code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , __a = 3 , __a = 3 , __a = ("DownEncoderBlock2D",) , __a = ("UpDecoderBlock2D",) , __a = (64,) , __a = 1 , __a = "silu" , __a = 3 , __a = 32 , __a = 256 , __a = 32 , __a = None , __a = 0.1_82_15 , __a = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder UpperCAmelCase__ = Encoder( in_channels=__a , out_channels=__a , down_block_types=__a , block_out_channels=__a , layers_per_block=__a , act_fn=__a , norm_num_groups=__a , double_z=__a , ) UpperCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ = nn.Convad(__a , __a , 1 ) UpperCAmelCase__ = VectorQuantizer(__a , __a , beta=0.25 , remap=__a , sane_index_shape=__a ) UpperCAmelCase__ = nn.Convad(__a , __a , 1 ) # pass init params to Decoder UpperCAmelCase__ = Decoder( in_channels=__a , out_channels=__a , up_block_types=__a , block_out_channels=__a , layers_per_block=__a , act_fn=__a , norm_num_groups=__a , norm_type=__a , ) @apply_forward_hook def UpperCamelCase__ (self , __a , __a = True ) -> VQEncoderOutput: """simple docstring""" UpperCAmelCase__ = self.encoder(__a ) UpperCAmelCase__ = self.quant_conv(__a ) if not return_dict: return (h,) return VQEncoderOutput(latents=__a ) @apply_forward_hook def UpperCamelCase__ (self , __a , __a = False , __a = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.quantize(__a ) else: UpperCAmelCase__ = h UpperCAmelCase__ = self.post_quant_conv(__a ) UpperCAmelCase__ = self.decoder(__a , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__a ) def UpperCamelCase__ (self , __a , __a = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCAmelCase__ = sample UpperCAmelCase__ = self.encode(__a ).latents UpperCAmelCase__ = self.decode(__a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__a )
335
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """naver-clova-ix/donut-base-finetuned-docvqa""" __SCREAMING_SNAKE_CASE = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __SCREAMING_SNAKE_CASE = """document_qa""" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel __SCREAMING_SNAKE_CASE = ["""image""", """text"""] __SCREAMING_SNAKE_CASE = ["""text"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__a , **__a ) def UpperCamelCase__ (self , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCAmelCase__ = task_prompt.replace('{user_input}' , __a ) UpperCAmelCase__ = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors='pt' ).input_ids UpperCAmelCase__ = self.pre_processor(__a , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = self.pre_processor.batch_decode(__a )[0] UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCAmelCase__ = re.sub(r'<.*?>' , '' , __a , count=1 ).strip() # remove first task start token UpperCAmelCase__ = self.pre_processor.tokenajson(__a ) return sequence["answer"]
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _UpperCamelCase = False class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a=32 ) -> int: """simple docstring""" set_seed(0 ) UpperCAmelCase__ = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 ) UpperCAmelCase__ = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCAmelCase__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , ) UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )] UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )] UpperCAmelCase__ = [torch.randint(0 , 1000 , (4,) ).long().to(__a ) for _ in range(4 )] # train with a DDPM scheduler UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase__ = model(__a , timesteps[i] ).sample UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase__ = model(__a , timesteps[i] ).sample UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) )
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowercase ( yaml.SafeLoader ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCAmelCase__ = [tuple(__a ) if isinstance(__a , __a ) else key for key in keys] UpperCAmelCase__ = Counter(__a ) UpperCAmelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" ) def UpperCamelCase__ (self , __a , __a=False ) -> Dict: """simple docstring""" UpperCAmelCase__ = super().construct_mapping(__a , deep=__a ) self._check_no_duplicates_on_constructed_node(__a ) return mapping def UpperCamelCase_( snake_case__: str ) -> Tuple[Optional[str], str]: UpperCAmelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCAmelCase__ = full_content[1:].index('---' ) + 1 UpperCAmelCase__ = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(snake_case__ ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase__ (cls , __a ) -> "DatasetMetadata": """simple docstring""" with open(__a , encoding='utf-8' ) as readme_file: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__a ) else: return cls() def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" if path.exists(): with open(__a , encoding='utf-8' ) as readme_file: UpperCAmelCase__ = readme_file.read() else: UpperCAmelCase__ = None UpperCAmelCase__ = self._to_readme(__a ) with open(__a , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(__a ) def UpperCamelCase__ (self , __a = None ) -> str: """simple docstring""" if readme_content is not None: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(__a ) UpperCAmelCase__ = '---\n' + self.to_yaml_string() + '---\n' + content else: UpperCAmelCase__ = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def UpperCamelCase__ (cls , __a ) -> "DatasetMetadata": """simple docstring""" UpperCAmelCase__ = yaml.load(__a , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCAmelCase__ = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__a , allow_unicode=__a , encoding='utf-8' , ).decode('utf-8' ) _UpperCamelCase = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCamelCase = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') _UpperCamelCase = ap.parse_args() _UpperCamelCase = Path(args.readme_filepath) _UpperCamelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowercase ( _UpperCamelCase ): '''simple docstring''' @require_torch def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache UpperCAmelCase__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task='fill-mask' , model=__a ) # baseline - just load from_pretrained with normal network UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed UpperCAmelCase__ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ = '1' UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache UpperCAmelCase__ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task='fill-mask' , model=__a ) # baseline - just load from_pretrained with normal network UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed UpperCAmelCase__ = self.get_env() UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed UpperCAmelCase__ = self.get_env() UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ = '1' UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = '\nfrom transformers import pipeline\n ' UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' UpperCAmelCase__ = self.get_env() UpperCAmelCase__ = '1' UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, mock, run] )] UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = '\nfrom transformers import AutoModel\n ' UpperCAmelCase__ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed UpperCAmelCase__ = self.get_env() UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase__ = '1' UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _UpperCamelCase = True from torch.cuda.amp import autocast _UpperCamelCase = logging.getLogger(__name__) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to log verbose messages or not."""} , ) __SCREAMING_SNAKE_CASE = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __SCREAMING_SNAKE_CASE = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __SCREAMING_SNAKE_CASE = field( default=0.999995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def UpperCamelCase_( snake_case__: ModelArguments , snake_case__: TrainingArguments ) -> Optional[int]: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase__ = logging.WARNING if model_args.verbose_logging: UpperCAmelCase__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase__ = logging.INFO logger.setLevel(snake_case__ ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __SCREAMING_SNAKE_CASE = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __SCREAMING_SNAKE_CASE = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) __SCREAMING_SNAKE_CASE = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __SCREAMING_SNAKE_CASE = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __SCREAMING_SNAKE_CASE = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = "longest" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__(self , __a ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCAmelCase__ = self.feature_extractor.pad( __a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) UpperCAmelCase__ = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) UpperCAmelCase__ = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase__ = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) UpperCAmelCase__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase__ = 1 UpperCAmelCase__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__a , min_masks=2 , ) return batch class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , __a=1 , __a=0 , __a=1.0 , **__a ) -> List[Any]: """simple docstring""" super().__init__(*__a , **__a ) UpperCAmelCase__ = 0 UpperCAmelCase__ = max_gumbel_temp UpperCAmelCase__ = min_gumbel_temp UpperCAmelCase__ = gumbel_temp_decay def UpperCamelCase__ (self , __a , __a ) -> torch.Tensor: """simple docstring""" model.train() UpperCAmelCase__ = self._prepare_inputs(__a ) if self.use_amp: with autocast(): UpperCAmelCase__ = self.compute_loss(__a , __a ) else: UpperCAmelCase__ = self.compute_loss(__a , __a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase__ = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCamelCase_( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() configure_logger(snake_case__ , snake_case__ ) # Downloading and loading a dataset from the hub. UpperCAmelCase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase__ = DatasetDict() UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase__ = DatasetDict() UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case__ ) def prepare_dataset(snake_case__: Tuple ): # check that all files have the correct sampling rate UpperCAmelCase__ , UpperCAmelCase__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase__ = datasets.map( snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long UpperCAmelCase__ = vectorized_datasets.filter( lambda snake_case__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(snake_case__: int ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase__ = vectorized_datasets.map( snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) UpperCAmelCase__ = WavaVecaForPreTraining(snake_case__ ) UpperCAmelCase__ = DataCollatorForWavaVecaPretraining(model=snake_case__ , feature_extractor=snake_case__ ) UpperCAmelCase__ = WavaVecaPreTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=snake_case__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """lxmert""" __SCREAMING_SNAKE_CASE = {} def __init__(self , __a=30522 , __a=768 , __a=12 , __a=9500 , __a=1600 , __a=400 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=9 , __a=5 , __a=5 , __a=2048 , __a=4 , __a=6.67 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=True , __a=True , **__a , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = num_qa_labels UpperCAmelCase__ = num_object_labels UpperCAmelCase__ = num_attr_labels UpperCAmelCase__ = l_layers UpperCAmelCase__ = x_layers UpperCAmelCase__ = r_layers UpperCAmelCase__ = visual_feat_dim UpperCAmelCase__ = visual_pos_dim UpperCAmelCase__ = visual_loss_normalizer UpperCAmelCase__ = task_matched UpperCAmelCase__ = task_mask_lm UpperCAmelCase__ = task_obj_predict UpperCAmelCase__ = task_qa UpperCAmelCase__ = visual_obj_loss UpperCAmelCase__ = visual_attr_loss UpperCAmelCase__ = visual_feat_loss UpperCAmelCase__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__a )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Optional[Any] ) -> Union[str, Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def UpperCamelCase_( snake_case__: Tuple , snake_case__: List[str] , snake_case__: Dict , snake_case__: int , snake_case__: int=True ) -> str: model.train() UpperCAmelCase__ = model(snake_case__ ) UpperCAmelCase__ = F.mse_loss(snake_case__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case__ ) def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str=False ) -> str: set_seed(42 ) UpperCAmelCase__ = RegressionModel() UpperCAmelCase__ = deepcopy(snake_case__ ) UpperCAmelCase__ = RegressionDataset(length=80 ) UpperCAmelCase__ = DataLoader(snake_case__ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase__ = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase__ = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.6_5 ) UpperCAmelCase__ = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.6_5 ) # Make a copy of `model` if sched: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare(snake_case__ , snake_case__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCamelCase_( snake_case__: Dict ) -> int: # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = get_training_setup(snake_case__ ) # Use a single batch UpperCAmelCase__ , UpperCAmelCase__ = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ = ddp_input[torch.randperm(len(snake_case__ ) )] def UpperCamelCase_( snake_case__: Any ) -> Dict: # Test on distributed setup that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = get_training_setup(snake_case__ ) # Use a single batch UpperCAmelCase__ , UpperCAmelCase__ = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ = ddp_input[torch.randperm(len(snake_case__ ) )] def UpperCamelCase_( snake_case__: Union[str, Any]=False , snake_case__: Any=False ) -> int: UpperCAmelCase__ = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = get_training_setup(snake_case__ ) for iteration, batch in enumerate(snake_case__ ): UpperCAmelCase__ , UpperCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ = ddp_input[torch.randperm(len(snake_case__ ) )] GradientState._reset_state() def UpperCamelCase_( snake_case__: Optional[int]=False , snake_case__: Any=False ) -> Dict: UpperCAmelCase__ = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = get_training_setup(snake_case__ , snake_case__ ) for iteration, batch in enumerate(snake_case__ ): UpperCAmelCase__ , UpperCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ )) if accelerator.num_processes > 1: check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def UpperCamelCase_( ) -> Tuple: UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = RegressionDataset(length=80 ) UpperCAmelCase__ = DataLoader(snake_case__ , batch_size=16 ) UpperCAmelCase__ = RegressionDataset(length=96 ) UpperCAmelCase__ = DataLoader(snake_case__ , batch_size=16 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare(snake_case__ , snake_case__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if iteration < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if batch_num < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCamelCase_( ) -> Union[str, Any]: UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(snake_case__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(snake_case__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(snake_case__ , snake_case__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ ) def UpperCamelCase_( snake_case__: Dict ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) UpperCAmelCase__ = str(bin(snake_case__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) UpperCAmelCase__ = str(bin(snake_case__ ) )[2:] if shift_amount >= len(snake_case__ ): return "0b0" UpperCAmelCase__ = binary_number[: len(snake_case__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str: if number >= 0: # Get binary representation of positive number UpperCAmelCase__ = '0' + str(bin(snake_case__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase__ = len(bin(snake_case__ )[3:] ) # Find 2's complement of number UpperCAmelCase__ = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase__ = ( '1' + '0' * (binary_number_length - len(snake_case__ )) + binary_number ) if shift_amount >= len(snake_case__ ): return "0b" + binary_number[0] * len(snake_case__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , __a=["stage1", "stage2", "stage3"] , __a=[1, 2, 3] , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride UpperCAmelCase__ = out_features UpperCAmelCase__ = out_indices def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase__ (self , __a , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = MaskFormerSwinModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = MaskFormerSwinBackbone(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__a ): UpperCAmelCase__ = ['stem'] UpperCAmelCase__ = MaskFormerSwinBackbone(config=__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = MaskFormerSwinModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" pass def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swin has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase__ (self ) -> str: """simple docstring""" pass def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__a ): UpperCAmelCase__ = 0 return t def check_equivalence(__a , __a , __a , __a={} ): with torch.no_grad(): UpperCAmelCase__ = model(**__a , return_dict=__a , **__a ) UpperCAmelCase__ = model(**__a , return_dict=__a , **__a ).to_tuple() def recursive_check(__a , __a ): if isinstance(__a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__a , __a ): recursive_check(__a , __a ) elif isinstance(__a , __a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__a , __a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__a ) , set_nan_tensor_to_zero(__a ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}. Dict has" F" `nan`: {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}." ) , ) recursive_check(__a , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a , return_labels=__a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a , {'output_hidden_states': True} ) UpperCAmelCase__ = self._prepare_for_class(__a , __a , return_labels=__a ) UpperCAmelCase__ = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a , {'output_hidden_states': True} ) @require_torch class lowercase ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = MaskFormerSwinModelTester(self ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase__ = backbone_class(__a ) backbone.to(__a ) backbone.eval() UpperCAmelCase__ = backbone(**__a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase__ = backbone(**__a , output_hidden_states=__a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase__ = backbone(**__a , output_attentions=__a ) self.assertIsNotNone(outputs.attentions )
335
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCamelCase = logging.getLogger(__name__) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: str ) -> str: UpperCAmelCase__ = np.argmax(snake_case__ , axis=1 ) return np.sum(outputs == labels ) def UpperCamelCase_( snake_case__: str ) -> List[str]: with open(snake_case__ , encoding='utf_8' ) as f: UpperCAmelCase__ = csv.reader(snake_case__ ) UpperCAmelCase__ = [] next(snake_case__ ) # skip the first line for line in tqdm(snake_case__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[Any] , snake_case__: Tuple , snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[Any] ) -> Union[str, Any]: UpperCAmelCase__ = [] for dataset in encoded_datasets: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCAmelCase__ = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case__ ): UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = len(snake_case__ ) - 1 UpperCAmelCase__ = len(snake_case__ ) - 1 UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = mc_label UpperCAmelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case__ ) for t in all_inputs ) ) return tensor_datasets def UpperCamelCase_( ) -> Optional[int]: UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=snake_case__ , default='' ) parser.add_argument('--eval_dataset' , type=snake_case__ , default='' ) parser.add_argument('--seed' , type=snake_case__ , default=42 ) parser.add_argument('--num_train_epochs' , type=snake_case__ , default=3 ) parser.add_argument('--train_batch_size' , type=snake_case__ , default=8 ) parser.add_argument('--eval_batch_size' , type=snake_case__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=snake_case__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=snake_case__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=snake_case__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=snake_case__ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=snake_case__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=snake_case__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=snake_case__ , default=0.0_1 ) parser.add_argument('--lm_coef' , type=snake_case__ , default=0.9 ) parser.add_argument('--n_valid' , type=snake_case__ , default=3_74 ) parser.add_argument('--server_ip' , type=snake_case__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=snake_case__ , default='' , help='Can be used for distant debugging.' ) UpperCAmelCase__ = parser.parse_args() print(snake_case__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(snake_case__ , snake_case__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase__ = ['_start_', '_delimiter_', '_classify_'] UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case__ ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case__ ) ) model.to(snake_case__ ) # Load and encode the datasets def tokenize_and_encode(snake_case__: Any ): if isinstance(snake_case__ , snake_case__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case__ ) ) elif isinstance(snake_case__ , snake_case__ ): return obj return [tokenize_and_encode(snake_case__ ) for o in obj] logger.info('Encoding dataset...' ) UpperCAmelCase__ = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase__ = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase__ = (train_dataset, eval_dataset) UpperCAmelCase__ = tokenize_and_encode(snake_case__ ) # Compute the max input length for the Transformer UpperCAmelCase__ = model.config.n_positions // 2 - 2 UpperCAmelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase__ = min(snake_case__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase__ = pre_process_datasets(snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase__ = TensorDataset(*snake_case__ ) UpperCAmelCase__ = RandomSampler(snake_case__ ) UpperCAmelCase__ = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.train_batch_size ) UpperCAmelCase__ = TensorDataset(*snake_case__ ) UpperCAmelCase__ = SequentialSampler(snake_case__ ) UpperCAmelCase__ = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase__ = args.max_steps UpperCAmelCase__ = args.max_steps // (len(snake_case__ ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase__ = len(snake_case__ ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase__ = list(model.named_parameters() ) UpperCAmelCase__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] UpperCAmelCase__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] UpperCAmelCase__ = AdamW(snake_case__ , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCAmelCase__ = get_linear_schedule_with_warmup( snake_case__ , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case__ ) if args.do_train: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = tqdm(snake_case__ , desc='Training' ) for step, batch in enumerate(snake_case__ ): UpperCAmelCase__ = tuple(t.to(snake_case__ ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch UpperCAmelCase__ = model(snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) UpperCAmelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase__ = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase__ = model.module if hasattr(snake_case__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase__ = os.path.join(args.output_dir , snake_case__ ) UpperCAmelCase__ = os.path.join(args.output_dir , snake_case__ ) torch.save(model_to_save.state_dict() , snake_case__ ) model_to_save.config.to_json_file(snake_case__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case__ ) if args.do_eval: model.eval() UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 for batch in tqdm(snake_case__ , desc='Evaluating' ): UpperCAmelCase__ = tuple(t.to(snake_case__ ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model( snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) UpperCAmelCase__ = mc_logits.detach().cpu().numpy() UpperCAmelCase__ = mc_labels.to('cpu' ).numpy() UpperCAmelCase__ = accuracy(snake_case__ , snake_case__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase__ = eval_loss / nb_eval_steps UpperCAmelCase__ = eval_accuracy / nb_eval_examples UpperCAmelCase__ = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} UpperCAmelCase__ = os.path.join(args.output_dir , 'eval_results.txt' ) with open(snake_case__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , snake_case__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
335
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
1
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
1
from __future__ import annotations _UpperCamelCase = 8.988e9 # units = N * m^s * C^-2 def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float , snake_case__: float ) -> dict[str, float]: UpperCAmelCase__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: UpperCAmelCase__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: UpperCAmelCase__ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: UpperCAmelCase__ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: UpperCAmelCase__ = (COULOMBS_CONSTANT * charge_product / abs(snake_case__ )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
335
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RobertaConfig __SCREAMING_SNAKE_CASE = """roberta""" def __init__(self , __a ) -> str: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = RobertaEmbeddings(__a ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RobertaConfig __SCREAMING_SNAKE_CASE = """roberta""" def __init__(self , __a ) -> List[Any]: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = config.num_hidden_layers UpperCAmelCase__ = DeeRobertaModel(__a ) UpperCAmelCase__ = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__a ) def UpperCamelCase__ (self , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , __a=-1 , __a=False , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.num_layers try: UpperCAmelCase__ = self.roberta( __a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , ) UpperCAmelCase__ = outputs[1] UpperCAmelCase__ = self.dropout(__a ) UpperCAmelCase__ = self.classifier(__a ) UpperCAmelCase__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase__ = e.message UpperCAmelCase__ = e.exit_layer UpperCAmelCase__ = outputs[0] if not self.training: UpperCAmelCase__ = entropy(__a ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase__ = MSELoss() UpperCAmelCase__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase__ = [] for highway_exit in outputs[-1]: UpperCAmelCase__ = highway_exit[0] if not self.training: highway_logits_all.append(__a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase__ = MSELoss() UpperCAmelCase__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__a ) if train_highway: UpperCAmelCase__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase__ = (loss,) + outputs if not self.training: UpperCAmelCase__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
335
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
1
from __future__ import annotations import pandas as pd def UpperCamelCase_( snake_case__: list[int] , snake_case__: list[int] , snake_case__: int ) -> list[int]: UpperCAmelCase__ = [0] * no_of_processes UpperCAmelCase__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case__ ): UpperCAmelCase__ = burst_time[i] UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 9_99_99_99_99 UpperCAmelCase__ = 0 UpperCAmelCase__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase__ = remaining_time[j] UpperCAmelCase__ = j UpperCAmelCase__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase__ = remaining_time[short] if minm == 0: UpperCAmelCase__ = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 UpperCAmelCase__ = False # Find finish time of current process UpperCAmelCase__ = increment_time + 1 # Calculate waiting time UpperCAmelCase__ = finish_time - arrival_time[short] UpperCAmelCase__ = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase__ = 0 # Increment time increment_time += 1 return waiting_time def UpperCamelCase_( snake_case__: list[int] , snake_case__: int , snake_case__: list[int] ) -> list[int]: UpperCAmelCase__ = [0] * no_of_processes for i in range(snake_case__ ): UpperCAmelCase__ = burst_time[i] + waiting_time[i] return turn_around_time def UpperCamelCase_( snake_case__: list[int] , snake_case__: list[int] , snake_case__: int ) -> None: UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for i in range(snake_case__ ): UpperCAmelCase__ = total_waiting_time + waiting_time[i] UpperCAmelCase__ = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') _UpperCamelCase = int(input()) _UpperCamelCase = [0] * no_of_processes _UpperCamelCase = [0] * no_of_processes _UpperCamelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) _UpperCamelCase , _UpperCamelCase = map(int, input().split()) _UpperCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCamelCase = burst_time _UpperCamelCase = no_of_processes _UpperCamelCase = waiting_time _UpperCamelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _UpperCamelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase_( ) -> Optional[int]: UpperCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase__ = bs[:] UpperCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__ , snake_case__ ) ) def UpperCamelCase_( snake_case__: Union[str, Any] ) -> int: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> Any: """simple docstring""" UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__a ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ = errors # how to handle errors in decoding UpperCAmelCase__ = bytes_to_unicode() UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = {} UpperCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = get_pairs(__a ) if not pairs: return token while True: UpperCAmelCase__ = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__a ): try: UpperCAmelCase__ = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = new_word if len(__a ) == 1: break else: UpperCAmelCase__ = get_pairs(__a ) UpperCAmelCase__ = ' '.join(__a ) UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] for token in re.findall(self.pat , __a ): UpperCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" return self.decoder.get(__a ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ''.join(__a ) UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) UpperCAmelCase__ = 0 with open(__a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ (self , __a , __a=False , **__a ) -> int: """simple docstring""" UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): UpperCAmelCase__ = ' ' + text return (text, kwargs)
335
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""] __SCREAMING_SNAKE_CASE = """LayoutLMv2ImageProcessor""" __SCREAMING_SNAKE_CASE = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__(self , __a=None , __a=None , **__a ) -> Dict: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __a , ) UpperCAmelCase__ = kwargs.pop('feature_extractor' ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__a , __a ) def __call__(self , __a , __a = None , __a = None , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor UpperCAmelCase__ = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): UpperCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase__ = features['words'] UpperCAmelCase__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values UpperCAmelCase__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase__ = self.get_overflowing_images(__a , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase__ = images return encoded_inputs def UpperCamelCase__ (self , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F" {len(__a )} and {len(__a )}" ) return images_with_overflow def UpperCamelCase__ (self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ (self , *__a , **__a ) -> int: """simple docstring""" return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase__ (self ) -> str: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , ) return self.image_processor_class @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , ) return self.image_processor
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
from __future__ import annotations import math class lowercase : '''simple docstring''' def __init__(self , __a ) -> None: """simple docstring""" UpperCAmelCase__ = size # approximate the overall size of segment tree with given value UpperCAmelCase__ = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase__ = [0 for i in range(0 , 4 * size )] UpperCAmelCase__ = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" return idx * 2 def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" return idx * 2 + 1 def UpperCamelCase__ (self , __a , __a , __a , __a ) -> None: """simple docstring""" if left_element == right_element: UpperCAmelCase__ = a[left_element - 1] else: UpperCAmelCase__ = (left_element + right_element) // 2 self.build(self.left(__a ) , __a , __a , __a ) self.build(self.right(__a ) , mid + 1 , __a , __a ) UpperCAmelCase__ = max( self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> bool: """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = False if left_element != right_element: UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = True UpperCAmelCase__ = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase__ = val if left_element != right_element: UpperCAmelCase__ = val UpperCAmelCase__ = val UpperCAmelCase__ = True UpperCAmelCase__ = True return True UpperCAmelCase__ = (left_element + right_element) // 2 self.update(self.left(__a ) , __a , __a , __a , __a , __a ) self.update(self.right(__a ) , mid + 1 , __a , __a , __a , __a ) UpperCAmelCase__ = max( self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] ) return True def UpperCamelCase__ (self , __a , __a , __a , __a , __a ) -> int | float: """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = False if left_element != right_element: UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = self.lazy[idx] UpperCAmelCase__ = True UpperCAmelCase__ = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase__ = (left_element + right_element) // 2 UpperCAmelCase__ = self.query(self.left(__a ) , __a , __a , __a , __a ) UpperCAmelCase__ = self.query(self.right(__a ) , mid + 1 , __a , __a , __a ) return max(__a , __a ) def __str__(self ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , __a , __a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCamelCase = 15 _UpperCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
335
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
1
def UpperCamelCase_( snake_case__: int = 2_00 ) -> int: UpperCAmelCase__ = [1, 2, 5, 10, 20, 50, 1_00, 2_00] UpperCAmelCase__ = [0] * (pence + 1) UpperCAmelCase__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
def UpperCamelCase_( snake_case__: int = 10 ) -> str: if not isinstance(snake_case__ , snake_case__ ) or n < 0: raise ValueError('Invalid input' ) UpperCAmelCase__ = 10**n UpperCAmelCase__ = 2_84_33 * (pow(2 , 7_83_04_57 , snake_case__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} _UpperCamelCase = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } _UpperCamelCase = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def UpperCamelCase_( snake_case__: List[str] , snake_case__: str ) -> str: with open(snake_case__ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() UpperCAmelCase__ = collections.OrderedDict() with open(snake_case__ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(snake_case__ ): UpperCAmelCase__ = b UpperCAmelCase__ = idx for wd in b: UpperCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) UpperCAmelCase__ = do_clean_text UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return len(self.raw_vocab ) def UpperCamelCase__ (self ) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__a ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = ''.join(__a ).strip() return out_string def UpperCamelCase__ (self , __a ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = 0 if os.path.isdir(__a ): UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(__a , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(','.join(__a ) + '\n' ) index += 1 with open(__a , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = vocab # same as swe UpperCAmelCase__ = ids_to_tokens # same as bpe UpperCAmelCase__ = emoji UpperCAmelCase__ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase__ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) UpperCAmelCase__ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) UpperCAmelCase__ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) UpperCAmelCase__ = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCAmelCase__ = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCAmelCase__ = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) UpperCAmelCase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' UpperCAmelCase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' UpperCAmelCase__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__(self ) -> Union[str, Any]: """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.content_repattera.sub('<URL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<EMAIL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<TEL>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a ) UpperCAmelCase__ = self.content_repattera.sub('<PRICE>' , __a ) UpperCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase__ (self , __a , __a=False ) -> str: """simple docstring""" UpperCAmelCase__ = text.replace(' ' , '<SP>' ) UpperCAmelCase__ = text.replace(' ' , '<SP>' ) UpperCAmelCase__ = text.replace('\r\n' , '<BR>' ) UpperCAmelCase__ = text.replace('\n' , '<BR>' ) UpperCAmelCase__ = text.replace('\r' , '<BR>' ) UpperCAmelCase__ = text.replace('\t' , '<TAB>' ) UpperCAmelCase__ = text.replace('—' , 'ー' ) UpperCAmelCase__ = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ = text.replace(__a , __a ) if clean: UpperCAmelCase__ = self.clean_text(__a ) def check_simbol(__a ): UpperCAmelCase__ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(__a ): UpperCAmelCase__ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False UpperCAmelCase__ = 0 UpperCAmelCase__ = [] while pos < len(__a ): UpperCAmelCase__ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 UpperCAmelCase__ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase__ = e else: UpperCAmelCase__ = pos + 1 UpperCAmelCase__ = text[pos:end] if check_simbol(__a ): result.append('<KIGOU>' ) elif checkuae(__a ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) UpperCAmelCase__ = end return result def UpperCamelCase__ (self , __a , __a="\n" ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) UpperCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) ) UpperCAmelCase__ = ''.join(__a ) return text
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase_( ) -> int: UpperCAmelCase__ = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=snake_case__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=snake_case__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=snake_case__ ) return parser.parse_args() def UpperCamelCase_( ) -> str: UpperCAmelCase__ = parse_args() # Import training_script as a module. UpperCAmelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase__ = script_fpath.stem UpperCAmelCase__ = importlib.import_module(snake_case__ ) # Patch sys.argv UpperCAmelCase__ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _UpperCamelCase = Mapping[str, np.ndarray] _UpperCamelCase = Mapping[str, Any] # Is a nested dict. _UpperCamelCase = 0.0_1 @dataclasses.dataclass(frozen=_UpperCamelCase ) class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __SCREAMING_SNAKE_CASE = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __SCREAMING_SNAKE_CASE = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __SCREAMING_SNAKE_CASE = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __SCREAMING_SNAKE_CASE = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __SCREAMING_SNAKE_CASE = None # Optional remark about the protein. Included as a comment in output PDB # files __SCREAMING_SNAKE_CASE = None # Templates used to generate this protein (prediction-only) __SCREAMING_SNAKE_CASE = None # Chain corresponding to each parent __SCREAMING_SNAKE_CASE = None def UpperCamelCase_( snake_case__: str ) -> Protein: UpperCAmelCase__ = r'(\[[A-Z]+\]\n)' UpperCAmelCase__ = [tag.strip() for tag in re.split(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0] UpperCAmelCase__ = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) UpperCAmelCase__ = ["N", "CA", "C"] UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None for g in groups: if "[PRIMARY]" == g[0]: UpperCAmelCase__ = g[1][0].strip() for i in range(len(snake_case__ ) ): if seq[i] not in residue_constants.restypes: UpperCAmelCase__ = 'X' # FIXME: strings are immutable UpperCAmelCase__ = np.array( [residue_constants.restype_order.get(snake_case__ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCAmelCase__ = [] for axis in range(3 ): tertiary.append(list(map(snake_case__ , g[1][axis].split() ) ) ) UpperCAmelCase__ = np.array(snake_case__ ) UpperCAmelCase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(snake_case__ ): UpperCAmelCase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCAmelCase__ = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) UpperCAmelCase__ = np.zeros( ( len(snake_case__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(snake_case__ ): UpperCAmelCase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=snake_case__ , atom_mask=snake_case__ , aatype=snake_case__ , residue_index=np.arange(len(snake_case__ ) ) , b_factors=snake_case__ , ) def UpperCamelCase_( snake_case__: Protein , snake_case__: int = 0 ) -> List[str]: UpperCAmelCase__ = [] UpperCAmelCase__ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) UpperCAmelCase__ = prot.parents UpperCAmelCase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCAmelCase__ = [p for i, p in zip(snake_case__ , snake_case__ ) if i == chain_id] if parents is None or len(snake_case__ ) == 0: UpperCAmelCase__ = ['N/A'] pdb_headers.append(f"PARENT {' '.join(snake_case__ )}" ) return pdb_headers def UpperCamelCase_( snake_case__: Protein , snake_case__: str ) -> str: UpperCAmelCase__ = [] UpperCAmelCase__ = pdb_str.split('\n' ) UpperCAmelCase__ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) UpperCAmelCase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: UpperCAmelCase__ = [] if prot.parents_chain_index is not None: UpperCAmelCase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(snake_case__ ) , [] ) parent_dict[str(snake_case__ )].append(snake_case__ ) UpperCAmelCase__ = max([int(snake_case__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCAmelCase__ = parent_dict.get(str(snake_case__ ) , ['N/A'] ) parents_per_chain.append(snake_case__ ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCAmelCase__ = [['N/A']] def make_parent_line(snake_case__: Sequence[str] ) -> str: return f"PARENT {' '.join(snake_case__ )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCAmelCase__ = 0 for i, l in enumerate(snake_case__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(snake_case__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(snake_case__ ): UpperCAmelCase__ = parents_per_chain[chain_counter] else: UpperCAmelCase__ = ['N/A'] out_pdb_lines.append(make_parent_line(snake_case__ ) ) return "\n".join(snake_case__ ) def UpperCamelCase_( snake_case__: Protein ) -> str: UpperCAmelCase__ = residue_constants.restypes + ['X'] def res_atoa(snake_case__: int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) UpperCAmelCase__ = residue_constants.atom_types UpperCAmelCase__ = [] UpperCAmelCase__ = prot.atom_mask UpperCAmelCase__ = prot.aatype UpperCAmelCase__ = prot.atom_positions UpperCAmelCase__ = prot.residue_index.astype(np.intaa ) UpperCAmelCase__ = prot.b_factors UpperCAmelCase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) UpperCAmelCase__ = get_pdb_headers(snake_case__ ) if len(snake_case__ ) > 0: pdb_lines.extend(snake_case__ ) UpperCAmelCase__ = aatype.shape[0] UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = string.ascii_uppercase UpperCAmelCase__ = None # Add all atom sites. for i in range(snake_case__ ): UpperCAmelCase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(snake_case__ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCAmelCase__ = 'ATOM' UpperCAmelCase__ = atom_name if len(snake_case__ ) == 4 else f" {atom_name}" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = 1.0_0 UpperCAmelCase__ = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCAmelCase__ = '' UpperCAmelCase__ = 'A' if chain_index is not None: UpperCAmelCase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCAmelCase__ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(snake_case__ ) atom_index += 1 UpperCAmelCase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCAmelCase__ = True UpperCAmelCase__ = chain_index[i + 1] if should_terminate: # Close the chain. UpperCAmelCase__ = 'TER' UpperCAmelCase__ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(snake_case__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(snake_case__ , snake_case__ ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(snake_case__ ) def UpperCamelCase_( snake_case__: Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase_( snake_case__: FeatureDict , snake_case__: ModelOutput , snake_case__: Optional[np.ndarray] = None , snake_case__: Optional[np.ndarray] = None , snake_case__: Optional[str] = None , snake_case__: Optional[Sequence[str]] = None , snake_case__: Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=snake_case__ , remark=snake_case__ , parents=snake_case__ , parents_chain_index=snake_case__ , )
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
from __future__ import annotations import math _UpperCamelCase = '''2020.9.26''' _UpperCamelCase = '''xcodz-dot, cclaus, dhruvmanila''' def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float , snake_case__: float , snake_case__: float ) -> tuple[float, float]: if not all(isinstance(snake_case__ , (float, int) ) for val in locals().values() ): UpperCAmelCase__ = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(snake_case__ ) UpperCAmelCase__ = ((x * distance) / (z + distance)) * scale UpperCAmelCase__ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float , snake_case__: str , snake_case__: float ) -> tuple[float, float, float]: if not isinstance(snake_case__ , snake_case__ ): raise TypeError('Axis must be a str' ) UpperCAmelCase__ = locals() del input_variables["axis"] if not all(isinstance(snake_case__ , (float, int) ) for val in input_variables.values() ): UpperCAmelCase__ = ( 'Input values except axis must either be float or int: ' f"{list(input_variables.values() )}" ) raise TypeError(snake_case__ ) UpperCAmelCase__ = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": UpperCAmelCase__ = x * math.cos(snake_case__ ) - y * math.sin(snake_case__ ) UpperCAmelCase__ = y * math.cos(snake_case__ ) + x * math.sin(snake_case__ ) UpperCAmelCase__ = z elif axis == "x": UpperCAmelCase__ = y * math.cos(snake_case__ ) - z * math.sin(snake_case__ ) UpperCAmelCase__ = z * math.cos(snake_case__ ) + y * math.sin(snake_case__ ) UpperCAmelCase__ = x elif axis == "y": UpperCAmelCase__ = x * math.cos(snake_case__ ) - z * math.sin(snake_case__ ) UpperCAmelCase__ = z * math.cos(snake_case__ ) + x * math.sin(snake_case__ ) UpperCAmelCase__ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 9_0.0) = }""")
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @require_torch def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) UpperCAmelCase__ = load_dataset('ashraq/esc50' ) UpperCAmelCase__ = dataset['train']['audio'][-1]['array'] UpperCAmelCase__ = audio_classifier(__a , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__a ) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" pass @slow @require_torch def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog UpperCAmelCase__ = load_dataset('ashraq/esc50' ) UpperCAmelCase__ = dataset['train']['audio'][-1]['array'] UpperCAmelCase__ = audio_classifier(__a , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__a ) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) UpperCAmelCase__ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__a ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) UpperCAmelCase__ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__a ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
_UpperCamelCase = 0 # The first color of the flag. _UpperCamelCase = 1 # The second color of the flag. _UpperCamelCase = 2 # The third color of the flag. _UpperCamelCase = (red, white, blue) def UpperCamelCase_( snake_case__: list ) -> list: if not sequence: return [] if len(snake_case__ ) == 1: return list(snake_case__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = len(snake_case__ ) - 1 UpperCAmelCase__ = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase__ , UpperCAmelCase__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase__ , UpperCAmelCase__ = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase__ = f"The elements inside the sequence must contains only {colors} values" raise ValueError(snake_case__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by commas:\n''').strip() _UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] print(F"""{dutch_national_flag_sort(unsorted)}""")
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
import os _UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase_( snake_case__: str ) -> int: UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 while index < len(snake_case__ ) - 1: UpperCAmelCase__ = SYMBOLS[numerals[index]] UpperCAmelCase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase_( snake_case__: int ) -> str: UpperCAmelCase__ = '' UpperCAmelCase__ = num // 10_00 numerals += m_count * "M" num %= 10_00 UpperCAmelCase__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 UpperCAmelCase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase_( snake_case__: str = "/p089_roman.txt" ) -> int: UpperCAmelCase__ = 0 with open(os.path.dirname(snake_case__ ) + roman_numerals_filename ) as filea: UpperCAmelCase__ = filea.readlines() for line in lines: UpperCAmelCase__ = line.strip() UpperCAmelCase__ = parse_roman_numerals(snake_case__ ) UpperCAmelCase__ = generate_roman_numerals(snake_case__ ) savings += len(snake_case__ ) - len(snake_case__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> int: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) def UpperCamelCase_( *snake_case__: Dict , **snake_case__: List[Any] ) -> Any: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: Optional[int] , **snake_case__: List[str] ) -> Tuple: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: Optional[int] , **snake_case__: int ) -> Optional[int]: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: Any , **snake_case__: Dict ) -> Tuple: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: Union[str, Any] , **snake_case__: str ) -> str: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: int , **snake_case__: Tuple ) -> Optional[int]: requires_backends(snake_case__ , ['torch'] ) def UpperCamelCase_( *snake_case__: Optional[int] , **snake_case__: Union[str, Any] ) -> int: requires_backends(snake_case__ , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Any: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> str: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> str: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> int: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Any: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Dict: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> int: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> int: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> str: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> str: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Any: """simple docstring""" requires_backends(cls , ['torch'] ) class lowercase ( metaclass=_UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch"""] def __init__(self , *__a , **__a ) -> int: """simple docstring""" requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Tuple: """simple docstring""" requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ (cls , *__a , **__a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch'] )
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """xmod""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , __a=False , __a=2 , __a=False , __a=True , __a=True , __a=("en_XX",) , __a=None , **__a , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout UpperCAmelCase__ = pre_norm UpperCAmelCase__ = adapter_reduction_factor UpperCAmelCase__ = adapter_layer_norm UpperCAmelCase__ = adapter_reuse_layer_norm UpperCAmelCase__ = ln_before_adapter UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = default_language class lowercase ( _UpperCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ) -> Any: """simple docstring""" UpperCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_pad def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ (self , __a , __a=False ) -> List[str]: """simple docstring""" if not batched: UpperCAmelCase__ = image_inputs[0] if isinstance(__a , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ = image.size else: UpperCAmelCase__ , UpperCAmelCase__ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase__ = self.size['shortest_edge'] elif w > h: UpperCAmelCase__ = self.size['shortest_edge'] UpperCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase__ = self.size['shortest_edge'] UpperCAmelCase__ = self.size['shortest_edge'] else: UpperCAmelCase__ = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ = max(__a , key=lambda __a : item[0] )[0] UpperCAmelCase__ = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = YolosImageProcessor if is_vision_available() else None def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = YolosImageProcessingTester(self ) @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'size' ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __a ) UpperCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ = self.image_processing_class(do_resize=__a , do_normalize=__a , do_rescale=__a ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase__ = image_processing_a.pad(__a , return_tensors='pt' ) UpperCAmelCase__ = image_processing_a(__a , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) ) @slow def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {'image_id': 39769, 'annotations': target} # encode them UpperCAmelCase__ = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) UpperCAmelCase__ = image_processing(images=__a , annotations=__a , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} UpperCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase__ = YolosImageProcessor(format='coco_panoptic' ) UpperCAmelCase__ = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify masks UpperCAmelCase__ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __a ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) )
335
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ) -> List[str]: """simple docstring""" super().__init__( features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) UpperCAmelCase__ = Generator( cache_dir=__a , features=__a , generator=__a , gen_kwargs=__a , **__a , ) def UpperCamelCase__ (self ) -> str: """simple docstring""" if self.streaming: UpperCAmelCase__ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) UpperCAmelCase__ = self.builder.as_dataset( split='train' , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset
335
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Any=None , snake_case__: str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) __SCREAMING_SNAKE_CASE = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __SCREAMING_SNAKE_CASE = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Benchmark training of model"""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Verbose memory tracing"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Trace memory line by line"""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Save result to a CSV file"""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Save all print statements in a log file"""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Whether to print environment information"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) __SCREAMING_SNAKE_CASE = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) __SCREAMING_SNAKE_CASE = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) __SCREAMING_SNAKE_CASE = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) __SCREAMING_SNAKE_CASE = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) __SCREAMING_SNAKE_CASE = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) __SCREAMING_SNAKE_CASE = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , __a , ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def UpperCamelCase__ (self ) -> str: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
335
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
1
from PIL import Image def UpperCamelCase_( snake_case__: Image , snake_case__: float ) -> Image: def brightness(snake_case__: int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(snake_case__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 _UpperCamelCase = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
335
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a=1 , __a=0 , __a=2 , __a=512 , __a="cls" , __a=False , __a=True , **__a , ) -> int: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase__ = project_dim UpperCAmelCase__ = pooler_fn UpperCAmelCase__ = learn_encoder UpperCAmelCase__ = use_attention_mask class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [r"""pooler""", r"""logit_scale"""] __SCREAMING_SNAKE_CASE = [r"""position_ids""", r"""predictions.decoder.bias"""] __SCREAMING_SNAKE_CASE = """roberta""" __SCREAMING_SNAKE_CASE = RobertaSeriesConfig def __init__(self , __a ) -> str: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = XLMRobertaModel(__a ) UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = getattr(__a , 'has_pre_transformation' , __a ) if self.has_pre_transformation: UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.base_model( input_ids=__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_attentions=__a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__a , ) if self.has_pre_transformation: UpperCAmelCase__ = outputs['hidden_states'][-2] UpperCAmelCase__ = self.pre_LN(__a ) UpperCAmelCase__ = self.transformation_pre(__a ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
335
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """umt5""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] def __init__(self , __a=250112 , __a=512 , __a=64 , __a=1024 , __a=8 , __a=None , __a=6 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gated-gelu" , __a=True , __a=True , __a="T5Tokenizer" , __a=True , __a=0 , __a=1 , __a=0 , **__a , ) -> List[str]: """simple docstring""" super().__init__( is_encoder_decoder=__a , tokenizer_class=__a , tie_word_embeddings=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = d_model UpperCAmelCase__ = d_kv UpperCAmelCase__ = d_ff UpperCAmelCase__ = num_layers UpperCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase__ = num_heads UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = feed_forward_proj UpperCAmelCase__ = use_cache UpperCAmelCase__ = self.feed_forward_proj.split('-' ) UpperCAmelCase__ = act_info[-1] UpperCAmelCase__ = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCAmelCase__ = 'gelu_new' @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return self.d_model @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return self.num_heads @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return self.num_layers class lowercase ( _UpperCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCAmelCase__ = 'past_encoder_sequence + sequence' UpperCAmelCase__ = {0: 'batch'} UpperCAmelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCamelCase__ (self ) -> int: """simple docstring""" return 13 @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 5E-4
335
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCamelCase_( snake_case__: int ) -> List[str]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCamelCase_( ) -> Any: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase__ = [1, 2, 3] with pytest.raises(snake_case__ ): with parallel_backend('unsupported backend' ): map_nested(snake_case__ , snake_case__ , num_proc=2 ) with pytest.raises(snake_case__ ): with parallel_backend('unsupported backend' ): map_nested(snake_case__ , snake_case__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict: UpperCAmelCase__ = [1, 2] UpperCAmelCase__ = {'a': 1, 'b': 2} UpperCAmelCase__ = {'a': [1, 2], 'b': [3, 4]} UpperCAmelCase__ = {'a': {'1': 1}, 'b': 2} UpperCAmelCase__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCAmelCase__ = [2, 3] UpperCAmelCase__ = {'a': 2, 'b': 3} UpperCAmelCase__ = {'a': [2, 3], 'b': [4, 5]} UpperCAmelCase__ = {'a': {'1': 2}, 'b': 3} UpperCAmelCase__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _UpperCamelCase = '''src/diffusers''' _UpperCamelCase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _UpperCamelCase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _UpperCamelCase = spec.loader.load_module() def UpperCamelCase_( snake_case__: int , snake_case__: Any ) -> List[Any]: return line.startswith(snake_case__ ) or len(snake_case__ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , snake_case__ ) is not None def UpperCamelCase_( snake_case__: Union[str, Any] ) -> str: UpperCAmelCase__ = object_name.split('.' ) UpperCAmelCase__ = 0 # First let's find the module where our object lives. UpperCAmelCase__ = parts[i] while i < len(snake_case__ ) and not os.path.isfile(os.path.join(snake_case__ , f"{module}.py" ) ): i += 1 if i < len(snake_case__ ): UpperCAmelCase__ = os.path.join(snake_case__ , parts[i] ) if i >= len(snake_case__ ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(snake_case__ , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase__ = '' UpperCAmelCase__ = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case__ ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case__ ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase__ = line_index while line_index < len(snake_case__ ) and _should_continue(lines[line_index] , snake_case__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase__ = lines[start_index:line_index] return "".join(snake_case__ ) _UpperCamelCase = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _UpperCamelCase = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _UpperCamelCase = re.compile(R'''<FILL\s+[^>]*>''') def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = code.split('\n' ) UpperCAmelCase__ = 0 while idx < len(snake_case__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case__ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def UpperCamelCase_( snake_case__: List[str] ) -> Optional[int]: UpperCAmelCase__ = len(get_indent(snake_case__ ) ) > 0 if has_indent: UpperCAmelCase__ = f"class Bla:\n{code}" UpperCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=snake_case__ ) UpperCAmelCase__ = black.format_str(snake_case__ , mode=snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = style_docstrings_in_code(snake_case__ ) return result[len('class Bla:\n' ) :] if has_indent else result def UpperCamelCase_( snake_case__: Any , snake_case__: int=False ) -> Union[str, Any]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [] UpperCAmelCase__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case__ ): UpperCAmelCase__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = search.groups() UpperCAmelCase__ = find_code_in_diffusers(snake_case__ ) UpperCAmelCase__ = get_indent(snake_case__ ) UpperCAmelCase__ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase__ = theoretical_indent UpperCAmelCase__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase__ = True while line_index < len(snake_case__ ) and should_continue: line_index += 1 if line_index >= len(snake_case__ ): break UpperCAmelCase__ = lines[line_index] UpperCAmelCase__ = _should_continue(snake_case__ , snake_case__ ) and re.search(f"^{indent}# End copy" , snake_case__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase__ = lines[start_index:line_index] UpperCAmelCase__ = ''.join(snake_case__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase__ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(snake_case__ ) is None] UpperCAmelCase__ = '\n'.join(snake_case__ ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case__ ) > 0: UpperCAmelCase__ = replace_pattern.replace('with' , '' ).split(',' ) UpperCAmelCase__ = [_re_replace_pattern.search(snake_case__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pattern.groups() UpperCAmelCase__ = re.sub(snake_case__ , snake_case__ , snake_case__ ) if option.strip() == "all-casing": UpperCAmelCase__ = re.sub(obja.lower() , obja.lower() , snake_case__ ) UpperCAmelCase__ = re.sub(obja.upper() , obja.upper() , snake_case__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase__ = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase__ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase__ = start_index + 1 if overwrite and len(snake_case__ ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case__ ) return diffs def UpperCamelCase_( snake_case__: bool = False ) -> Optional[int]: UpperCAmelCase__ = glob.glob(os.path.join(snake_case__ , '**/*.py' ) , recursive=snake_case__ ) UpperCAmelCase__ = [] for filename in all_files: UpperCAmelCase__ = is_copy_consistent(snake_case__ , snake_case__ ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(snake_case__ ) > 0: UpperCAmelCase__ = '\n'.join(snake_case__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
335
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
1
import enum import shutil import sys _UpperCamelCase , _UpperCamelCase = shutil.get_terminal_size() _UpperCamelCase = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class lowercase ( enum.Enum ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Optional[Any]="" ) -> Optional[Any]: sys.stdout.write(str(snake_case__ ) + end ) sys.stdout.flush() def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Any , snake_case__: str="" ) -> Tuple: forceWrite(f"\u001b[{color}m{content}\u001b[0m" , snake_case__ ) def UpperCamelCase_( ) -> List[str]: forceWrite('\r' ) def UpperCamelCase_( snake_case__: int , snake_case__: str ) -> Dict: forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def UpperCamelCase_( ) -> Union[str, Any]: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def UpperCamelCase_( ) -> Optional[Any]: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: int , snake_case__: Dict ) -> List[str]: # Initialise PyTorch model UpperCAmelCase__ = LxmertConfig.from_json_file(snake_case__ ) print(f"Building PyTorch model from configuration: {config}" ) UpperCAmelCase__ = LxmertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
335
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
1
def UpperCamelCase_( snake_case__: int = 60_08_51_47_51_43 ) -> int: try: UpperCAmelCase__ = int(snake_case__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 while i * i <= n: while n % i == 0: UpperCAmelCase__ = i n //= i i += 1 if n > 1: UpperCAmelCase__ = n return int(snake_case__ ) if __name__ == "__main__": print(F"""{solution() = }""")
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_pad def UpperCamelCase__ (self ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ (self , __a , __a=False ) -> List[str]: """simple docstring""" if not batched: UpperCAmelCase__ = image_inputs[0] if isinstance(__a , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ = image.size else: UpperCAmelCase__ , UpperCAmelCase__ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase__ = self.size['shortest_edge'] elif w > h: UpperCAmelCase__ = self.size['shortest_edge'] UpperCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase__ = self.size['shortest_edge'] UpperCAmelCase__ = self.size['shortest_edge'] else: UpperCAmelCase__ = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ = max(__a , key=lambda __a : item[0] )[0] UpperCAmelCase__ = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'do_rescale' ) ) self.assertTrue(hasattr(__a , 'do_pad' ) ) self.assertTrue(hasattr(__a , 'size' ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __a ) UpperCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" pass def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {'image_id': 39769, 'annotations': target} # encode them UpperCAmelCase__ = DeformableDetrImageProcessor() UpperCAmelCase__ = image_processing(images=__a , annotations=__a , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} UpperCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase__ = DeformableDetrImageProcessor(format='coco_panoptic' ) UpperCAmelCase__ = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) UpperCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify masks UpperCAmelCase__ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __a ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) )
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a = None , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> str: """simple docstring""" UpperCAmelCase__ = path_or_paths UpperCAmelCase__ = split if split or isinstance(__a , __a ) else 'train' UpperCAmelCase__ = features UpperCAmelCase__ = cache_dir UpperCAmelCase__ = keep_in_memory UpperCAmelCase__ = streaming UpperCAmelCase__ = num_proc UpperCAmelCase__ = kwargs @abstractmethod def UpperCamelCase__ (self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = features UpperCAmelCase__ = cache_dir UpperCAmelCase__ = keep_in_memory UpperCAmelCase__ = streaming UpperCAmelCase__ = num_proc UpperCAmelCase__ = kwargs @abstractmethod def UpperCamelCase__ (self ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json'''} _UpperCamelCase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _UpperCamelCase = {'''mgp-str''': 27} class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , __a , __a="[GO]" , __a="[GO]" , __a="[s]" , __a="[GO]" , **__a ) -> Optional[int]: """simple docstring""" super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__a ) UpperCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" return len(self.vocab ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = [] for s in text: char_tokens.extend(__a ) return char_tokens def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.decoder.get(__a ) def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error('Vocabulary path ({}) should be a directory'.format(__a ) ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) return (vocab_file,)
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCamelCase_( snake_case__: Optional[int] ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) if k.startswith('encoder' ): UpperCAmelCase__ = k.replace('.attn' , '.self_attn' ) UpperCAmelCase__ = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCAmelCase__ = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): UpperCAmelCase__ = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCAmelCase__ = k.replace('norm2' , 'encoder_attn_layer_norm' ) UpperCAmelCase__ = k.replace('norm3' , 'final_layer_norm' ) return k def UpperCamelCase_( snake_case__: List[Any] ) -> Union[str, Any]: UpperCAmelCase__ = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: UpperCAmelCase__ = sd.pop(snake_case__ ) UpperCAmelCase__ = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd UpperCAmelCase__ = v _UpperCamelCase = ['''START'''] @torch.no_grad() def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]: UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' ) UpperCAmelCase__ = model['model'] UpperCAmelCase__ = BlenderbotConfig.from_json_file(snake_case__ ) UpperCAmelCase__ = BlenderbotForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = m.model.state_dict().keys() UpperCAmelCase__ = [] UpperCAmelCase__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case__ ) m.model.load_state_dict(snake_case__ , strict=snake_case__ ) m.half() m.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
def UpperCamelCase_( snake_case__: int ) -> int: UpperCAmelCase__ = [1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, 0 UpperCAmelCase__ = ugly_nums[ia] * 2 UpperCAmelCase__ = ugly_nums[ia] * 3 UpperCAmelCase__ = ugly_nums[ia] * 5 for _ in range(1 , snake_case__ ): UpperCAmelCase__ = min(snake_case__ , snake_case__ , snake_case__ ) ugly_nums.append(snake_case__ ) if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=0.9 , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = size if size is not None else {'shortest_edge': 30} UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize_and_center_crop UpperCAmelCase__ = size UpperCAmelCase__ = crop_pct UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(__a , 'size' ) ) self.assertTrue(hasattr(__a , 'crop_pct' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=[30, 30] , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=3 , __a=None , __a=8 , __a=10 , ) -> Any: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = n_targets UpperCAmelCase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ = num_patches + 1 + self.num_detection_tokens def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ = [] for i in range(self.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__a ) UpperCAmelCase__ = torch.rand(self.n_targets , 4 , device=__a ) labels.append(__a ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase__ (self , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = YolosModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(pixel_values=__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ = model(pixel_values=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self , __a , __a , __a=False ) -> str: """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.ones( size=(self.model_tester.n_targets,) , device=__a , dtype=torch.long ) UpperCAmelCase__ = torch.ones( self.model_tester.n_targets , 4 , device=__a , dtype=torch.float ) labels.append(__a ) UpperCAmelCase__ = labels return inputs_dict def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = YolosModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" pass def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True # in YOLOS, the seq_len is different UpperCAmelCase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = 1 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" def check_hidden_states_output(__a , __a , __a ): UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) # YOLOS has a different seq_length UpperCAmelCase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__a ) @slow def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = YolosModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase_( ) -> str: UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] , device=__a , ) UpperCAmelCase__ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] , device=__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1E-4 ) ) # verify postprocessing UpperCAmelCase__ = image_processor.post_process_object_detection( __a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(__a ) UpperCAmelCase__ = [75, 75, 17, 63, 17] UpperCAmelCase__ = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(__a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , __a , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , __a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , __a ) )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _UpperCamelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Whether to use SortishSampler or not."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = super().to_dict() for k, v in d.items(): if isinstance(__a , __a ): UpperCAmelCase__ = v.to_dict() return d
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict: if not is_accelerate_available(): return method UpperCAmelCase__ = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case__ ) < version.parse('0.17.0' ): return method def wrapper(self: List[str] , *snake_case__: List[Any] , **snake_case__: Union[str, Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *snake_case__ , **snake_case__ ) return wrapper
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
import math import sys def UpperCamelCase_( snake_case__: int ) -> int: if number != int(snake_case__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 UpperCAmelCase__ = [-1] * (number + 1) UpperCAmelCase__ = 0 for i in range(1 , number + 1 ): UpperCAmelCase__ = sys.maxsize UpperCAmelCase__ = int(math.sqrt(snake_case__ ) ) for j in range(1 , root + 1 ): UpperCAmelCase__ = 1 + answers[i - (j**2)] UpperCAmelCase__ = min(snake_case__ , snake_case__ ) UpperCAmelCase__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
335
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
1
def UpperCamelCase_( snake_case__: int , snake_case__: int , snake_case__: int ) -> float: UpperCAmelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
1
from __future__ import annotations import queue class lowercase : '''simple docstring''' def __init__(self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = data UpperCAmelCase__ = None UpperCAmelCase__ = None def UpperCamelCase_( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) UpperCAmelCase__ = input('Enter the value of the root node: ' ).strip().lower() UpperCAmelCase__ = queue.Queue() UpperCAmelCase__ = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): UpperCAmelCase__ = q.get() UpperCAmelCase__ = f"Enter the left node of {node_found.data}: " UpperCAmelCase__ = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ = TreeNode(int(snake_case__ ) ) UpperCAmelCase__ = left_node q.put(snake_case__ ) UpperCAmelCase__ = f"Enter the right node of {node_found.data}: " UpperCAmelCase__ = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ = TreeNode(int(snake_case__ ) ) UpperCAmelCase__ = right_node q.put(snake_case__ ) raise def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCAmelCase__ = queue.Queue() q.put(snake_case__ ) while not q.empty(): UpperCAmelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCAmelCase__ = queue.Queue() q.put(snake_case__ ) while not q.empty(): UpperCAmelCase__ = [] while not q.empty(): UpperCAmelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCAmelCase__ = [] UpperCAmelCase__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(snake_case__ ) UpperCAmelCase__ = n.left # end of while means current node doesn't have left child UpperCAmelCase__ = stack.pop() # start to traverse its right child UpperCAmelCase__ = n.right def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCAmelCase__ = [] UpperCAmelCase__ = node while n or stack: while n: stack.append(snake_case__ ) UpperCAmelCase__ = n.left UpperCAmelCase__ = stack.pop() print(n.data , end=',' ) UpperCAmelCase__ = n.right def UpperCamelCase_( snake_case__: TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def UpperCamelCase_( snake_case__: str = "" , snake_case__: Optional[Any]=50 , snake_case__: str="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase__ , UpperCAmelCase__ = divmod(width - len(snake_case__ ) - 2 , 2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) _UpperCamelCase = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
335
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
1
_UpperCamelCase = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } _UpperCamelCase = {value: key for key, value in encode_dict.items()} def UpperCamelCase_( snake_case__: str ) -> str: UpperCAmelCase__ = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def UpperCamelCase_( snake_case__: str ) -> str: if set(snake_case__ ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) UpperCAmelCase__ = '' for word in coded.split(): while len(snake_case__ ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
335
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
1
def UpperCamelCase_( snake_case__: int ) -> Union[str, Any]: # noqa: E741 UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] * n UpperCAmelCase__ = [False] * n UpperCAmelCase__ = [False] * n def dfs(snake_case__: Any , snake_case__: Optional[int] , snake_case__: int , snake_case__: Any ): if parent == root: out_edge_count += 1 UpperCAmelCase__ = True UpperCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase__ = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase__ = True # AP found via cycle if at == low[to]: UpperCAmelCase__ = True else: UpperCAmelCase__ = min(low[at] , snake_case__ ) return out_edge_count for i in range(snake_case__ ): if not visited[i]: UpperCAmelCase__ = 0 UpperCAmelCase__ = dfs(snake_case__ , snake_case__ , -1 , snake_case__ ) UpperCAmelCase__ = out_edge_count > 1 for x in range(len(snake_case__ ) ): if is_art[x] is True: print(snake_case__ ) # Adjacency list of graph _UpperCamelCase = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
335
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _UpperCamelCase = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def UpperCamelCase_( snake_case__: str = "mumbai" ) -> Generator[tuple[str, str], None, None]: UpperCAmelCase__ = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): UpperCAmelCase__ = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() UpperCAmelCase__ = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: Optional[int]=0 ) -> Any: # Format the message. if name is None: UpperCAmelCase__ = None else: UpperCAmelCase__ = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' UpperCAmelCase__ = fmt.format(snake_case__ ) # Print and recurse (if needed). if isinstance(snake_case__ , snake_case__ ): if msg is not None: print(snake_case__ ) for k in val.keys(): recursive_print(snake_case__ , val[k] , spaces + 2 ) elif isinstance(snake_case__ , torch.Tensor ): print(snake_case__ , ':' , val.size() ) else: print(snake_case__ , ':' , snake_case__ ) def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: int , snake_case__: Any , snake_case__: Any ) -> Any: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCAmelCase__ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCAmelCase__ = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCAmelCase__ = param.view(*snake_case__ ) UpperCAmelCase__ = param.transpose(0 , 2 ) UpperCAmelCase__ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCAmelCase__ = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCAmelCase__ = param.view(*snake_case__ ) UpperCAmelCase__ = param.transpose(0 , 1 ).contiguous() UpperCAmelCase__ = param.view(*snake_case__ ) return param def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str , snake_case__: str ) -> Union[str, Any]: # The converted output model. UpperCAmelCase__ = {} # old versions did not store training args UpperCAmelCase__ = input_state_dict.get('args' , snake_case__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCAmelCase__ = ds_args.padded_vocab_size UpperCAmelCase__ = ds_args.max_position_embeddings UpperCAmelCase__ = ds_args.hidden_size UpperCAmelCase__ = ds_args.num_layers UpperCAmelCase__ = ds_args.num_attention_heads UpperCAmelCase__ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCAmelCase__ = config.n_head # The hidden_size per head. UpperCAmelCase__ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCAmelCase__ = input_state_dict['checkpoint_version'] else: UpperCAmelCase__ = 0.0 # The model. UpperCAmelCase__ = input_state_dict['model'] # The language model. UpperCAmelCase__ = model['language_model'] # The embeddings. UpperCAmelCase__ = lm['embedding'] # The word embeddings. UpperCAmelCase__ = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. UpperCAmelCase__ = word_embeddings[: config.vocab_size, :] UpperCAmelCase__ = word_embeddings # The position embeddings. UpperCAmelCase__ = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCAmelCase__ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. UpperCAmelCase__ = pos_embeddings # The transformer. UpperCAmelCase__ = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. UpperCAmelCase__ = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. UpperCAmelCase__ = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCAmelCase__ = layer_re.match(snake_case__ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCAmelCase__ = int(m.group(1 ) ) # The name of the operation. UpperCAmelCase__ = m.group(2 ) # Is it a weight or a bias? UpperCAmelCase__ = m.group(3 ) # The name of the layer. UpperCAmelCase__ = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): UpperCAmelCase__ = 'ln_1' if op_name.startswith('input' ) else 'ln_2' UpperCAmelCase__ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCAmelCase__ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , snake_case__ , snake_case__ ) UpperCAmelCase__ = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCAmelCase__ = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCAmelCase__ = masked_bias UpperCAmelCase__ = fix_query_key_value_ordering(snake_case__ , snake_case__ , 3 , snake_case__ , snake_case__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCAmelCase__ = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCAmelCase__ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCAmelCase__ = fix_query_key_value_ordering(snake_case__ , snake_case__ , 3 , snake_case__ , snake_case__ ) # Store. No change of shape. UpperCAmelCase__ = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCAmelCase__ = megatron_to_transformers[op_name] UpperCAmelCase__ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCAmelCase__ = megatron_to_transformers[op_name] UpperCAmelCase__ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCAmelCase__ = transformer['final_layernorm.weight'] UpperCAmelCase__ = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. UpperCAmelCase__ = word_embeddings # It should be done! return output_state_dict def UpperCamelCase_( ) -> Optional[Any]: # Create the argument parser. UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=snake_case__ , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=snake_case__ , help='An optional config json file describing the pre-trained model.' , ) UpperCAmelCase__ = parser.parse_args() # Extract the basename. UpperCAmelCase__ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' ) else: UpperCAmelCase__ = torch.load(args.path_to_checkpoint , map_location='cpu' ) UpperCAmelCase__ = input_state_dict.get('args' , snake_case__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCAmelCase__ = 'gelu_fast' elif ds_args.openai_gelu: UpperCAmelCase__ = 'gelu_new' else: UpperCAmelCase__ = 'gelu' else: # in the very early days this used to be "gelu_new" UpperCAmelCase__ = 'gelu_new' # Spell out all parameters in case the defaults change. UpperCAmelCase__ = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=snake_case__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type='cls_index' , summary_use_proj=snake_case__ , summary_activation=snake_case__ , summary_proj_to_labels=snake_case__ , summary_first_dropout=0.1 , scale_attn_weights=snake_case__ , use_cache=snake_case__ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: UpperCAmelCase__ = GPTaConfig.from_json_file(args.config_file ) UpperCAmelCase__ = ['GPT2LMHeadModel'] # Convert. print('Converting' ) UpperCAmelCase__ = convert_megatron_checkpoint(snake_case__ , snake_case__ , snake_case__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case__ , snake_case__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCAmelCase__ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCAmelCase__ = 'gpt2' elif tokenizer_type == "PretrainedFromHF": UpperCAmelCase__ = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: UpperCAmelCase__ = 'gpt2' UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase__ = type(snake_case__ ).__name__ UpperCAmelCase__ = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(snake_case__ ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(snake_case__ ) # Store the state_dict to file. UpperCAmelCase__ = os.path.join(snake_case__ , 'pytorch_model.bin' ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(snake_case__ , snake_case__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
335
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__(self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ) -> None: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = size if size is not None else {'shortest_edge': 224} UpperCAmelCase__ = get_size_dict(__a , default_to_square=__a ) UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(__a , default_to_square=__a , param_name='crop_size' ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ = do_convert_rgb def UpperCamelCase__ (self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase__ = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ (self , __a , __a , __a = None , **__a , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a ) def UpperCamelCase__ (self , __a , __a , __a = None , **__a , ) -> Any: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCamelCase__ (self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def UpperCamelCase__ (self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(__a , param_name='size' , default_to_square=__a ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(__a , param_name='crop_size' , default_to_square=__a ) UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase__ = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
335
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
1
from math import sqrt def UpperCamelCase_( snake_case__: int ) -> bool: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' must been an int and positive" UpperCAmelCase__ = True # 0 and 1 are none primes. if number <= 1: UpperCAmelCase__ = False for divisor in range(2 , int(round(sqrt(snake_case__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCAmelCase__ = False break # precondition assert isinstance(snake_case__ , snake_case__ ), "'status' must been from type bool" return status def UpperCamelCase_( snake_case__: str ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCAmelCase__ = list(range(2 , n + 1 ) ) UpperCAmelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCAmelCase__ = 0 # filters actual prime numbers. UpperCAmelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: int ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" UpperCAmelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(snake_case__ ): ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and number >= 0, "'number' must been an int and >= 0" UpperCAmelCase__ = [] # this list will be returns of the function. # potential prime number factors. UpperCAmelCase__ = 2 UpperCAmelCase__ = number if number == 0 or number == 1: ans.append(snake_case__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(snake_case__ ): while quotient != 1: if is_prime(snake_case__ ) and (quotient % factor == 0): ans.append(snake_case__ ) quotient /= factor else: factor += 1 else: ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = max(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: Dict ) -> List[Any]: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = min(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , snake_case__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , snake_case__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and (number > 2) and is_even(snake_case__ ) ), "'number' must been an int, even and > 2" UpperCAmelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCAmelCase__ = get_prime_numbers(snake_case__ ) UpperCAmelCase__ = len(snake_case__ ) # run variable for while-loops. UpperCAmelCase__ = 0 UpperCAmelCase__ = None # exit variable. for break up the loops UpperCAmelCase__ = True while i < len_pn and loop: UpperCAmelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCAmelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (len(snake_case__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Tuple ) -> Optional[Any]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 0 while numbera != 0: UpperCAmelCase__ = numbera % numbera UpperCAmelCase__ = numbera UpperCAmelCase__ = rest # precondition assert isinstance(snake_case__ , snake_case__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[Any] ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCAmelCase__ = prime_factorization(snake_case__ ) UpperCAmelCase__ = prime_factorization(snake_case__ ) elif numbera == 1 or numbera == 1: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = max(snake_case__ , snake_case__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(max(snake_case__ , snake_case__ ) ): ans *= n else: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCAmelCase__ = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCamelCase_( snake_case__: Union[str, Any] ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'number' must been a positive int" UpperCAmelCase__ = 0 UpperCAmelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(snake_case__ ): ans += 1 # precondition assert isinstance(snake_case__ , snake_case__ ) and is_prime( snake_case__ ), "'ans' must been a prime number and from type int" return ans def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple ) -> Tuple: assert ( is_prime(snake_case__ ) and is_prime(snake_case__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCAmelCase__ = p_number_a + 1 # jump to the next number UpperCAmelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 while number < p_number_a: ans.append(snake_case__ ) number += 1 # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and ans[0] != p_number_a and ans[len(snake_case__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCamelCase_( snake_case__: Tuple ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n >= 1), "'n' must been int and >= 1" UpperCAmelCase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(snake_case__ ) # precondition assert ans[0] == 1 and ans[len(snake_case__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCamelCase_( snake_case__: Any ) -> Optional[int]: assert isinstance(snake_case__ , snake_case__ ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCAmelCase__ = get_divisors(snake_case__ ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (divisors[0] == 1) and (divisors[len(snake_case__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCamelCase_( snake_case__: int , snake_case__: Tuple ) -> Optional[int]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCAmelCase__ = gcd(abs(snake_case__ ) , abs(snake_case__ ) ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCamelCase_( snake_case__: Any ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been a int and >= 0" UpperCAmelCase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCamelCase_( snake_case__: Any ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been an int and >= 0" UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 # this will be return for _ in range(n - 1 ): UpperCAmelCase__ = ans ans += fiba UpperCAmelCase__ = tmp return ans
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _UpperCamelCase = 3 def UpperCamelCase_( snake_case__: int ) -> int: print('Generating primitive root of p' ) while True: UpperCAmelCase__ = random.randrange(3 , snake_case__ ) if pow(snake_case__ , 2 , snake_case__ ) == 1: continue if pow(snake_case__ , snake_case__ , snake_case__ ) == 1: continue return g def UpperCamelCase_( snake_case__: int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) UpperCAmelCase__ = rabin_miller.generate_large_prime(snake_case__ ) # select large prime number. UpperCAmelCase__ = primitive_root(snake_case__ ) # one primitive root on modulo p. UpperCAmelCase__ = random.randrange(3 , snake_case__ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase__ = cryptomath.find_mod_inverse(pow(snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) UpperCAmelCase__ = (key_size, e_a, e_a, p) UpperCAmelCase__ = (key_size, d) return public_key, private_key def UpperCamelCase_( snake_case__: str , snake_case__: int ) -> None: if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('\nWARNING:' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase__ , UpperCAmelCase__ = generate_key(snake_case__ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , 'w' ) as fo: fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , 'w' ) as fo: fo.write(f"{private_key[0]},{private_key[1]}" ) def UpperCamelCase_( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
import datasets from .evaluate import evaluate _UpperCamelCase = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' _UpperCamelCase = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' _UpperCamelCase = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def UpperCamelCase__ (self , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCAmelCase__ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCAmelCase__ = evaluate(dataset=__a , predictions=__a ) return score
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
import os from pathlib import Path def UpperCamelCase_( ) -> List[Any]: from torch.utils.cpp_extension import load UpperCAmelCase__ = Path(snake_case__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' UpperCAmelCase__ = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , snake_case__ , with_cuda=snake_case__ , extra_include_paths=[str(snake_case__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Dict: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase__ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": _UpperCamelCase = Accelerator() _UpperCamelCase = (accelerator.state.process_index + 2, 10) _UpperCamelCase = torch.randint(0, 10, shape).to(accelerator.device) _UpperCamelCase = '''''' _UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _UpperCamelCase = logging.getLogger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__(self , __a ) -> Optional[Any]: """simple docstring""" if type(__a ) == dict: UpperCAmelCase__ = Namespace(**__a ) UpperCAmelCase__ = glue_output_modes[hparams.task] UpperCAmelCase__ = glue_tasks_num_labels[hparams.task] super().__init__(__a , __a , self.mode ) def UpperCamelCase__ (self , **__a ) -> Tuple: """simple docstring""" return self.model(**__a ) def UpperCamelCase__ (self , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None UpperCAmelCase__ = self(**__a ) UpperCAmelCase__ = outputs[0] UpperCAmelCase__ = self.trainer.lr_schedulers[0]['scheduler'] UpperCAmelCase__ = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.hparams UpperCAmelCase__ = processors[args.task]() UpperCAmelCase__ = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase__ = self._feature_file(__a ) if os.path.exists(__a ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __a ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) UpperCAmelCase__ = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase__ = convert_examples_to_features( __a , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __a ) torch.save(__a , __a ) def UpperCamelCase__ (self , __a , __a , __a = False ) -> DataLoader: """simple docstring""" UpperCAmelCase__ = 'dev' if mode == 'test' else mode UpperCAmelCase__ = self._feature_file(__a ) logger.info('Loading features from cached file %s' , __a ) UpperCAmelCase__ = torch.load(__a ) UpperCAmelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCAmelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__a , __a , __a , __a ) , batch_size=__a , shuffle=__a , ) def UpperCamelCase__ (self , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None UpperCAmelCase__ = self(**__a ) UpperCAmelCase__ , UpperCAmelCase__ = outputs[:2] UpperCAmelCase__ = logits.detach().cpu().numpy() UpperCAmelCase__ = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ (self , __a ) -> tuple: """simple docstring""" UpperCAmelCase__ = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase__ = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ = np.argmax(__a , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ = np.squeeze(__a ) UpperCAmelCase__ = np.concatenate([x['target'] for x in outputs] , axis=0 ) UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __a , __a )} UpperCAmelCase__ = dict(results.items() ) UpperCAmelCase__ = results return ret, preds_list, out_label_list def UpperCamelCase__ (self , __a ) -> dict: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(__a ) UpperCAmelCase__ = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ (self , __a ) -> dict: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(__a ) UpperCAmelCase__ = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ (__a , __a ) -> Any: """simple docstring""" BaseTransformer.add_model_specific_args(__a , __a ) parser.add_argument( '--max_seq_length' , default=128 , type=__a , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__a , required=__a , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__a , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase_( ) -> Tuple: UpperCAmelCase__ = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) UpperCAmelCase__ = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) UpperCAmelCase__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase__ = os.path.join( './results' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) UpperCAmelCase__ = GLUETransformer(snake_case__ ) UpperCAmelCase__ = generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=snake_case__ ) ) UpperCAmelCase__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
def UpperCamelCase_( snake_case__: float ) -> float: if edge <= 0 or not isinstance(snake_case__ , snake_case__ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase_( snake_case__: float ) -> float: if edge <= 0 or not isinstance(snake_case__ , snake_case__ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCamelCase = getLogger(__name__) _UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: str , snake_case__: int = 8 , snake_case__: str = DEFAULT_DEVICE , snake_case__: Tuple=False , snake_case__: Tuple="summarization" , snake_case__: List[Any]=None , **snake_case__: Optional[int] , ) -> Dict: UpperCAmelCase__ = Path(snake_case__ ).open('w' , encoding='utf-8' ) UpperCAmelCase__ = str(snake_case__ ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).to(snake_case__ ) if fpaa: UpperCAmelCase__ = model.half() UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. UpperCAmelCase__ = time.time() # update config with task specific params use_task_specific_params(snake_case__ , snake_case__ ) if prefix is None: UpperCAmelCase__ = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(snake_case__ , snake_case__ ) ) ): UpperCAmelCase__ = [prefix + text for text in examples_chunk] UpperCAmelCase__ = tokenizer(snake_case__ , return_tensors='pt' , truncation=snake_case__ , padding='longest' ).to(snake_case__ ) UpperCAmelCase__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case__ , ) UpperCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() UpperCAmelCase__ = int(time.time() - start_time ) # seconds UpperCAmelCase__ = len(snake_case__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCamelCase_( ) -> int: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def UpperCamelCase_( snake_case__: Dict=True ) -> List[Any]: UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=snake_case__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=snake_case__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=snake_case__ , required=snake_case__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=snake_case__ , required=snake_case__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' ) parser.add_argument( '--n_obs' , type=snake_case__ , default=-1 , required=snake_case__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=snake_case__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_known_args() UpperCAmelCase__ = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) UpperCAmelCase__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCAmelCase__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) UpperCAmelCase__ = generate_summaries_or_translations( snake_case__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case__ , ) if args.reference_path is None: return {} # Compute scores UpperCAmelCase__ = calculate_bleu if 'translation' in args.task else calculate_rouge UpperCAmelCase__ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCAmelCase__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case__ )] UpperCAmelCase__ = score_fn(snake_case__ , snake_case__ ) scores.update(snake_case__ ) if args.dump_args: scores.update(snake_case__ ) if args.info: UpperCAmelCase__ = args.info if verbose: print(snake_case__ ) if args.score_path is not None: json.dump(snake_case__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _UpperCamelCase = '''hf-internal-testing/tiny-random-bert''' _UpperCamelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') _UpperCamelCase = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: UpperCAmelCase__ = f.read() self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. UpperCAmelCase__ = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. UpperCAmelCase__ = cached_file(__a , __a , revision='9b8c223' ) self.assertEqual(__a , os.path.join(__a , 'snapshots' , __a , __a ) ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): UpperCAmelCase__ = cached_file('tiny-random-bert' , __a ) with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): UpperCAmelCase__ = cached_file(__a , __a , revision='aaaa' ) with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): UpperCAmelCase__ = cached_file(__a , 'conf' ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with self.assertRaisesRegex(__a , 'does not appear to have a file named' ): UpperCAmelCase__ = cached_file(__a , 'conf' ) with open(os.path.join(__a , 'refs' , 'main' ) ) as f: UpperCAmelCase__ = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , '.no_exist' , __a , 'conf' ) ) ) UpperCAmelCase__ = cached_file(__a , 'conf' , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) UpperCAmelCase__ = cached_file(__a , 'conf' , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) UpperCAmelCase__ = mock.Mock() UpperCAmelCase__ = 500 UpperCAmelCase__ = {} UpperCAmelCase__ = HTTPError UpperCAmelCase__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: UpperCAmelCase__ = cached_file(__a , 'conf' , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __a ) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , __a , revision='ahaha' ) UpperCAmelCase__ = get_file_from_repo('bert-base-cased' , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase__ = json.loads(open(__a , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = Path(__a ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(__a , 'a.txt' ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , 'b.txt' ) )
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """dandelin/vilt-b32-finetuned-vqa""" __SCREAMING_SNAKE_CASE = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __SCREAMING_SNAKE_CASE = """image_qa""" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering __SCREAMING_SNAKE_CASE = ["""image""", """text"""] __SCREAMING_SNAKE_CASE = ["""text"""] def __init__(self , *__a , **__a ) -> int: """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*__a , **__a ) def UpperCamelCase__ (self , __a , __a ) -> Tuple: """simple docstring""" return self.pre_processor(__a , __a , return_tensors='pt' ) def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__a ).logits def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = (3, 32, 128) UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) UpperCAmelCase__ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } UpperCAmelCase__ = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def UpperCamelCase__ (self , **__a ) -> Dict: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCAmelCase__ = Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) return image_input def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase__ = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) UpperCAmelCase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(__a , return_tensors='np' ) UpperCAmelCase__ = processor(images=__a , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = 'test' UpperCAmelCase__ = processor(text=__a ) UpperCAmelCase__ = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = 'test' UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.char_decode(__a ) UpperCAmelCase__ = tokenizer.batch_decode(__a ) UpperCAmelCase__ = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(__a , __a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = None UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = MgpstrProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = torch.randn(1 , 27 , 38 ) UpperCAmelCase__ = torch.randn(1 , 27 , 50257 ) UpperCAmelCase__ = torch.randn(1 , 27 , 30522 ) UpperCAmelCase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
from __future__ import annotations _UpperCamelCase = [] def UpperCamelCase_( snake_case__: list[list[int]] , snake_case__: int , snake_case__: int ) -> bool: for i in range(len(snake_case__ ) ): if board[row][i] == 1: return False for i in range(len(snake_case__ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , len(snake_case__ ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase_( snake_case__: list[list[int]] , snake_case__: int ) -> bool: if row >= len(snake_case__ ): solution.append(snake_case__ ) printboard(snake_case__ ) print() return True for i in range(len(snake_case__ ) ): if is_safe(snake_case__ , snake_case__ , snake_case__ ): UpperCAmelCase__ = 1 solve(snake_case__ , row + 1 ) UpperCAmelCase__ = 0 return False def UpperCamelCase_( snake_case__: list[list[int]] ) -> None: for i in range(len(snake_case__ ) ): for j in range(len(snake_case__ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _UpperCamelCase = 8 _UpperCamelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
335
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
1
import torch from diffusers import DiffusionPipeline class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a ) -> List[Any]: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a ) def __call__(self ) -> int: """simple docstring""" UpperCAmelCase__ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase__ = 1 UpperCAmelCase__ = self.unet(__a , __a ).sample UpperCAmelCase__ = self.scheduler.step(__a , __a , __a ).prev_sample UpperCAmelCase__ = scheduler_output - scheduler_output + torch.ones_like(__a ) return result
335
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
1
import torch from torch import nn class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a=1 , __a=False ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = n_token UpperCAmelCase__ = d_embed UpperCAmelCase__ = d_proj UpperCAmelCase__ = cutoffs + [n_token] UpperCAmelCase__ = [0] + self.cutoffs UpperCAmelCase__ = div_val UpperCAmelCase__ = self.cutoffs[0] UpperCAmelCase__ = len(self.cutoffs ) - 1 UpperCAmelCase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase__ = nn.ModuleList() UpperCAmelCase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) ) else: self.out_projs.append(__a ) self.out_layers.append(nn.Linear(__a , __a ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) ) self.out_layers.append(nn.Linear(__a , r_idx - l_idx ) ) UpperCAmelCase__ = keep_order def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Any: """simple docstring""" if proj is None: UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ = nn.functional.linear(__a , proj.t().contiguous() ) UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase__ (self , __a , __a=None , __a=False ) -> List[str]: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ = hidden[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase__ = labels != -100 UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ = ( -nn.functional.log_softmax(__a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i].weight UpperCAmelCase__ = self.out_layers[i].bias if i == 0: UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__a ) biases.append(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) if labels is None: UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] + self.cutoffs for i in range(len(__a ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ = labels.index_select(0 , __a ) - l_idx UpperCAmelCase__ = head_logprob.index_select(0 , __a ) UpperCAmelCase__ = hidden.index_select(0 , __a ) else: UpperCAmelCase__ = hidden if i == 0: if labels is not None: UpperCAmelCase__ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , __a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" if self.n_clusters == 0: UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__a , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i].weight UpperCAmelCase__ = self.out_layers[i].bias if i == 0: UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__a ) biases.append(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = [0] + self.cutoffs for i in range(len(__a ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ = logprob_i return out
335
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
1
import math class lowercase : '''simple docstring''' def __init__(self , __a=0 ) -> str: # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCAmelCase__ = n UpperCAmelCase__ = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # adjacency matrix for weight UpperCAmelCase__ = [ [math.inf for j in range(0 , __a )] for i in range(0 , __a ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = w def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase__ (self , __a , __a ) -> Tuple: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": _UpperCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
335
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase : '''simple docstring''' def __init__(self , __a , __a=sys.maxsize ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'bilinear' UpperCAmelCase__ = max_size UpperCAmelCase__ = short_edge_length def __call__(self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ = size * 1.0 / min(__a , __a ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ = scale * h, size if max(__a , __a ) > self.max_size: UpperCAmelCase__ = self.max_size * 1.0 / max(__a , __a ) UpperCAmelCase__ = newh * scale UpperCAmelCase__ = neww * scale UpperCAmelCase__ = int(neww + 0.5 ) UpperCAmelCase__ = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ = Image.fromarray(__a ) UpperCAmelCase__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ = np.asarray(__a ) else: UpperCAmelCase__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ = nn.functional.interpolate( __a , (newh, neww) , mode=self.interp_method , align_corners=__a ).squeeze(0 ) img_augs.append(__a ) return img_augs class lowercase : '''simple docstring''' def __init__(self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ = cfg.INPUT.FORMAT UpperCAmelCase__ = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ = cfg.PAD_VALUE UpperCAmelCase__ = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ = cfg.MODEL.DEVICE UpperCAmelCase__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ = lambda __a : (x - self.pixel_mean) / self.pixel_std def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = tuple(max(__a ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ = [im.shape[-2:] for im in images] UpperCAmelCase__ = [ nn.functional.pad( __a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__a , __a ) ] return torch.stack(__a ), torch.tensor(__a ) def __call__(self , __a , __a=False ) -> int: """simple docstring""" with torch.no_grad(): if not isinstance(__a , __a ): UpperCAmelCase__ = [images] if single_image: assert len(__a ) == 1 for i in range(len(__a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__a , images.pop(__a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __a , torch.as_tensor(img_tensorize(images.pop(__a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ = self.aug(__a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ = [self.normalizer(__a ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ = self.pad(__a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ = torch.true_divide(__a , __a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] ) -> Tuple: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase_( snake_case__: List[str] , snake_case__: Tuple[int, int] ) -> Dict: assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
335
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase_( snake_case__: str ) -> str: UpperCAmelCase__ = SwinConfig(image_size=1_92 ) if "base" in model_name: UpperCAmelCase__ = 6 UpperCAmelCase__ = 1_28 UpperCAmelCase__ = (2, 2, 18, 2) UpperCAmelCase__ = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase__ = 12 UpperCAmelCase__ = 1_92 UpperCAmelCase__ = (2, 2, 18, 2) UpperCAmelCase__ = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) UpperCAmelCase__ = window_size UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads return config def UpperCamelCase_( snake_case__: Optional[Any] ) -> Dict: if "encoder.mask_token" in name: UpperCAmelCase__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: UpperCAmelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCAmelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCAmelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": UpperCAmelCase__ = 'layernorm.weight' if name == "encoder.norm.bias": UpperCAmelCase__ = 'layernorm.bias' if "decoder" in name: pass else: UpperCAmelCase__ = 'swin.' + name return name def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple ) -> Optional[int]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase__ = key.split('.' ) UpperCAmelCase__ = int(key_split[2] ) UpperCAmelCase__ = int(key_split[4] ) UpperCAmelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple , snake_case__: List[str] , snake_case__: Tuple , snake_case__: Dict ) -> Dict: UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = get_swin_config(snake_case__ ) UpperCAmelCase__ = SwinForMaskedImageModeling(snake_case__ ) model.eval() UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) UpperCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) UpperCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) UpperCAmelCase__ = image_processor(images=snake_case__ , return_tensors='pt' ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(f"microsoft/{model_name}" ) image_processor.push_to_hub(f"microsoft/{model_name}" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
335
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , __a = 128 , __a = 256 , __a = 20_00.0 , __a = 768 , __a = 12 , __a = 12 , __a = 64 , __a = 2048 , __a = 0.1 , ) -> Tuple: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Sequential( nn.Linear(__a , d_model * 4 , bias=__a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__a ) , nn.SiLU() , ) UpperCAmelCase__ = nn.Embedding(__a , __a ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase__ = nn.Dropout(p=__a ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(__a ): # FiLM conditional T5 decoder UpperCAmelCase__ = DecoderLayer(d_model=__a , d_kv=__a , num_heads=__a , d_ff=__a , dropout_rate=__a ) self.decoders.append(__a ) UpperCAmelCase__ = TaLayerNorm(__a ) UpperCAmelCase__ = nn.Dropout(p=__a ) UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a ) def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ (self , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase__ = self.conditioning_emb(__a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase__ = torch.broadcast_to( torch.arange(__a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase__ = self.position_encoding(__a ) UpperCAmelCase__ = self.continuous_inputs_projection(__a ) inputs += position_encodings UpperCAmelCase__ = self.dropout(__a ) # decoder: No padding present. UpperCAmelCase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase__ = [(x, self.encoder_decoder_mask(__a , __a )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase__ = lyr( __a , conditioning_emb=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )[0] UpperCAmelCase__ = self.decoder_norm(__a ) UpperCAmelCase__ = self.post_dropout(__a ) UpperCAmelCase__ = self.spec_out(__a ) return spec_out class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a , __a=1E-6 ) -> Optional[int]: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a , layer_norm_epsilon=__a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__a , d_ff=__a , dropout_rate=__a , layer_norm_epsilon=__a ) ) def UpperCamelCase__ (self , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.layer[0]( __a , conditioning_emb=__a , attention_mask=__a , ) if encoder_hidden_states is not None: UpperCAmelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to( encoder_hidden_states.dtype ) UpperCAmelCase__ = self.layer[1]( __a , key_value_states=__a , attention_mask=__a , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase__ = self.layer[-1](__a , __a ) return (hidden_states,) class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase__ = TaLayerNorm(__a ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a ) UpperCAmelCase__ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a ) UpperCAmelCase__ = nn.Dropout(__a ) def UpperCamelCase__ (self , __a , __a=None , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.layer_norm(__a ) if conditioning_emb is not None: UpperCAmelCase__ = self.FiLMLayer(__a , __a ) # Self-attention block UpperCAmelCase__ = self.attention(__a ) UpperCAmelCase__ = hidden_states + self.dropout(__a ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a ) UpperCAmelCase__ = TaLayerNorm(__a , eps=__a ) UpperCAmelCase__ = nn.Dropout(__a ) def UpperCamelCase__ (self , __a , __a=None , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.layer_norm(__a ) UpperCAmelCase__ = self.attention( __a , encoder_hidden_states=__a , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase__ = hidden_states + self.dropout(__a ) return layer_output class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = TaDenseGatedActDense(d_model=__a , d_ff=__a , dropout_rate=__a ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a ) UpperCAmelCase__ = TaLayerNorm(__a , eps=__a ) UpperCAmelCase__ = nn.Dropout(__a ) def UpperCamelCase__ (self , __a , __a=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.layer_norm(__a ) if conditioning_emb is not None: UpperCAmelCase__ = self.film(__a , __a ) UpperCAmelCase__ = self.DenseReluDense(__a ) UpperCAmelCase__ = hidden_states + self.dropout(__a ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a ) -> int: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a ) UpperCAmelCase__ = nn.Dropout(__a ) UpperCAmelCase__ = NewGELUActivation() def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.act(self.wi_a(__a ) ) UpperCAmelCase__ = self.wi_a(__a ) UpperCAmelCase__ = hidden_gelu * hidden_linear UpperCAmelCase__ = self.dropout(__a ) UpperCAmelCase__ = self.wo(__a ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a=1E-6 ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.ones(__a ) ) UpperCAmelCase__ = eps def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__a ) UpperCAmelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase ( nn.Module ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__a , 3.0 )) )) class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a ) -> Optional[int]: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(__a , out_features * 2 , bias=__a ) def UpperCamelCase__ (self , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = self.scale_bias(__a ) UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__a , 2 , -1 ) UpperCAmelCase__ = x * (1 + scale) + shift return x
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') _UpperCamelCase = parser.parse_args() if args.model_type == "bert": _UpperCamelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCamelCase = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') _UpperCamelCase = model.state_dict() _UpperCamelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCamelCase = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCamelCase = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCamelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCamelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCamelCase = state_dict['''cls.predictions.decoder.weight'''] _UpperCamelCase = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCamelCase = state_dict[F"""cls.predictions.transform.dense.{w}"""] _UpperCamelCase = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
335
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase_( snake_case__: List[Any] , snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[int] ) -> Optional[int]: UpperCAmelCase__ = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase__ = { 'wmt16-en-de-dist-12-1': [2_8.3, 2_7.5_2], 'wmt16-en-de-dist-6-1': [2_7.4, 2_7.1_1], 'wmt16-en-de-12-1': [2_6.9, 2_5.7_5], } UpperCAmelCase__ = f"{src_lang}-{tgt_lang}" UpperCAmelCase__ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=snake_case__ , exist_ok=snake_case__ ) UpperCAmelCase__ = os.path.join(snake_case__ , 'README.md' ) print(f"Generating {path}" ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(snake_case__ ) # make sure we are under the root of the project _UpperCamelCase = Path(__file__).resolve().parent.parent.parent _UpperCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _UpperCamelCase = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
335
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
1
import os def UpperCamelCase_( snake_case__: str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(snake_case__ ) , snake_case__ ) ) as in_file: UpperCAmelCase__ = in_file.read() UpperCAmelCase__ = [[int(snake_case__ ) for cell in row.split(',' )] for row in data.strip().splitlines()] UpperCAmelCase__ = [[0 for cell in row] for row in grid] UpperCAmelCase__ = len(grid[0] ) UpperCAmelCase__ = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )] UpperCAmelCase__ = grid[0][0] for i in range(1 , snake_case__ ): UpperCAmelCase__ = grid[0][i] + dp[0][i - 1] for i in range(1 , snake_case__ ): UpperCAmelCase__ = grid[i][0] + dp[i - 1][0] for i in range(1 , snake_case__ ): for j in range(1 , snake_case__ ): UpperCAmelCase__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
335
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
1
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int: while b: UpperCAmelCase__ , UpperCAmelCase__ = b, a % b return a def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int: return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b ) def UpperCamelCase_( ) -> Tuple: print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCAmelCase__ = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } UpperCAmelCase__ = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def UpperCamelCase__ (self , **__a ) -> List[str]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self , **__a ) -> int: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase__ = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(__a , return_tensors='np' ) UpperCAmelCase__ = processor(images=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = processor(text=__a ) UpperCAmelCase__ = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(__a ): processor() def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(__a ) UpperCAmelCase__ = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase_( snake_case__: str , snake_case__: str , **snake_case__: Tuple ) -> Optional[Any]: UpperCAmelCase__ = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _UpperCamelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCamelCase_( ) -> Union[str, Any]: UpperCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase__ = bs[:] UpperCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__ , snake_case__ ) ) def UpperCamelCase_( snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> int: """simple docstring""" UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__a ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ = errors # how to handle errors in decoding UpperCAmelCase__ = bytes_to_unicode() UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = {} UpperCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = get_pairs(__a ) if not pairs: return token while True: UpperCAmelCase__ = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__a ): try: UpperCAmelCase__ = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = new_word if len(__a ) == 1: break else: UpperCAmelCase__ = get_pairs(__a ) UpperCAmelCase__ = ' '.join(__a ) UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] for token in re.findall(self.pat , __a ): UpperCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" return self.decoder.get(__a ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ''.join(__a ) UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) UpperCAmelCase__ = 0 with open(__a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ (self , __a , __a=False , **__a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): UpperCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ (self , __a , __a = None , __a = PaddingStrategy.DO_NOT_PAD , __a = None , __a = None , ) -> dict: """simple docstring""" UpperCAmelCase__ = super()._pad( encoded_inputs=__a , max_length=__a , padding_strategy=__a , pad_to_multiple_of=__a , return_attention_mask=__a , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(__a ) if needs_to_be_padded: UpperCAmelCase__ = len(__a ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import argparse import os import re _UpperCamelCase = '''src/diffusers''' # Pattern that looks at the indentation in a line. _UpperCamelCase = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. _UpperCamelCase = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCamelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. _UpperCamelCase = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCamelCase = re.compile(R'''\[([^\]]+)\]''') def UpperCamelCase_( snake_case__: Tuple ) -> List[str]: UpperCAmelCase__ = _re_indent.search(snake_case__ ) return "" if search is None else search.groups()[0] def UpperCamelCase_( snake_case__: Any , snake_case__: int="" , snake_case__: int=None , snake_case__: Any=None ) -> List[Any]: UpperCAmelCase__ = 0 UpperCAmelCase__ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(snake_case__ ): index += 1 UpperCAmelCase__ = ['\n'.join(lines[:index] )] else: UpperCAmelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase__ = [lines[index]] index += 1 while index < len(snake_case__ ) and (end_prompt is None or not lines[index].startswith(snake_case__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(snake_case__ ) ) if index < len(snake_case__ ) - 1: UpperCAmelCase__ = [lines[index + 1]] index += 1 else: UpperCAmelCase__ = [] else: blocks.append('\n'.join(snake_case__ ) ) UpperCAmelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case__ ) > 0: blocks.append('\n'.join(snake_case__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict: def _inner(snake_case__: str ): return key(snake_case__ ).lower().replace('_' , '' ) return _inner def UpperCamelCase_( snake_case__: int , snake_case__: List[Any]=None ) -> int: # If no key is provided, we use a noop. def noop(snake_case__: Union[str, Any] ): return x if key is None: UpperCAmelCase__ = noop # Constants are all uppercase, they go first. UpperCAmelCase__ = [obj for obj in objects if key(snake_case__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase__ = [obj for obj in objects if key(snake_case__ )[0].isupper() and not key(snake_case__ ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase__ = [obj for obj in objects if not key(snake_case__ )[0].isupper()] UpperCAmelCase__ = ignore_underscore(snake_case__ ) return sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) def UpperCamelCase_( snake_case__: Optional[Any] ) -> int: # This inner function sort imports between [ ]. def _replace(snake_case__: Dict ): UpperCAmelCase__ = match.groups()[0] if "," not in imports: return f"[{imports}]" UpperCAmelCase__ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(snake_case__ )] ) + "]" UpperCAmelCase__ = import_statement.split('\n' ) if len(snake_case__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase__ = 2 if lines[1].strip() == '[' else 1 UpperCAmelCase__ = [(i, _re_strip_line.search(snake_case__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase__ = sort_objects(snake_case__ , key=lambda snake_case__ : x[1] ) UpperCAmelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase__ = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCAmelCase__ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] UpperCAmelCase__ = get_indent(lines[1] ) + ', '.join([f"\"{k}\"" for k in sort_objects(snake_case__ )] ) return "\n".join(snake_case__ ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase__ = _re_bracket_content.sub(_replace , snake_case__ ) return import_statement def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any]=True ) -> Optional[int]: with open(snake_case__ , 'r' ) as f: UpperCAmelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase__ = split_code_in_indented_blocks( snake_case__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase__ = main_blocks[block_idx] UpperCAmelCase__ = block.split('\n' ) # Get to the start of the imports. UpperCAmelCase__ = 0 while line_idx < len(snake_case__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase__ = len(snake_case__ ) else: line_idx += 1 if line_idx >= len(snake_case__ ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase__ = '\n'.join(block_lines[line_idx:-1] ) UpperCAmelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase__ = split_code_in_indented_blocks(snake_case__ , indent_level=snake_case__ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase__ = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase__ = [(pattern.search(snake_case__ ).groups()[0] if pattern.search(snake_case__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase__ = [(i, key) for i, key in enumerate(snake_case__ ) if key is not None] UpperCAmelCase__ = [x[0] for x in sorted(snake_case__ , key=lambda snake_case__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase__ = 0 UpperCAmelCase__ = [] for i in range(len(snake_case__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case__ ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase__ = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case__ ): if check_only: return True else: print(f"Overwriting {file}." ) with open(snake_case__ , 'w' ) as f: f.write('\n'.join(snake_case__ ) ) def UpperCamelCase_( snake_case__: Optional[Any]=True ) -> Tuple: UpperCAmelCase__ = [] for root, _, files in os.walk(snake_case__ ): if "__init__.py" in files: UpperCAmelCase__ = sort_imports(os.path.join(snake_case__ , '__init__.py' ) , check_only=snake_case__ ) if result: UpperCAmelCase__ = [os.path.join(snake_case__ , '__init__.py' )] if len(snake_case__ ) > 0: raise ValueError(f"Would overwrite {len(snake_case__ )} files, run `make style`." ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _UpperCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , ) -> Optional[int]: """simple docstring""" super().__init__() UpperCAmelCase__ = value_function UpperCAmelCase__ = unet UpperCAmelCase__ = scheduler UpperCAmelCase__ = env UpperCAmelCase__ = env.get_dataset() UpperCAmelCase__ = {} for key in self.data.keys(): try: UpperCAmelCase__ = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase__ = {} for key in self.data.keys(): try: UpperCAmelCase__ = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase__ = env.observation_space.shape[0] UpperCAmelCase__ = env.action_space.shape[0] def UpperCamelCase__ (self , __a , __a ) -> Optional[int]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ (self , __a , __a ) -> Any: """simple docstring""" return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" if type(__a ) is dict: return {k: self.to_torch(__a ) for k, v in x_in.items()} elif torch.is_tensor(__a ): return x_in.to(self.unet.device ) return torch.tensor(__a , device=self.unet.device ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" for key, val in cond.items(): UpperCAmelCase__ = val.clone() return x_in def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = x.shape[0] UpperCAmelCase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase__ = torch.full((batch_size,) , __a , device=self.unet.device , dtype=torch.long ) for _ in range(__a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase__ = self.value_function(x.permute(0 , 2 , 1 ) , __a ).sample UpperCAmelCase__ = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase__ = self.scheduler._get_variance(__a ) UpperCAmelCase__ = torch.exp(0.5 * posterior_variance ) UpperCAmelCase__ = model_std * grad UpperCAmelCase__ = 0 UpperCAmelCase__ = x.detach() UpperCAmelCase__ = x + scale * grad UpperCAmelCase__ = self.reset_xa(__a , __a , self.action_dim ) UpperCAmelCase__ = self.unet(x.permute(0 , 2 , 1 ) , __a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase__ = self.scheduler.step(__a , __a , __a , predict_epsilon=__a )['prev_sample'] # apply conditions to the trajectory (set the initial state) UpperCAmelCase__ = self.reset_xa(__a , __a , self.action_dim ) UpperCAmelCase__ = self.to_torch(__a ) return x, y def __call__(self , __a , __a=64 , __a=32 , __a=2 , __a=0.1 ) -> str: """simple docstring""" UpperCAmelCase__ = self.normalize(__a , 'observations' ) UpperCAmelCase__ = obs[None].repeat(__a , axis=0 ) UpperCAmelCase__ = {0: self.to_torch(__a )} UpperCAmelCase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase__ = randn_tensor(__a , device=self.unet.device ) UpperCAmelCase__ = self.reset_xa(__a , __a , self.action_dim ) UpperCAmelCase__ = self.to_torch(__a ) # run the diffusion process UpperCAmelCase__ , UpperCAmelCase__ = self.run_diffusion(__a , __a , __a , __a ) # sort output trajectories by value UpperCAmelCase__ = y.argsort(0 , descending=__a ).squeeze() UpperCAmelCase__ = x[sorted_idx] UpperCAmelCase__ = sorted_values[:, :, : self.action_dim] UpperCAmelCase__ = actions.detach().cpu().numpy() UpperCAmelCase__ = self.de_normalize(__a , key='actions' ) # select the action with the highest value if y is not None: UpperCAmelCase__ = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase__ = np.random.randint(0 , __a ) UpperCAmelCase__ = denorm_actions[selected_index, 0] return denorm_actions
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" return "lower newer", "lower newer" def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def UpperCamelCase__ (self , __a=15 ) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase__ = ('This is a simple input', 'This is a pair') UpperCAmelCase__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class lowercase ( _UpperCamelCase ): '''simple docstring''' pass
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _UpperCamelCase = { '''ctrl''': 256, } _UpperCamelCase = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def UpperCamelCase_( snake_case__: str ) -> Dict: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char UpperCAmelCase__ = set(snake_case__ ) return pairs class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = CONTROL_CODES def __init__(self , __a , __a , __a="<unk>" , **__a ) -> Optional[int]: """simple docstring""" super().__init__(unk_token=__a , **__a ) with open(__a , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__a ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(__a , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in merges] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = {} @property def UpperCamelCase__ (self ) -> str: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase__ = get_pairs(__a ) if not pairs: return token while True: UpperCAmelCase__ = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__a ): try: UpperCAmelCase__ = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__a ) UpperCAmelCase__ = new_word if len(__a ) == 1: break else: UpperCAmelCase__ = get_pairs(__a ) UpperCAmelCase__ = '@@ '.join(__a ) UpperCAmelCase__ = word[:-4] UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = re.findall(r'\S+\n?' , __a ) for token in words: split_tokens.extend(list(self.bpe(__a ).split(' ' ) ) ) return split_tokens def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = ' '.join(__a ).replace('@@ ' , '' ).strip() return out_string def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) UpperCAmelCase__ = 0 with open(__a , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1