.generate(lowercase__ , attention_mask=lowercase__ ) model.generate(num_beams=4 , do_sample=lowercase__ , early_stopping=lowercase__ , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor(A__ , dtype=torch.long , device=A__ ) __A = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def _snake_case ( self ): lowercase__: Union[str, Any] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) lowercase__: Tuple = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) lowercase__: List[str] = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) lowercase__: str = prepare_mam_aaa_inputs_dict(model.config , lowercase__ , lowercase__ ) with torch.no_grad(): lowercase__: int = model(**lowercase__ )[0] lowercase__: int = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , lowercase__ ) # change to expected output here lowercase__: List[Any] = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=lowercase__ ) ) def _snake_case ( self ): lowercase__: int = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) # change to intended input lowercase__: List[Any] = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) lowercase__: Optional[int] = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) lowercase__: Any = prepare_mam_aaa_inputs_dict(model.config , lowercase__ , lowercase__ ) with torch.no_grad(): lowercase__: Tuple = model(**lowercase__ )[0] lowercase__: Any = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowercase__ ) # change to expected output here lowercase__: int = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=lowercase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=lowercase__ ) ) def _snake_case ( self ): lowercase__: Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowercase__ ) lowercase__: str = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) lowercase__: Optional[Any] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowercase__: Optional[int] = tokenizer(lowercase__ , padding=lowercase__ , return_tensors='''pt''' ) lowercase__: Optional[Any] = model.generate( input_ids=dct['''input_ids'''].to(lowercase__ ) , attention_mask=dct['''attention_mask'''].to(lowercase__ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) lowercase__: Any = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] lowercase__: Optional[Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowercase__ , skip_special_tokens=lowercase__ ) assert generated == expected_en
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=2 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=36 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=1000 , ): lowercase__: Optional[Any] = parent lowercase__: str = batch_size lowercase__: Optional[int] = num_channels lowercase__: str = image_size lowercase__: Optional[int] = patch_size lowercase__: Any = text_seq_length lowercase__: List[str] = is_training lowercase__: Optional[int] = use_input_mask lowercase__: Any = use_token_type_ids lowercase__: int = use_labels lowercase__: List[Any] = vocab_size lowercase__: Tuple = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: str = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: int = attention_probs_dropout_prob lowercase__: List[Any] = max_position_embeddings lowercase__: Any = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[Any] = initializer_range lowercase__: Optional[Any] = coordinate_size lowercase__: List[str] = shape_size lowercase__: Optional[int] = num_labels lowercase__: List[str] = num_choices lowercase__: List[str] = scope lowercase__: Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase__: Tuple = text_seq_length lowercase__: Union[str, Any] = (image_size // patch_size) ** 2 + 1 lowercase__: Dict = self.text_seq_length + self.image_seq_length def _snake_case ( self ): lowercase__: Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__: Tuple = bbox[i, j, 3] lowercase__: Optional[Any] = bbox[i, j, 1] lowercase__: List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__: str = bbox[i, j, 2] lowercase__: Optional[int] = bbox[i, j, 0] lowercase__: str = t lowercase__: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase__: str = None if self.use_token_type_ids: lowercase__: str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase__: List[str] = None lowercase__: List[str] = None if self.use_labels: lowercase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase__: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = LayoutLMvaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # text + image lowercase__: Dict = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase ) lowercase__: Tuple = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Optional[Any] = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Tuple = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase__: List[str] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase__: Any = model(pixel_values=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_labels lowercase__: Tuple = LayoutLMvaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.num_labels lowercase__: str = LayoutLMvaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[Any] = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = LayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): lowercase__: Optional[Any] = self.prepare_config_and_inputs() ( lowercase__ ): int = config_and_inputs lowercase__: int = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase (SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = False _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :Union[str, Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase :Tuple = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self ): lowercase__: Optional[int] = LayoutLMvaModelTester(self ) lowercase__: Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: Tuple = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): lowercase__: Dict = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: str = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in get_values(_UpperCAmelCase ): lowercase__: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: lowercase__: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: lowercase__: Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCAmelCase , ) return inputs_dict def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__: int = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[Any] = LayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def _snake_case ( self ): lowercase__: Optional[Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCAmelCase ) lowercase__: Optional[Any] = self.default_image_processor lowercase__: List[Any] = prepare_img() lowercase__: Tuple = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCAmelCase ) lowercase__: str = torch.tensor([[1, 2]] ) lowercase__: List[str] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase__: Optional[int] = model( input_ids=input_ids.to(_UpperCAmelCase ) , bbox=bbox.to(_UpperCAmelCase ) , pixel_values=pixel_values.to(_UpperCAmelCase ) , ) # verify the logits lowercase__: Tuple = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase ) lowercase__: int = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCAmelCase (_lowercase ): """simple docstring""" _UpperCAmelCase :Dict = "gpt_bigcode" _UpperCAmelCase :Optional[int] = ["past_key_values"] _UpperCAmelCase :Tuple = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50257 , _UpperCAmelCase=1024 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_pytorch_tanh" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Any = vocab_size lowercase__: Dict = n_positions lowercase__: str = n_embd lowercase__: Optional[int] = n_layer lowercase__: List[Any] = n_head lowercase__: Dict = n_inner lowercase__: Any = activation_function lowercase__: Optional[Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Dict = attn_pdrop lowercase__: Union[str, Any] = layer_norm_epsilon lowercase__: List[str] = initializer_range lowercase__: int = scale_attn_weights lowercase__: int = use_cache lowercase__: Tuple = attention_softmax_in_fpaa lowercase__: Dict = scale_attention_softmax_in_fpaa lowercase__: Dict = multi_query lowercase__: List[Any] = bos_token_id lowercase__: Dict = eos_token_id super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , ): lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def _snake_case ( self ): lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__ = TFEsmModel(config=UpperCAmelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCAmelCase__ ) lowercase__ = [input_ids, input_mask] lowercase__ = model(UpperCAmelCase__ ) lowercase__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): lowercase__ = True lowercase__ = TFEsmModel(config=UpperCAmelCase__ ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowercase__ = model(UpperCAmelCase__ ) lowercase__ = [input_ids, input_mask] lowercase__ = model(UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ) # Also check the case where encoder outputs are not passed lowercase__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__ = TFEsmForMaskedLM(config=UpperCAmelCase__ ) lowercase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__ = self.num_labels lowercase__ = TFEsmForTokenClassification(config=UpperCAmelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ): lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase (__lowercase ,__lowercase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _UpperCAmelCase :Dict = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Any = False def _snake_case ( self ): lowercase__ = TFEsmModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _snake_case ( self ): lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__ ) def _snake_case ( self ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _snake_case ( self ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def _snake_case ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFEsmModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def _snake_case ( self ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCAmelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ = model.get_bias() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for k, v in name.items(): assert isinstance(UpperCAmelCase__ , tf.Variable ) else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(UpperCAmelCase__ )[0] lowercase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase__ ) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _snake_case ( self ): lowercase__ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(UpperCAmelCase__ )[0] # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ): lowercase__: int = parent lowercase__: str = batch_size lowercase__: str = is_training lowercase__: int = use_auxiliary_loss lowercase__: Union[str, Any] = num_queries lowercase__: Any = num_channels lowercase__: Optional[Any] = min_size lowercase__: Tuple = max_size lowercase__: Optional[Any] = num_labels lowercase__: Optional[int] = hidden_dim lowercase__: List[str] = hidden_dim def _snake_case ( self ): lowercase__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) lowercase__: Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) lowercase__: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() lowercase__: str = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() lowercase__: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ): lowercase__: List[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase__: Dict = self.num_queries lowercase__: Tuple = self.num_labels lowercase__: Dict = [1, 1, 1, 1] lowercase__: Optional[int] = self.num_channels lowercase__: List[str] = 64 lowercase__: Tuple = 128 lowercase__: List[str] = self.hidden_dim lowercase__: List[str] = self.hidden_dim lowercase__: int = self.hidden_dim return config def _snake_case ( self ): lowercase__: Union[str, Any] = self.prepare_config_and_inputs() lowercase__: Union[str, Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = output.encoder_hidden_states lowercase__: Tuple = output.pixel_decoder_hidden_states lowercase__: Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): with torch.no_grad(): lowercase__: Optional[Any] = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() lowercase__: Optional[Any] = model(pixel_values=_a , pixel_mask=_a ) lowercase__: Any = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase__: Optional[int] = model(pixel_values=_a , pixel_mask=_a ) lowercase__: List[Any] = model(_a ) comm_check_on_output(_a ) lowercase__: Optional[Any] = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase (UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _UpperCAmelCase :Tuple = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} _UpperCAmelCase :Tuple = False _UpperCAmelCase :Dict = False _UpperCAmelCase :Dict = False _UpperCAmelCase :List[str] = False def _snake_case ( self ): lowercase__: Optional[int] = MaskaFormerModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def _snake_case ( self ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def _snake_case ( self ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def _snake_case ( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _snake_case ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: str = model_class(_a ) lowercase__: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: str = [*signature.parameters.keys()] lowercase__: Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) @slow def _snake_case ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase__: Any = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _snake_case ( self ): lowercase__: Dict = (self.model_tester.min_size,) * 2 lowercase__: Tuple = { """pixel_values""": torch.randn((2, 3, *size) , device=_a ), """mask_labels""": torch.randn((2, 10, *size) , device=_a ), """class_labels""": torch.zeros(2 , 10 , device=_a ).long(), } lowercase__: List[str] = self.model_tester.get_config() lowercase__: Dict = MaskaFormerForUniversalSegmentation(_a ).to(_a ) lowercase__: Optional[int] = model(**_a ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = model_class(_a ).to(_a ) lowercase__: int = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ): if not self.model_tester.is_training: return lowercase__: Dict = self.all_model_classes[1] lowercase__: Any = self.model_tester.prepare_config_and_inputs() lowercase__: int = model_class(_a ) model.to(_a ) model.train() lowercase__: str = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def _snake_case ( self ): lowercase__: Tuple = self.all_model_classes[1] lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() lowercase__: Tuple = True lowercase__: Union[str, Any] = True lowercase__: Optional[int] = model_class(_a ).to(_a ) model.train() lowercase__: Tuple = model(_a , mask_labels=_a , class_labels=_a ) lowercase__: Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__: int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase__: Tuple = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1E-4 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self ): lowercase__: Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) lowercase__: Optional[Any] = self.default_image_processor lowercase__: Union[str, Any] = prepare_img() lowercase__: List[Any] = image_processor(_a , return_tensors='''pt''' ).to(_a ) lowercase__: int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowercase__: str = model(**_a ) lowercase__: int = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowercase__: int = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowercase__: int = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def _snake_case ( self ): lowercase__: Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowercase__: List[Any] = self.default_image_processor lowercase__: Any = prepare_img() lowercase__: Any = image_processor(_a , return_tensors='''pt''' ).to(_a ) lowercase__: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowercase__: Optional[Any] = model(**_a ) # masks_queries_logits lowercase__: Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase__: int = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowercase__: Tuple = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits lowercase__: int = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase__: List[Any] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def _snake_case ( self ): lowercase__: List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowercase__: str = self.default_image_processor lowercase__: int = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase__: Optional[int] = inputs["""pixel_values"""].to(_a ) lowercase__: int = [el.to(_a ) for el in inputs["""mask_labels"""]] lowercase__: Union[str, Any] = [el.to(_a ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase__: Optional[Any] = model(**_a ) self.assertTrue(outputs.loss is not None )
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase (pl.LightningModule ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__() lowercase__: Optional[Any] = model lowercase__: Union[str, Any] = 2 lowercase__: List[str] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _snake_case ( self ): pass def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Union[str, Any] = LongformerModel.from_pretrained(lowercase__ ) lowercase__: Optional[Any] = LightningModel(lowercase__ ) lowercase__: List[Any] = torch.load(lowercase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase__: Tuple = LongformerForQuestionAnswering.from_pretrained(lowercase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase__ ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase (__SCREAMING_SNAKE_CASE ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ShapEImgaImgPipeline _UpperCAmelCase :List[str] = ["image"] _UpperCAmelCase :Tuple = ["image"] _UpperCAmelCase :List[str] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCAmelCase :List[Any] = False @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return self.time_input_dim * 4 @property def _snake_case ( self ): return 8 @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__: List[Any] = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): lowercase__: Union[str, Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Any = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowercase__: int = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowercase__: Any = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def _snake_case ( self ): lowercase__: Dict = self.dummy_prior lowercase__: Dict = self.dummy_image_encoder lowercase__: Tuple = self.dummy_image_processor lowercase__: Any = self.dummy_renderer lowercase__: Tuple = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) lowercase__: Tuple = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase__: Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: lowercase__: str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) lowercase__: Dict = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self ): lowercase__: int = "cpu" lowercase__: Tuple = self.get_dummy_components() lowercase__: int = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) lowercase__: Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowercase__: List[Any] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) lowercase__: List[str] = output.images[0] lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__: int = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): lowercase__: int = torch_device == "cpu" lowercase__: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self ): lowercase__: List[Any] = self.get_dummy_components() lowercase__: Optional[int] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) lowercase__: Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowercase__: str = 1 lowercase__: Optional[int] = 2 lowercase__: str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: lowercase__: Dict = batch_size * [inputs[key]] lowercase__: Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__: Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__: List[str] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__: Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowercase__: int = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) lowercase__: Any = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (__snake_case ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :int = LongformerTokenizer _UpperCAmelCase :Tuple = True _UpperCAmelCase :Tuple = LongformerTokenizerFast _UpperCAmelCase :List[Any] = True def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase__: List[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowercase__: List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__: List[str] = {"""unk_token""": """<unk>"""} lowercase__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = """lower newer""" lowercase__: Optional[Any] = """lower newer""" return input_text, output_text def _snake_case ( self ): lowercase__: int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: int = """lower newer""" lowercase__: int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__: List[str] = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowercase__: Union[str, Any] = tokens + [tokenizer.unk_token] lowercase__: Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def _snake_case ( self ): lowercase__: Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCamelCase_ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCamelCase_ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _snake_case ( self ): lowercase__: List[Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) lowercase__: Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) lowercase__: str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) lowercase__: Optional[Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowercase__: List[str] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowercase__: str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[str] = """Encode this sequence.""" lowercase__: Optional[int] = tokenizer.byte_encoder[""" """.encode('''utf-8''' )[0]] # Testing encoder arguments lowercase__: Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) lowercase__: Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowercase__: str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowercase__: Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens lowercase__: List[str] = """<mask>""" tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space lowercase__: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) lowercase__: int = """Encode <mask> sequence""" lowercase__: Optional[int] = """Encode <mask>sequence""" lowercase__: Dict = tokenizer.encode(lowerCamelCase_ ) lowercase__: Optional[Any] = encoded.index(lowerCamelCase_ ) lowercase__: str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) lowercase__: Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) lowercase__: Union[str, Any] = encoded.index(lowerCamelCase_ ) lowercase__: str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowercase__: str = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowercase__: List[str] = """A, <mask> AllenNLP sentence.""" lowercase__: List[str] = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) lowercase__: List[Any] = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase__: List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase__: Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _snake_case ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__: int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__: Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCamelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCamelCase_ ) def _snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__: int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__: List[str] = F"""{text_of_1_token} {text_of_1_token}""" lowercase__: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Optional[int] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: str = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: List[str] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: List[Any] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__: List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowercase__: int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) lowercase__: Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = """Wav2Vec2FeatureExtractor""" _UpperCAmelCase :Tuple = """AutoTokenizer""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_lowercase , _lowercase ) lowercase__: Dict = self.feature_extractor lowercase__: Optional[Any] = False @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): try: return super().from_pretrained(_lowercase , **_lowercase ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowercase , ) lowercase__: Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase ) lowercase__: List[Any] = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(feature_extractor=_lowercase , tokenizer=_lowercase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__: Tuple = kwargs.pop('''raw_speech''' ) else: lowercase__: str = kwargs.pop('''audio''' , _lowercase ) lowercase__: int = kwargs.pop('''sampling_rate''' , _lowercase ) lowercase__: str = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: lowercase__: int = args[0] lowercase__: int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__: Any = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: lowercase__: Optional[int] = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowercase__: List[Any] = encodings['''input_ids'''] return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase ) lowercase__: Optional[Any] = kwargs.pop('''input_features''' , _lowercase ) lowercase__: Optional[Any] = kwargs.pop('''labels''' , _lowercase ) if len(_lowercase ) > 0: lowercase__: Tuple = args[0] lowercase__: List[str] = args[1:] if input_features is not None: lowercase__: List[str] = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) if labels is not None: lowercase__: Dict = self.tokenizer.pad(_lowercase , **_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__: Tuple = labels['''input_ids'''] return input_features def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _snake_case ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__: str = True lowercase__: Optional[Any] = self.tokenizer yield lowercase__: Optional[int] = self.feature_extractor lowercase__: Union[str, Any] = False
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1_6_0_0_0 ) -> Optional[Any]: lowercase__: Dict = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE__ ) <= sample_length: return wav lowercase__: Dict = randint(0 , len(SCREAMING_SNAKE_CASE__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :Optional[str] = field(default=lowerCamelCase_ ,metadata={"help": "Name of a dataset from the datasets package"} ) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "A file containing the training audio paths and labels."} ) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "A file containing the validation audio paths and labels."} ) _UpperCAmelCase :str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) _UpperCAmelCase :str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) _UpperCAmelCase :str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) _UpperCAmelCase :str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) _UpperCAmelCase :Optional[int] = field( default=lowerCamelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) _UpperCAmelCase :Optional[int] = field( default=lowerCamelCase_ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) _UpperCAmelCase :float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) _UpperCAmelCase :str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase :Optional[str] = field( default=lowerCamelCase_ ,metadata={"help": "Name or path of preprocessor config."} ) _UpperCAmelCase :bool = field( default=lowerCamelCase_ ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) _UpperCAmelCase :bool = field( default=lowerCamelCase_ ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) _UpperCAmelCase :bool = field( default=lowerCamelCase_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) _UpperCAmelCase :Optional[bool] = field( default=lowerCamelCase_ ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) _UpperCAmelCase :bool = field( default=lowerCamelCase_ ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def _snake_case ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , _UpperCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: lowercase__: Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__, lowercase__, lowercase__: List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__, lowercase__, lowercase__: int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__: Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase__: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowercase__: Optional[int] = DatasetDict() lowercase__: str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__: List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase__: str = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase__: Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase__: Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(__UpperCAmelCase ): lowercase__: Any = [] for audio in batch[data_args.audio_column_name]: lowercase__: Optional[int] = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE__ ) lowercase__: Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) lowercase__: Tuple = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} lowercase__: List[Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__UpperCAmelCase ): lowercase__: Tuple = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowercase__: int = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) lowercase__: Optional[int] = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} lowercase__: Optional[int] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__: Any = raw_datasets['''train'''].features[data_args.label_column_name].names lowercase__, lowercase__: int = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase__: Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) lowercase__: Union[str, Any] = label # Load the accuracy metric from the datasets package lowercase__: Optional[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): lowercase__: List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=eval_pred.label_ids ) lowercase__: List[str] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__: int = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase__: Any = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase__: Dict = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) # Initialize our trainer lowercase__: Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: lowercase__: Tuple = None if training_args.resume_from_checkpoint is not None: lowercase__: Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__: Tuple = last_checkpoint lowercase__: Union[str, Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__: Any = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub lowercase__: List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[list[int]]: lowercase__: list[list[int]] = [] lowercase__: list[int] = [] lowercase__: str = 0 lowercase__: Dict = sum(__UpperCAmelCase ) create_state_space_tree(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return result def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> None: if sum(__UpperCAmelCase ) > max_sum or (remaining_nums_sum + sum(__UpperCAmelCase )) < max_sum: return if sum(__UpperCAmelCase ) == max_sum: result.append(__UpperCAmelCase ) return for index in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): create_state_space_tree( __UpperCAmelCase , __UpperCAmelCase , index + 1 , [*path, nums[index]] , __UpperCAmelCase , remaining_nums_sum - nums[index] , ) __A = [3, 3_4, 4, 1_2, 5, 2] __A = 9 __A = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from __future__ import annotations from decimal import Decimal from numpy import array def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[list[float]]: lowercase__: Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(a__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase__: Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowercase__: str = [[0.0, 0.0], [0.0, 0.0]] lowercase__, lowercase__: Union[str, Any] = matrix[1][1], matrix[0][0] lowercase__, lowercase__: str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(a__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(a__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase__: Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowercase__: Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase__: Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase__: List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase__: List[str] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase__: Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase__: List[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase__: str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase__: List[str] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase__: str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase__: Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase__: Union[str, Any] = array(a__ ) for i in range(3 ): for j in range(3 ): lowercase__: Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase__: Optional[int] = array(a__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(a__ ) # Calculate the inverse of the matrix return [[float(d(a__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Any: lowercase__: Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__: str = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: lowercase__: Any = "" else: lowercase__: Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__: Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase__: List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowercase__: str = in_proj_bias[: config.hidden_size] lowercase__: List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__: Any = in_proj_weight[ -config.hidden_size :, : ] lowercase__: str = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: Tuple = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: List[Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: str = dct.pop(_lowerCamelCase ) lowercase__: Union[str, Any] = val def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: int = ViTMSNConfig() lowercase__: Dict = 1_0_0_0 lowercase__: str = "datasets/huggingface/label-files" lowercase__: Optional[int] = "imagenet-1k-id2label.json" lowercase__: List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , '''r''' ) ) lowercase__: str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowercase__: int = idalabel lowercase__: List[str] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase__: int = 3_8_4 lowercase__: Optional[int] = 1_5_3_6 lowercase__: str = 6 elif "l16" in checkpoint_url: lowercase__: Optional[Any] = 1_0_2_4 lowercase__: str = 4_0_9_6 lowercase__: Any = 2_4 lowercase__: Optional[int] = 1_6 lowercase__: Union[str, Any] = 0.1 elif "b4" in checkpoint_url: lowercase__: Optional[Any] = 4 elif "l7" in checkpoint_url: lowercase__: str = 7 lowercase__: int = 1_0_2_4 lowercase__: int = 4_0_9_6 lowercase__: Union[str, Any] = 2_4 lowercase__: Optional[int] = 1_6 lowercase__: List[Any] = 0.1 lowercase__: str = ViTMSNModel(_lowerCamelCase ) lowercase__: Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='''cpu''' )["target_encoder"] lowercase__: Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) lowercase__: Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() lowercase__: Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__: Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) lowercase__: List[str] = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) lowercase__: Tuple = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase__: Optional[int] = model(**_lowerCamelCase ) lowercase__: List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase__: Any = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase__: Optional[Any] = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase__: List[str] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase__: str = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase__: Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase ): lowercase__: List[str] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_SCREAMING_SNAKE_CASE ) != 0: lowercase__: Union[str, Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_SCREAMING_SNAKE_CASE ) != cols: raise error for value in row: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise error lowercase__: int = rows else: lowercase__: Union[str, Any] = [] def _snake_case ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _snake_case ( self ): return len(self.rows ) @property def _snake_case ( self ): return len(self.rows[0] ) @property def _snake_case ( self ): return (self.num_rows, self.num_columns) @property def _snake_case ( self ): return self.order[0] == self.order[1] def _snake_case ( self ): lowercase__: Optional[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _snake_case ( self ): return bool(self.determinant() ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_SCREAMING_SNAKE_CASE ).determinant() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): if (row + column) % 2 == 0: return self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return -1 * self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self ): return Matrix( [ [self.get_minor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _snake_case ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _snake_case ( self ): lowercase__: Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: Dict = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_SCREAMING_SNAKE_CASE ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Optional[int] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise type_error for value in row: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(_SCREAMING_SNAKE_CASE ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_SCREAMING_SNAKE_CASE ) else: lowercase__: List[str] = self.rows[0:position] + [row] + self.rows[position:] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Any = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise type_error for value in column: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(_SCREAMING_SNAKE_CASE ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: lowercase__: Optional[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase__: Optional[Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _UpperCAmelCase ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return NotImplemented return self.rows == other.rows def __ne__( self , _UpperCAmelCase ): return not self == other def __neg__( self ): return self * -1 def __add__( self , _UpperCAmelCase ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _UpperCAmelCase ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _UpperCAmelCase ): if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self , _UpperCAmelCase ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) lowercase__: str = self for _ in range(other - 1 ): result *= self return result @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase ): return sum(row[i] * column[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" __A = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowercase__: Optional[Any] = [False] * len(lowerCamelCase__ ) lowercase__: Optional[Any] = [s] lowercase__: int = True while queue: lowercase__: List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase__ ) lowercase__: int = True lowercase__: List[str] = u return visited[t] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowercase__: List[str] = [-1] * (len(lowerCamelCase__ )) lowercase__: Any = 0 lowercase__: Dict = [] lowercase__: int = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__: Dict = float('''Inf''' ) lowercase__: Optional[Any] = sink while s != source: # Find the minimum value in select path lowercase__: Union[str, Any] = min(lowerCamelCase__ , graph[parent[s]][s] ) lowercase__: Tuple = parent[s] max_flow += path_flow lowercase__: Optional[int] = sink while v != source: lowercase__: Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase__: Tuple = parent[v] for i in range(len(lowerCamelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: lowercase__: Union[str, Any] = 0.0 for coeff in reversed(_SCREAMING_SNAKE_CASE ): lowercase__: Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A = (0.0, 0.0, 5.0, 9.3, 7.0) __A = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> Tuple: lowercase__: Any = 2**power lowercase__: Optional[Any] = str(UpperCamelCase__ ) lowercase__: Union[str, Any] = list(UpperCamelCase__ ) lowercase__: Optional[int] = 0 for i in list_num: sum_of_num += int(UpperCamelCase__ ) return sum_of_num if __name__ == "__main__": __A : str = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) __A : Any = solution(power) print("Sum of the digits is: ", result)
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , ): lowercase__: Dict = parent lowercase__: Any = 13 lowercase__: Optional[int] = 7 lowercase__: Union[str, Any] = 30 lowercase__: Optional[Any] = self.seq_length + self.mem_len lowercase__: Any = 15 lowercase__: Union[str, Any] = True lowercase__: Tuple = True lowercase__: str = 99 lowercase__: List[str] = [10, 50, 80] lowercase__: Any = 32 lowercase__: List[str] = 32 lowercase__: Optional[Any] = 4 lowercase__: Any = 8 lowercase__: Dict = 128 lowercase__: Any = 2 lowercase__: Dict = 2 lowercase__: Union[str, Any] = None lowercase__: Dict = 1 lowercase__: List[str] = 0 lowercase__: Dict = 3 lowercase__: List[Any] = self.vocab_size - 1 lowercase__: Optional[Any] = 0.01 def _snake_case ( self ): lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_labels: lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _snake_case ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = TFTransfoXLModel(_UpperCAmelCase ) lowercase__, lowercase__: Union[str, Any] = model(_UpperCAmelCase ).to_tuple() lowercase__: Optional[int] = {'''input_ids''': input_ids_a, '''mems''': mems_a} lowercase__, lowercase__: Tuple = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = TFTransfoXLLMHeadModel(_UpperCAmelCase ) lowercase__, lowercase__: Optional[Any] = model(_UpperCAmelCase ).to_tuple() lowercase__: Tuple = {'''input_ids''': input_ids_a, '''labels''': lm_labels} lowercase__, lowercase__: Any = model(_UpperCAmelCase ).to_tuple() lowercase__, lowercase__: Dict = model([input_ids_a, mems_a] ).to_tuple() lowercase__: Optional[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowercase__, lowercase__: int = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = TFTransfoXLForSequenceClassification(_UpperCAmelCase ) lowercase__: Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: str = self.prepare_config_and_inputs() ((lowercase__), (lowercase__), (lowercase__), (lowercase__)): Dict = config_and_inputs lowercase__: Tuple = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCAmelCase :str = () if is_tf_available() else () _UpperCAmelCase :Union[str, Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCAmelCase :Any = False _UpperCAmelCase :str = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :Optional[Any] = False def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _snake_case ( self ): lowercase__: List[str] = TFTransfoXLModelTester(self ) lowercase__: Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , d_embed=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): self.model_tester.set_seed() lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_UpperCAmelCase ) def _snake_case ( self ): self.model_tester.set_seed() lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase__: Any = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase__: Union[str, Any] = model.get_output_embeddings() assert isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) lowercase__: List[Any] = model.get_bias() assert name is None else: lowercase__: List[str] = model.get_output_embeddings() assert x is None lowercase__: Tuple = model.get_bias() assert name is None def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[Any] = TFTransfoXLModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def _snake_case ( self ): pass @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def _snake_case ( self ): lowercase__: Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowercase__: Dict = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase__: int = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase__: Optional[Any] = model.generate(_UpperCAmelCase , max_length=200 , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[List[ImageInput]]: if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class UpperCAmelCase (lowerCamelCase__ ): """simple docstring""" _UpperCAmelCase :List[str] = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: str = size if size is not None else {"shortest_edge": 256} lowercase__: str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__: Any = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase__: Union[str, Any] = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) lowercase__: int = do_resize lowercase__: Union[str, Any] = size lowercase__: List[Any] = do_center_crop lowercase__: Dict = crop_size lowercase__: List[Any] = resample lowercase__: Optional[int] = do_rescale lowercase__: Union[str, Any] = rescale_factor lowercase__: Tuple = offset lowercase__: Optional[int] = do_normalize lowercase__: Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__: int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: lowercase__: Any = get_resize_output_image_size(_UpperCAmelCase , size['''shortest_edge'''] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: lowercase__: Optional[int] = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: str = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: List[Any] = image.astype(np.floataa ) if offset: lowercase__: Optional[Any] = image - (scale / 2) return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowercase__: Dict = to_numpy_array(_UpperCAmelCase ) if do_resize: lowercase__: Any = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: lowercase__: Tuple = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: lowercase__: Optional[Any] = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , offset=_UpperCAmelCase ) if do_normalize: lowercase__: List[str] = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) lowercase__: str = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): lowercase__: str = do_resize if do_resize is not None else self.do_resize lowercase__: int = resample if resample is not None else self.resample lowercase__: Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__: Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase__: int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__: Any = offset if offset is not None else self.offset lowercase__: Any = do_normalize if do_normalize is not None else self.do_normalize lowercase__: str = image_mean if image_mean is not None else self.image_mean lowercase__: str = image_std if image_std is not None else self.image_std lowercase__: Optional[Any] = size if size is not None else self.size lowercase__: List[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowercase__: Any = crop_size if crop_size is not None else self.crop_size lowercase__: Dict = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase__: str = make_batched(_UpperCAmelCase ) lowercase__: str = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , offset=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] lowercase__: Tuple = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Optional[Any] = tempfile.mkdtemp() lowercase__: int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__: Any = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__: List[Any] = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase_ , lowercase_ ) def _snake_case ( self , **_UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self , **_UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self , **_UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): lowercase__: Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__: Optional[int] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: str = self.get_rust_tokenizer() lowercase__: Tuple = self.get_image_processor() lowercase__: Any = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__: Any = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) lowercase__: Any = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__: Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def _snake_case ( self ): lowercase__: List[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__: int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase__: Union[str, Any] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase__: Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.get_image_processor() lowercase__: str = self.get_tokenizer() lowercase__: Optional[int] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__: Union[str, Any] = self.prepare_image_inputs() lowercase__: Tuple = image_processor(lowercase_ , return_tensors='''np''' ) lowercase__: int = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): lowercase__: Any = self.get_image_processor() lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: Optional[int] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__: Optional[Any] = '''lower newer''' lowercase__: str = processor(text=lowercase_ ) lowercase__: Optional[Any] = tokenizer(lowercase_ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ): lowercase__: List[str] = self.get_image_processor() lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: Optional[int] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__: Any = '''lower newer''' lowercase__: Optional[Any] = self.prepare_image_inputs() lowercase__: List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _snake_case ( self ): lowercase__: str = self.get_image_processor() lowercase__: List[Any] = self.get_tokenizer() lowercase__: Tuple = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__: Any = processor.batch_decode(lowercase_ ) lowercase__: Optional[Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.get_image_processor() lowercase__: Optional[int] = self.get_tokenizer() lowercase__: Dict = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase__: Tuple = '''lower newer''' lowercase__: List[str] = self.prepare_image_inputs() lowercase__: Optional[int] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=5 ) -> Optional[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowercase__: str = torch.tensor(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ).unsqueeze(0 ) # Batch size 1 lowercase__: int = model(lowercase_ )[0] # The last hidden-state is the first element of the output tuple lowercase__: Union[str, Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase__: Optional[Any] = logits[0, masked_index, :] lowercase__: List[str] = logits.softmax(dim=0 ) lowercase__, lowercase__: Union[str, Any] = prob.topk(k=lowercase_ , dim=0 ) lowercase__: List[str] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase_ ) )] ) lowercase__: str = tokenizer.mask_token lowercase__: Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowercase__: Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(lowercase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(lowercase_ ) , lowercase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase_ , lowercase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __A = CamembertTokenizer.from_pretrained("camembert-base") __A = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , ): lowercase__: Optional[int] = parent lowercase__: int = batch_size lowercase__: str = image_size lowercase__: Dict = patch_size lowercase__: Dict = num_channels lowercase__: Union[str, Any] = is_training lowercase__: Optional[int] = use_labels lowercase__: List[Any] = hidden_size lowercase__: Dict = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Any = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Optional[int] = hidden_dropout_prob lowercase__: List[str] = attention_probs_dropout_prob lowercase__: Any = type_sequence_label_size lowercase__: Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__: int = (image_size // patch_size) ** 2 lowercase__: Dict = num_patches + 1 def _snake_case ( self ): lowercase__: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[Any] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = FlaxViTModel(config=lowercase_ ) lowercase__: Dict = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowercase__: int = (self.image_size, self.image_size) lowercase__: int = (self.patch_size, self.patch_size) lowercase__: Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = self.type_sequence_label_size lowercase__: Any = FlaxViTForImageClassification(config=lowercase_ ) lowercase__: Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__: List[Any] = 1 lowercase__: Tuple = FlaxViTForImageClassification(lowercase_ ) lowercase__: Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: str = model(lowercase_ ) def _snake_case ( self ): lowercase__: Any = self.prepare_config_and_inputs() ( lowercase__ ): Any = config_and_inputs lowercase__: List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase (a_ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _snake_case ( self ): lowercase__: Tuple = FlaxViTModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = model_class(lowercase_ ) lowercase__: List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: List[Any] = [*signature.parameters.keys()] lowercase__: Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__: Dict = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__: Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest('''JIT Enabled''' ): lowercase__: Optional[Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__: Optional[int] = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: lowercase__: List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowercase__: Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase_ )
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
# flake8: noqa # Lint as: python3 __A = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , ): lowercase__: List[Any] = parent lowercase__: str = 13 lowercase__: Tuple = 7 lowercase__: Tuple = True lowercase__: Union[str, Any] = True lowercase__: Optional[Any] = False lowercase__: Union[str, Any] = True lowercase__: Union[str, Any] = 99 lowercase__: Any = 32 lowercase__: Optional[Any] = 2 lowercase__: Union[str, Any] = 4 lowercase__: int = 37 lowercase__: Any = """gelu""" lowercase__: Tuple = 0.1 lowercase__: Optional[Any] = 0.1 lowercase__: List[str] = 512 lowercase__: Tuple = 16 lowercase__: Optional[Any] = 2 lowercase__: Any = 0.02 lowercase__: List[str] = 3 lowercase__: Dict = 4 lowercase__: Dict = None def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Dict = None if self.use_input_mask: lowercase__: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Tuple = None lowercase__: Optional[Any] = None lowercase__: Any = None if self.use_labels: lowercase__: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: str = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = TFDistilBertModel(config=_SCREAMING_SNAKE_CASE ) lowercase__: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__: List[Any] = model(_SCREAMING_SNAKE_CASE ) lowercase__: List[str] = [input_ids, input_mask] lowercase__: int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = TFDistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) lowercase__: Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__: Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = TFDistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) lowercase__: Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, } lowercase__: Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.num_labels lowercase__: Optional[int] = TFDistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) lowercase__: List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__: Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = self.num_choices lowercase__: Tuple = TFDistilBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) lowercase__: List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase__: Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase__: int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } lowercase__: Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = self.num_labels lowercase__: Any = TFDistilBertForTokenClassification(_SCREAMING_SNAKE_CASE ) lowercase__: Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__: List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ): lowercase__: Tuple = self.prepare_config_and_inputs() (lowercase__): Dict = config_and_inputs lowercase__: Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase (UpperCAmelCase__ ,UpperCAmelCase__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _UpperCAmelCase :Tuple = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase :List[Any] = False _UpperCAmelCase :int = False def _snake_case ( self ): lowercase__: Tuple = TFDistilBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase__: Tuple = TFDistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: str = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__: Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__: int = model(_SCREAMING_SNAKE_CASE )[0] lowercase__: List[Any] = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowercase__: List[Any] = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" from random import randint, random def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = 5 , ) -> Union[str, Any]: lowercase__ = [[-1] * number_of_cells] # Create a highway without any car lowercase__ = 0 lowercase__ = max(_a , 0 ) while i < number_of_cells: lowercase__ = ( randint(0 , _a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__ = 0 lowercase__ = highway_now[car_index + 1 :] for cell in range(len(_a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_a , -1 ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__ = len(_a ) # Beforce calculations, the highway is empty lowercase__ = [-1] * number_of_cells for car_index in range(_a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ = min(highway_now[car_index] + 1 , _a ) # Number of empty cell before the next car lowercase__ = get_distance(_a , _a ) - 1 # We can't have the car causing an accident lowercase__ = min(next_highway[car_index] , _a ) if random() < probability: # Randomly, a driver will slow down lowercase__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__ = len(highway[0] ) for i in range(_a ): lowercase__ = update(highway[i] , _a , _a ) lowercase__ = [-1] * number_of_cells for car_index in range(_a ): lowercase__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ = speed highway.append(_a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" import sys def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: lowercase__: Optional[Any] = len(__lowerCAmelCase ) lowercase__: List[str] = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] lowercase__: List[Any] = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): lowercase__: str = a + chain_length - 1 lowercase__: Union[str, Any] = sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase__: List[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase__: Optional[Any] = cost lowercase__: Dict = c return matrix, sol def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: lowercase__: Dict = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] lowercase__: Optional[Any] = len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase__: Optional[int] = matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> float: if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> float: if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('''Length must be a positive.''' ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: int = '''''' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
2
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(PATH_TO_TRANSFORMERS) __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: List[str] = None # source code of `config_class` lowercase__: List[Any] = inspect.getsource(__UpperCAmelCase ) lowercase__: str = _re_checkpoint.findall(__UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase__: Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase__: Optional[Any] = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowercase__: Union[str, Any] = ckpt_name break return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: Dict = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase__: Dict = get_checkpoint_from_config_class(__UpperCAmelCase ) lowercase__: Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowercase__: str = '''\n'''.join(sorted(__UpperCAmelCase ) ) raise ValueError(F"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionPanoramaPipeline _UpperCAmelCase :List[str] = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase :List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__: List[Any] = DDIMScheduler() torch.manual_seed(0 ) lowercase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: List[str] = CLIPTextModel(_UpperCAmelCase ) lowercase__: int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): lowercase__: int = torch.manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Any = sd_pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[str] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: str = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: str = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = '''french fries''' lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowercase__: Optional[Any] = output.images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Optional[int] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: Union[str, Any] = self.get_dummy_components() lowercase__: Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: str = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Union[str, Any] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) lowercase__: List[str] = output.images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: int = self.get_dummy_components() lowercase__: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) lowercase__: Any = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: int = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: Any = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCAmelCase ) lowercase__: Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) lowercase__: int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Dict = sd_pipe(**_UpperCAmelCase ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _UpperCAmelCase=0 ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) lowercase__: int = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Any = '''stabilityai/stable-diffusion-2-base''' lowercase__: str = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Dict = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() lowercase__: Optional[Any] = pipe(**_UpperCAmelCase ).images lowercase__: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCAmelCase ) lowercase__: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: List[str] = self.get_inputs() lowercase__: Dict = pipe(**_UpperCAmelCase ).images lowercase__: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase__: List[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _snake_case ( self ): lowercase__: int = 0 def callback_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: lowercase__: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Any = latents[0, -3:, -3:, -1] lowercase__: List[Any] = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase__: Optional[Any] = latents[0, -3:, -3:, -1] lowercase__: Any = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__: int = False lowercase__: str = '''stabilityai/stable-diffusion-2-base''' lowercase__: Union[str, Any] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: Tuple = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase__: Tuple = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__: List[Any] = '''stabilityai/stable-diffusion-2-base''' lowercase__: Any = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) lowercase__: int = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) lowercase__: List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__: Any = self.get_inputs() lowercase__: List[str] = pipe(**_UpperCAmelCase ) lowercase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
2
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (__lowerCAmelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = '''cvt''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**lowerCAmelCase_ ) lowercase__: Union[str, Any] = num_channels lowercase__: Optional[Any] = patch_sizes lowercase__: List[str] = patch_stride lowercase__: int = patch_padding lowercase__: Tuple = embed_dim lowercase__: str = num_heads lowercase__: List[Any] = depth lowercase__: Tuple = mlp_ratio lowercase__: Dict = attention_drop_rate lowercase__: Optional[int] = drop_rate lowercase__: Tuple = drop_path_rate lowercase__: str = qkv_bias lowercase__: List[str] = cls_token lowercase__: Optional[int] = qkv_projection_method lowercase__: Union[str, Any] = kernel_qkv lowercase__: Any = padding_kv lowercase__: int = stride_kv lowercase__: Any = padding_q lowercase__: Dict = stride_q lowercase__: Union[str, Any] = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
364
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = DebertaVaTokenizer _UpperCAmelCase :Tuple = DebertaVaTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :int = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase__: List[Any] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = '''this is a test''' lowercase__: int = '''this is a test''' return input_text, output_text def _snake_case ( self ): lowercase__: Optional[int] = '''<pad>''' lowercase__: Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_UpperCAmelCase ) , 30001 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ): # fmt: off lowercase__: int = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: List[str] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__: Any = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off lowercase__: Dict = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Any = '''I was born in 92000, and this is falsé.''' lowercase__: str = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Union[str, Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowercase__: int = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): # fmt: off lowercase__: Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' lowercase__: str = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__: Dict = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.get_tokenizer() lowercase__: List[Any] = self.get_rust_tokenizer() lowercase__: List[str] = '''I was born in 92000, and this is falsé.''' lowercase__: Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) lowercase__: List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__: Tuple = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.get_rust_tokenizer() lowercase__: str = tokenizer.encode(_UpperCAmelCase ) lowercase__: Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = '''This is a test''' lowercase__: str = [13, 1, 4398, 25, 21, 1289] lowercase__: List[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__: int = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: int = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off lowercase__: str = '''I was born in 92000, and this is falsé.''' lowercase__: Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__: Tuple = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__: Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = DebertaVaTokenizer(_UpperCAmelCase ) lowercase__: Optional[int] = tokenizer.encode('''sequence builders''' ) lowercase__: Optional[Any] = tokenizer.encode('''multi-sequence build''' ) lowercase__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__: Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def _snake_case ( self ): # fmt: off lowercase__: List[Any] = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ) -> str: lowercase__: Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=lowerCAmelCase__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=lowerCAmelCase__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=lowerCAmelCase__ ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: Optional[Any] = parse_args() # Import training_script as a module. lowercase__: Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__: Optional[int] = script_fpath.stem lowercase__: Optional[Any] = importlib.import_module(lowerCAmelCase__ ) # Patch sys.argv lowercase__: List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
365
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
0
import os from datetime import datetime as dt from github import Github __A = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: List[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) lowercase__: Tuple = g.get_repo('''huggingface/diffusers''' ) lowercase__: List[str] = repo.get_issues(state='''open''' ) for issue in open_issues: lowercase__: int = sorted(issue.get_comments() , key=lambda __UpperCAmelCase : i.created_at , reverse=SCREAMING_SNAKE_CASE__ ) lowercase__: List[Any] = comments[0] if len(SCREAMING_SNAKE_CASE__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
366
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} __A = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } __A = { "allenai/longformer-base-4096": 4_0_9_6, "allenai/longformer-large-4096": 4_0_9_6, "allenai/longformer-large-4096-finetuned-triviaqa": 4_0_9_6, "allenai/longformer-base-4096-extra.pos.embd.only": 4_0_9_6, "allenai/longformer-large-4096-extra.pos.embd.only": 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Any: lowercase__: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase__: Optional[int] = bs[:] lowercase__: Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase_ ) cs.append(2**8 + n ) n += 1 lowercase__: List[Any] = [chr(lowerCamelCase_ ) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: lowercase__: Any = set() lowercase__: Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__: Union[str, Any] = char return pairs class UpperCAmelCase (_a ): """simple docstring""" _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__: int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token lowercase__: Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__: Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__: List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__: Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__: List[Any] = json.load(_UpperCAmelCase ) lowercase__: Dict = {v: k for k, v in self.encoder.items()} lowercase__: List[str] = errors # how to handle errors in decoding lowercase__: List[str] = bytes_to_unicode() lowercase__: int = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__: Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__: List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__: str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = {} lowercase__: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__: Tuple = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] lowercase__: List[str] = tuple(_UpperCAmelCase ) lowercase__: Optional[Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: lowercase__: List[Any] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__: Any = bigram lowercase__: int = [] lowercase__: Optional[Any] = 0 while i < len(_UpperCAmelCase ): try: lowercase__: str = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__: int = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__: Union[str, Any] = tuple(_UpperCAmelCase ) lowercase__: List[Any] = new_word if len(_UpperCAmelCase ) == 1: break else: lowercase__: str = get_pairs(_UpperCAmelCase ) lowercase__: Dict = ' '.join(_UpperCAmelCase ) lowercase__: Optional[int] = word return word def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = [] for token in re.findall(self.pat , _UpperCAmelCase ): lowercase__: str = ''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Tuple = ''.join(_UpperCAmelCase ) lowercase__: Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: Dict = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: str = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) lowercase__: Dict = 0 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__: List[str] = token_index writer.write(''' '''.join(_UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: List[str] = [self.cls_token_id] lowercase__: Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Any = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): lowercase__: Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__: Optional[int] = ' ' + text return (text, kwargs)
367
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_5_6 class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = ["melgan"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() # From MELGAN lowercase__: Union[str, Any] = math.log(1e-5 ) # Matches MelGAN training. lowercase__: Union[str, Any] = 4.0 # Largest value for most examples lowercase__: Union[str, Any] = 128 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: int = output_range if clip: lowercase__: Any = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__: Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=(-1.0, 1.0) , _UpperCAmelCase=False ): lowercase__, lowercase__: str = input_range lowercase__: Dict = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase__: Tuple = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = input_tokens > 0 lowercase__, lowercase__: str = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = noise_time if not torch.is_tensor(_UpperCAmelCase ): lowercase__: Tuple = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowercase__: str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__: Dict = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__: Union[str, Any] = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 100 , _UpperCAmelCase = True , _UpperCAmelCase = "numpy" , _UpperCAmelCase = None , _UpperCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_UpperCAmelCase )}.""" ) lowercase__: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__: Any = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__: Tuple = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: lowercase__: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__: Optional[int] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__: Union[str, Any] = ones lowercase__: str = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) lowercase__: Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__: int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__: List[Any] = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__: Union[str, Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample lowercase__: int = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) lowercase__: Dict = mel[:1] lowercase__: List[Any] = mel.cpu().float().numpy() lowercase__: Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('''Generated segment''' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__: Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__: Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
2
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: if num <= 0: lowercase__: int = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__UpperCamelCase ) lowercase__: Any = [True] * (num + 1) lowercase__: Tuple = [] lowercase__: Optional[Any] = 2 lowercase__: Union[str, Any] = int(math.sqrt(__UpperCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__UpperCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __UpperCamelCase ): if sieve[i] is True: lowercase__: Optional[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__UpperCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
368
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=4 , _UpperCAmelCase=False ): lowercase__: int = compute_bleu( reference_corpus=_lowercase , translation_corpus=_lowercase , max_order=_lowercase , smooth=_lowercase ) ((lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__)): Any = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
369
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Dict = parent lowercase__: Optional[int] = batch_size lowercase__: List[str] = seq_length lowercase__: Optional[int] = is_training lowercase__: Dict = use_input_mask lowercase__: List[Any] = use_token_type_ids lowercase__: List[str] = use_labels lowercase__: Union[str, Any] = vocab_size lowercase__: str = hidden_size lowercase__: Any = embedding_size lowercase__: Any = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Optional[int] = max_position_embeddings lowercase__: List[Any] = type_vocab_size lowercase__: Tuple = type_sequence_label_size lowercase__: Optional[int] = initializer_range lowercase__: Dict = num_labels lowercase__: int = num_choices lowercase__: int = scope def _snake_case ( self ): lowercase__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[Any] = None if self.use_input_mask: lowercase__: Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: List[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Optional[Any] = None lowercase__: Any = None lowercase__: str = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: int = MobileBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) lowercase__: str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = MobileBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = MobileBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: int = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Any = MobileBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: Union[str, Any] = MobileBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = self.num_choices lowercase__: Union[str, Any] = MobileBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__: Optional[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): lowercase__: Optional[int] = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): Union[str, Any] = config_and_inputs lowercase__: Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: int = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) lowercase__: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): lowercase__: int = MobileBertModelTester(self ) lowercase__: Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: return torch.tensor( __UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase , ) __A = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Tuple = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCAmelCase ) lowercase__: Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase__: Tuple = model(_UpperCAmelCase )[0] lowercase__: Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=_UpperCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase__: int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase__: Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
2
0
"""simple docstring""" __A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__: Optional[Any] = 0 for digit in range(1_0 ): lowercase__: Optional[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , a__ , a__ ) return result lowercase__: Dict = 0 for digita in range(1_0 ): lowercase__: List[Any] = digita if (remainder + digita) % 2 == 0: lowercase__: Union[str, Any] = ODD_DIGITS else: lowercase__: Tuple = EVEN_DIGITS for digita in other_parity_digits: lowercase__: Tuple = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , a__ , a__ , ) return result def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 9 ) -> Tuple: lowercase__: List[str] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a__ , 0 , [0] * length , a__ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
370
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "unispeech-sat" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Union[str, Any] = feat_extract_norm lowercase__: Any = feat_extract_activation lowercase__: List[Any] = list(_UpperCAmelCase ) lowercase__: Optional[int] = list(_UpperCAmelCase ) lowercase__: int = list(_UpperCAmelCase ) lowercase__: Any = conv_bias lowercase__: List[str] = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: int = len(self.conv_dim ) lowercase__: Dict = num_hidden_layers lowercase__: List[Any] = intermediate_size lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_attention_heads lowercase__: Union[str, Any] = hidden_dropout lowercase__: List[Any] = attention_dropout lowercase__: str = activation_dropout lowercase__: Optional[Any] = feat_proj_dropout lowercase__: Optional[int] = final_dropout lowercase__: Any = layerdrop lowercase__: int = layer_norm_eps lowercase__: Any = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[Any] = num_clusters lowercase__: Dict = do_stable_layer_norm lowercase__: List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: Dict = apply_spec_augment lowercase__: Union[str, Any] = mask_time_prob lowercase__: List[str] = mask_time_length lowercase__: Union[str, Any] = mask_time_min_masks lowercase__: str = mask_feature_prob lowercase__: Dict = mask_feature_length lowercase__: List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__: Tuple = num_codevectors_per_group lowercase__: Optional[Any] = num_codevector_groups lowercase__: int = contrastive_logits_temperature lowercase__: Any = feat_quantizer_dropout lowercase__: int = num_negatives lowercase__: Optional[Any] = codevector_dim lowercase__: int = proj_codevector_dim lowercase__: str = diversity_loss_weight # ctc loss lowercase__: int = ctc_loss_reduction lowercase__: Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = list(_UpperCAmelCase ) lowercase__: Union[str, Any] = list(_UpperCAmelCase ) lowercase__: Tuple = xvector_output_dim @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> Tuple: return sum(e for e in range(3 , __a ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
371
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: Union[str, Any] = FunnelConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: Optional[Any] = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
2
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A : List[str] = False class UpperCAmelCase (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: Any = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__: Dict = '''A painting of a squirrel eating a burger ''' lowercase__: str = torch.manual_seed(0 ) lowercase__: Any = pipe( prompt=snake_case_ , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case_ ) lowercase__: List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__: Any = generator.manual_seed(0 ) lowercase__: Optional[Any] = pipe( prompt=snake_case_ , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self ): lowercase__: str = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__: int = '''A painting of a squirrel eating a burger ''' lowercase__: Union[str, Any] = torch.manual_seed(0 ) lowercase__: str = pipe( prompt=snake_case_ , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase__: Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__: List[str] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
351
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A = logging.get_logger(__name__) __A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = "codegen" _UpperCAmelCase :Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=50400 , _UpperCAmelCase=2048 , _UpperCAmelCase=2048 , _UpperCAmelCase=4096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50256 , _UpperCAmelCase=50256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: int = vocab_size lowercase__: str = n_ctx lowercase__: List[Any] = n_positions lowercase__: Union[str, Any] = n_embd lowercase__: Optional[Any] = n_layer lowercase__: str = n_head lowercase__: List[Any] = n_inner lowercase__: Union[str, Any] = rotary_dim lowercase__: Optional[Any] = activation_function lowercase__: Union[str, Any] = resid_pdrop lowercase__: Optional[int] = embd_pdrop lowercase__: Optional[Any] = attn_pdrop lowercase__: Optional[int] = layer_norm_epsilon lowercase__: List[Any] = initializer_range lowercase__: Tuple = use_cache lowercase__: Any = bos_token_id lowercase__: Any = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) lowercase__: int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: Optional[int] = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Any = seqlen + 2 lowercase__: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: Optional[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase__: List[str] = ordered_inputs['''attention_mask'''].dtype lowercase__: List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
0
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "isbn/0140328726" ) -> str: lowercase__: Dict = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: lowercase__: Tuple = F"""{olid} is not a valid Open Library olid""" raise ValueError(__UpperCAmelCase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: Optional[int] = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } lowercase__: Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase__: str = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] lowercase__: Optional[Any] = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__: Optional[int] = ''', '''.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __A = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __A = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("\n".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
352
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=0 ) -> Optional[int]: return sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[column] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , __UpperCAmelCase ): lowercase__: Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowercase__: List[Any] = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=float('''inf''' ) ) -> int: for i in range(min(6 , points_counts - 1 ) , __UpperCAmelCase ): for j in range(max(0 , i - 6 ) , __UpperCAmelCase ): lowercase__: Union[str, Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowercase__: Any = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if points_counts <= 3: return dis_between_closest_pair(__UpperCAmelCase , __UpperCAmelCase ) # recursion lowercase__: int = points_counts // 2 lowercase__: List[Any] = closest_pair_of_points_sqr( __UpperCAmelCase , points_sorted_on_y[:mid] , __UpperCAmelCase ) lowercase__: Dict = closest_pair_of_points_sqr( __UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) lowercase__: List[Any] = min(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__UpperCAmelCase ) lowercase__: str = dis_between_closest_in_strip( __UpperCAmelCase , len(__UpperCAmelCase ) , __UpperCAmelCase ) return min(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowercase__: Optional[int] = column_based_sort(__UpperCAmelCase , column=0 ) lowercase__: str = column_based_sort(__UpperCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) ** 0.5 if __name__ == "__main__": __A = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __A = 3 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: print('''Generating primitive root of p''' ) while True: lowercase__: Optional[int] = random.randrange(3 , __UpperCAmelCase ) if pow(__UpperCAmelCase , 2 , __UpperCAmelCase ) == 1: continue if pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: print('''Generating prime p...''' ) lowercase__: List[str] = rabin_miller.generate_large_prime(__UpperCAmelCase ) # select large prime number. lowercase__: List[Any] = primitive_root(__UpperCAmelCase ) # one primitive root on modulo p. lowercase__: Dict = random.randrange(3 , __UpperCAmelCase ) # private_key -> have to be greater than 2 for safety. lowercase__: int = cryptomath.find_mod_inverse(pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) lowercase__: Dict = (key_size, e_a, e_a, p) lowercase__: List[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase__, lowercase__: Union[str, Any] = generate_key(__UpperCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: print('''Making key files...''' ) make_key_files('''elgamal''' , 2_0_4_8 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
354
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 5_0 ) -> int: lowercase__: str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Optional[Any] = [1] for i in range(2 , lowerCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase__: Tuple = [] lowercase__: List[str] = list(range(lowerCamelCase_ ) ) # Find permutation while factorials: lowercase__: List[Any] = factorials.pop() lowercase__: List[str] = divmod(lowerCamelCase_ , lowerCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.2 , _UpperCAmelCase=0.2 ): lowercase__: int = bp_numa lowercase__: Union[str, Any] = bp_numa lowercase__: List[str] = bp_numa lowercase__: str = conva_get[:2] lowercase__: Union[str, Any] = conva_get[2] lowercase__: Any = size_pa lowercase__: Optional[Any] = rate_w lowercase__: Tuple = rate_t lowercase__: List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__: Any = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _UpperCAmelCase ): # save model dict with pickle lowercase__: int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_UpperCAmelCase , '''wb''' ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Model saved: {save_path}""" ) @classmethod def _snake_case ( cls , _UpperCAmelCase ): # read saved model with open(_UpperCAmelCase , '''rb''' ) as f: lowercase__: Optional[int] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowercase__: Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) lowercase__: Any = model_dic.get('''size_pooling1''' ) lowercase__: int = model_dic.get('''num_bp1''' ) lowercase__: Optional[int] = model_dic.get('''num_bp2''' ) lowercase__: str = model_dic.get('''num_bp3''' ) lowercase__: Any = model_dic.get('''rate_weight''' ) lowercase__: Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance lowercase__: str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowercase__: Dict = model_dic.get('''w_conv1''' ) lowercase__: Dict = model_dic.get('''wkj''' ) lowercase__: str = model_dic.get('''vji''' ) lowercase__: List[Any] = model_dic.get('''thre_conv1''' ) lowercase__: Optional[int] = model_dic.get('''thre_bp2''' ) lowercase__: Tuple = model_dic.get('''thre_bp3''' ) return conv_ins def _snake_case ( self , _UpperCAmelCase ): return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _UpperCAmelCase ): return round(_UpperCAmelCase , 3 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # convolution process lowercase__: Any = convs[0] lowercase__: Tuple = convs[1] lowercase__: List[Any] = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowercase__: List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowercase__: Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__: Optional[int] = [] lowercase__: Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowercase__: str = [] for i_focus in range(len(_UpperCAmelCase ) ): lowercase__: Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowercase__: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowercase__: Any = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="average_pool" ): # pooling process lowercase__: List[Any] = len(featuremaps[0] ) lowercase__: Any = int(size_map / size_pooling ) lowercase__: List[Any] = [] for i_map in range(len(_UpperCAmelCase ) ): lowercase__: Any = featuremaps[i_map] lowercase__: Tuple = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowercase__: str = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _snake_case ( self , _UpperCAmelCase ): # expanding three dimension data to one dimension list lowercase__: Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): lowercase__: Any = np.shape(data[i] ) lowercase__: List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__: List[str] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowercase__: List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _snake_case ( self , _UpperCAmelCase ): # expanding matrix to one dimension list lowercase__: Union[str, Any] = np.asarray(_UpperCAmelCase ) lowercase__: List[str] = np.shape(_UpperCAmelCase ) lowercase__: List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = [] lowercase__: List[str] = 0 for i_map in range(_UpperCAmelCase ): lowercase__: Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = pd_pool[ i_pool ] lowercase__: List[Any] = i_pool + 1 lowercase__: str = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_UpperCAmelCase )) ) lowercase__: Tuple = 0 lowercase__: Tuple = [] lowercase__: Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__: Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__: List[Any] = np.asmatrix(datas_train[p] ) lowercase__: Optional[int] = np.asarray(datas_teach[p] ) lowercase__, lowercase__: List[str] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: Optional[int] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: int = np.shape(_UpperCAmelCase ) lowercase__: Optional[Any] = self._expand(_UpperCAmelCase ) lowercase__: Any = data_bp_input lowercase__: Any = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowercase__: str = self.sig(_UpperCAmelCase ) lowercase__: Optional[Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowercase__: Dict = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__: str = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowercase__: Dict = np.dot(_UpperCAmelCase , self.vji ) lowercase__: Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__: List[str] = pd_conva_pooled.T.getA().tolist() lowercase__: Optional[Any] = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__: str = self._expand_mat(pd_conva_all[k_conv] ) lowercase__: str = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Any = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__: List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__: List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__: List[str] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__: Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__: Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__: str = rp + 1 lowercase__: Optional[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowercase__: Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , '''+-''' ) plt.plot(_UpperCAmelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _snake_case ( self , _UpperCAmelCase ): # model predict lowercase__: Union[str, Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowercase__: Union[str, Any] = np.asmatrix(datas_test[p] ) lowercase__, lowercase__: Any = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[str] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowercase__: str = self._expand(_UpperCAmelCase ) lowercase__: List[Any] = data_bp_input lowercase__: List[str] = bp_outa * self.vji.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) lowercase__: Optional[int] = bp_outa * self.wkj.T - self.thre_bpa lowercase__: Any = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__: str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): # return the data of image after convoluting process so we can check it out lowercase__: int = np.asmatrix(_UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__: List[Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
2
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "laptop" ) -> DataFrame: lowercase__: Tuple = F"""https://www.amazon.in/laptop/s?k={product}""" lowercase__: Any = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowercase__: List[Any] = BeautifulSoup(requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).text ) # Initialize a Pandas dataframe with the column titles lowercase__: Union[str, Any] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: lowercase__: List[str] = item.ha.text lowercase__: Optional[int] = 'https://www.amazon.in/' + item.ha.a['href'] lowercase__: Optional[int] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: lowercase__: int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: lowercase__: List[str] = 'Not available' try: lowercase__: str = ( '₹' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: lowercase__: List[Any] = '' try: lowercase__: int = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_0_0 ) except ValueError: lowercase__: str = float('''nan''' ) except AttributeError: pass lowercase__: List[str] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase__: Any = ' ' lowercase__: Any = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": __A = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase (lowerCamelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1024 , _UpperCAmelCase=1024 , _UpperCAmelCase=3.6 ): lowercase__: int = tokenizer lowercase__: Optional[int] = tokenizer.bos_token_id lowercase__: Dict = dataset lowercase__: Union[str, Any] = seq_length lowercase__: Tuple = seq_length * chars_per_token * num_of_sequences def __iter__( self ): lowercase__: Tuple = iter(self.dataset ) lowercase__: Union[str, Any] = True while more_examples: lowercase__: List[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__snake_case )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__: Dict = False break lowercase__: Dict = tokenizer(__snake_case , truncation=__snake_case )['input_ids'] lowercase__: int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__snake_case ) , self.seq_length ): lowercase__: str = all_token_ids[i : i + self.seq_length] if len(__snake_case ) == self.seq_length: yield torch.tensor(__snake_case ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: Union[str, Any] = {'streaming': True} lowercase__: List[Any] = load_dataset(args.dataset_name , split='''train''' , **_A ) lowercase__: Optional[Any] = ConstantLengthDataset(_A , _A , seq_length=args.seq_length ) lowercase__: Union[str, Any] = DataLoader(_A , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: model.eval() lowercase__: str = [] for step, batch in enumerate(_A ): with torch.no_grad(): lowercase__: Optional[int] = model(_A , labels=_A ) lowercase__: List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_A ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__: str = torch.mean(torch.cat(_A ) ) try: lowercase__: Dict = torch.exp(_A ) except OverflowError: lowercase__: Dict = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator __A = Accelerator() # Parse configuration __A = HfArgumentParser(EvaluationArguments) __A = parser.parse_args() set_seed(args.seed) # Logging __A = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer __A = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __A = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __A = create_dataloader(args) # Prepare everything with our `accelerator`. __A = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") __A = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
357
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) _UpperCAmelCase :bool = field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Whether tp freeze the encoder."} ) _UpperCAmelCase :bool = field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _UpperCAmelCase :Optional[str] = field( default="summarization" ,metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} ,) _UpperCAmelCase :Optional[int] = field( default=1024 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase :Optional[int] = field( default=128 ,metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase :Optional[int] = field( default=142 ,metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } ,) _UpperCAmelCase :Optional[int] = field( default=142 ,metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) _UpperCAmelCase :Optional[int] = field(default=-1 ,metadata={"help": "# training examples. -1 means use all."} ) _UpperCAmelCase :Optional[int] = field(default=-1 ,metadata={"help": "# validation examples. -1 means use all."} ) _UpperCAmelCase :Optional[int] = field(default=-1 ,metadata={"help": "# test examples. -1 means use all."} ) _UpperCAmelCase :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Source language id for translation."} ) _UpperCAmelCase :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "Target language id for translation."} ) _UpperCAmelCase :Optional[int] = field(default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "# num_beams to use for evaluation."} ) _UpperCAmelCase :bool = field( default=SCREAMING_SNAKE_CASE__ ,metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} ,) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: lowercase__: Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__, lowercase__, lowercase__: Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__, lowercase__, lowercase__: Any = parser.parse_args_into_dataclasses() check_output_dir(lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__: int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__: Optional[int] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ), F"""({config.__class__.__name__}) doesn\'t have a `{p}` attribute""" setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase__: Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__: List[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__: Union[str, Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__: List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__: List[Any] = SeqaSeqDataset # Get datasets lowercase__: Optional[int] = ( dataset_class( lowerCAmelCase__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase__: Tuple = ( dataset_class( lowerCAmelCase__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__: List[Any] = ( dataset_class( lowerCAmelCase__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__: str = ( build_compute_metrics_fn(data_args.task , lowerCAmelCase__ ) if training_args.predict_with_generate else None ) lowercase__: List[str] = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , data_args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , data_collator=SeqaSeqDataCollator( lowerCAmelCase__ , lowerCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) lowercase__: Any = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase__: Optional[int] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__: Any = train_result.metrics lowercase__: Any = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__: List[Any] = trainer.evaluate(metric_key_prefix='''val''' ) lowercase__: str = data_args.n_val lowercase__: Union[str, Any] = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase__: Tuple = trainer.predict(test_dataset=lowerCAmelCase__ , metric_key_prefix='''test''' ) lowercase__: Union[str, Any] = test_output.metrics lowercase__: int = data_args.n_test if trainer.is_world_process_zero(): lowercase__: List[str] = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , lowerCAmelCase__ , training_args.output_dir ) all_metrics.update(lowerCAmelCase__ ) if training_args.predict_with_generate: lowercase__: Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) lowercase__: Tuple = lmap(str.strip , lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(lowerCAmelCase__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Any: main() if __name__ == "__main__": main()
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 192, 384] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Dict = num_channels lowercase__: str = patch_sizes lowercase__: Optional[Any] = patch_stride lowercase__: List[str] = patch_padding lowercase__: Optional[Any] = embed_dim lowercase__: Optional[int] = num_heads lowercase__: Any = depth lowercase__: str = mlp_ratio lowercase__: Any = attention_drop_rate lowercase__: Any = drop_rate lowercase__: Optional[Any] = drop_path_rate lowercase__: Dict = qkv_bias lowercase__: Dict = cls_token lowercase__: Any = qkv_projection_method lowercase__: List[str] = kernel_qkv lowercase__: Union[str, Any] = padding_kv lowercase__: Optional[int] = stride_kv lowercase__: int = padding_q lowercase__: Dict = stride_q lowercase__: Any = initializer_range lowercase__: Union[str, Any] = layer_norm_eps
2
0
"""simple docstring""" from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: lowercase__: Optional[Any] = 0 # Number of processes finished lowercase__: Dict = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__: Tuple = [0] * no_of_process # List to include calculation results lowercase__: int = [0] * no_of_process # Sort by arrival time. lowercase__: Any = [burst_time[i] for i in np.argsort(__UpperCAmelCase )] lowercase__: str = [process_name[i] for i in np.argsort(__UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__: List[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__: List[Any] = arrival_time[i] lowercase__: Optional[int] = 0 # Index showing the location of the process being performed lowercase__: Union[str, Any] = 0 # Saves the current response ratio. lowercase__: int = 0 for i in range(0 , __UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__: str = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__: Dict = temp lowercase__: str = i # Calculate the turn around time lowercase__: Any = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__: Optional[int] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: lowercase__: List[Any] = [0] * no_of_process for i in range(0 , __UpperCAmelCase ): lowercase__: Dict = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A = 5 __A = ["A", "B", "C", "D", "E"] __A = [1, 2, 3, 4, 5] __A = [1, 2, 3, 4, 5] __A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
359
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "rag" _UpperCAmelCase :List[Any] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=" / " , _UpperCAmelCase=" // " , _UpperCAmelCase=5 , _UpperCAmelCase=300 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase="wiki_dpr" , _UpperCAmelCase="train" , _UpperCAmelCase="compressed" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( bos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , prefix=_UpperCAmelCase , vocab_size=_UpperCAmelCase , **_UpperCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__: Optional[Any] = kwargs.pop('''question_encoder''' ) lowercase__: Any = question_encoder_config.pop('''model_type''' ) lowercase__: Tuple = kwargs.pop('''generator''' ) lowercase__: Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__: Optional[int] = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Any = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: str = reduce_loss lowercase__: str = label_smoothing lowercase__: Dict = exclude_bos_score lowercase__: Any = do_marginalize lowercase__: Optional[int] = title_sep lowercase__: Any = doc_sep lowercase__: Any = n_docs lowercase__: List[Any] = max_combined_length lowercase__: int = dataset lowercase__: int = dataset_split lowercase__: str = index_name lowercase__: Dict = retrieval_vector_size lowercase__: Dict = retrieval_batch_size lowercase__: List[str] = passages_path lowercase__: str = index_path lowercase__: Optional[Any] = use_dummy_dataset lowercase__: str = output_retrieved lowercase__: List[str] = do_deduplication lowercase__: List[Any] = use_cache if self.forced_eos_token_id is None: lowercase__: int = getattr(self.generator , '''forced_eos_token_id''' , _UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = copy.deepcopy(self.__dict__ ) lowercase__: str = self.question_encoder.to_dict() lowercase__: str = self.generator.to_dict() lowercase__: str = self.__class__.model_type return output
2
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
360
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list[str]: lowercase__: Union[str, Any] = [] lowercase__: Optional[Any] = 1_1 lowercase__: int = int('''1''' + '''0''' * digit_len ) for num in range(__snake_case , __snake_case ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__snake_case , __snake_case ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowercase__: List[str] = 1_0 return solutions def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 2 ) -> int: lowercase__: Any = 1.0 for fraction in fraction_list(__snake_case ): lowercase__: Union[str, Any] = Fraction(__snake_case ) result *= frac.denominator / frac.numerator return int(__snake_case ) if __name__ == "__main__": print(solution())
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0