code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_UpperCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SpeechEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FlaxSpeechEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_UpperCamelCase = get_logger()
_UpperCamelCase = None
class lowercase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ):
'''simple docstring'''
def __init__(self , __a=None , __a=None , **__a ) -> Tuple:
"""simple docstring"""
super().__init__(features=a__ )
import jax
from jaxlib.xla_client import Device
if isinstance(a__ , a__ ):
raise ValueError(
F"Expected {device} to be a `str` not {type(a__ )}, as `jaxlib.xla_extension.Device` "
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
UpperCAmelCase__ = device if isinstance(a__ , a__ ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase__ = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"Device with string identifier {self.device} not listed among the available "
F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default "
F"device: {str(jax.devices()[0] )}." )
UpperCAmelCase__ = str(jax.devices()[0] )
UpperCAmelCase__ = jnp_array_kwargs
@staticmethod
def UpperCamelCase__ () -> Dict[str, "jaxlib.xla_extension.Device"]:
"""simple docstring"""
import jax
return {str(a__ ): device for device in jax.devices()}
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(a__ , a__ ) and column:
if all(
isinstance(a__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(a__ , axis=0 )
return column
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(a__ , (str, bytes, type(a__ )) ):
return value
elif isinstance(a__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase__ = {}
if isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase__ = {'dtype': jnp.intaa}
else:
UpperCAmelCase__ = {'dtype': jnp.intaa}
elif isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase__ = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(a__ , PIL.Image.Image ):
UpperCAmelCase__ = np.asarray(a__ )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase__ = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(a__ , **{**default_dtype, **self.jnp_array_kwargs} )
def UpperCamelCase__ (self , __a ) -> Dict:
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(a__ , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(a__ , '__array__' ) and not isinstance(a__ , jax.Array ):
UpperCAmelCase__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(a__ , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] )
elif isinstance(a__ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] )
return self._tensorize(a__ )
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
return map_nested(self._recursive_tensorize , a__ , map_list=a__ )
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(a__ )
UpperCAmelCase__ = self.python_features_decoder.decode_row(a__ )
return self.recursive_tensorize(a__ )
def UpperCamelCase__ (self , __a ) -> "jax.Array":
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(a__ )
UpperCAmelCase__ = self.python_features_decoder.decode_column(a__ , pa_table.column_names[0] )
UpperCAmelCase__ = self.recursive_tensorize(a__ )
UpperCAmelCase__ = self._consolidate(a__ )
return column
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(a__ )
UpperCAmelCase__ = self.python_features_decoder.decode_batch(a__ )
UpperCAmelCase__ = self.recursive_tensorize(a__ )
for column_name in batch:
UpperCAmelCase__ = self._consolidate(batch[column_name] )
return batch
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
_UpperCamelCase = 9.8_0_6_6_5
def UpperCamelCase_( snake_case__: Any , snake_case__: Union[str, Any] , snake_case__: Optional[int] = g ) -> List[str]:
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_UpperCamelCase = random.Random()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: str=1.0 , snake_case__: Optional[Any]=None , snake_case__: Tuple=None ) -> Dict:
if rng is None:
UpperCAmelCase__ = global_rng
UpperCAmelCase__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=7 , __a=400 , __a=2000 , __a=24 , __a=24 , __a=0.0 , __a=16000 , __a=True , __a=True , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = min_seq_length
UpperCAmelCase__ = max_seq_length
UpperCAmelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase__ = feature_size
UpperCAmelCase__ = num_mel_bins
UpperCAmelCase__ = padding_value
UpperCAmelCase__ = sampling_rate
UpperCAmelCase__ = return_attention_mask
UpperCAmelCase__ = do_normalize
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def UpperCamelCase__ (self , __a=False , __a=False ) -> str:
"""simple docstring"""
def _flatten(__a ):
return list(itertools.chain(*_A ) )
if equal_length:
UpperCAmelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCAmelCase__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCAmelCase__ = [np.asarray(_A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractor if is_speech_available() else None
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SpeechaTextFeatureExtractionTester(self )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = [np.asarray(_A ) for speech_input in speech_inputs]
# Test feature size
UpperCAmelCase__ = feature_extractor(_A , padding=_A , return_tensors='np' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
UpperCAmelCase__ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features
UpperCAmelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features
self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) )
# Test batched
UpperCAmelCase__ = feature_extractor(_A , return_tensors='np' ).input_features
UpperCAmelCase__ = feature_extractor(_A , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(_A , _A ):
self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCAmelCase__ = np.asarray(_A )
UpperCAmelCase__ = feature_extractor(_A , return_tensors='np' ).input_features
UpperCAmelCase__ = feature_extractor(_A , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(_A , _A ):
self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = ['longest', 'max_length', 'do_not_pad']
UpperCAmelCase__ = [None, 16, None]
for max_length, padding in zip(_A , _A ):
UpperCAmelCase__ = feature_extractor(
_A , padding=_A , max_length=_A , return_attention_mask=_A )
UpperCAmelCase__ = inputs.input_features
UpperCAmelCase__ = inputs.attention_mask
UpperCAmelCase__ = [np.sum(_A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = ['longest', 'max_length', 'do_not_pad']
UpperCAmelCase__ = [None, 16, None]
for max_length, padding in zip(_A , _A ):
UpperCAmelCase__ = feature_extractor(
_A , max_length=_A , padding=_A , return_tensors='np' , return_attention_mask=_A )
UpperCAmelCase__ = inputs.input_features
UpperCAmelCase__ = inputs.attention_mask
UpperCAmelCase__ = [np.sum(_A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = feature_extractor(
_A , padding='max_length' , max_length=4 , truncation=_A , return_tensors='np' , return_attention_mask=_A , )
UpperCAmelCase__ = inputs.input_features
UpperCAmelCase__ = inputs.attention_mask
UpperCAmelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = feature_extractor(
_A , padding='longest' , max_length=4 , truncation=_A , return_tensors='np' , return_attention_mask=_A , )
UpperCAmelCase__ = inputs.input_features
UpperCAmelCase__ = inputs.attention_mask
UpperCAmelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
UpperCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase__ = feature_extractor(
_A , padding='longest' , max_length=16 , truncation=_A , return_tensors='np' , return_attention_mask=_A , )
UpperCAmelCase__ = inputs.input_features
UpperCAmelCase__ = inputs.attention_mask
UpperCAmelCase__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
import torch
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = np.random.rand(100 , 32 ).astype(np.floataa )
UpperCAmelCase__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
UpperCAmelCase__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
from datasets import load_dataset
UpperCAmelCase__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
UpperCAmelCase__ = ds.sort('id' ).select(range(_A ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = np.array([
-1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41,
-1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28,
-1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25,
] )
# fmt: on
UpperCAmelCase__ = self._load_datasamples(1 )
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ = feature_extractor(_A , return_tensors='pt' ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , _A , atol=1E-4 ) )
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def UpperCamelCase_( snake_case__: Dict , snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: Union[str, Any] ) -> Tuple:
for attribute in key.split('.' ):
UpperCAmelCase__ = getattr(_A , _A )
if weight_type is not None:
UpperCAmelCase__ = getattr(_A , _A ).shape
else:
UpperCAmelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def UpperCamelCase_( snake_case__: int , snake_case__: str , snake_case__: Optional[int] ) -> List[str]:
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
_A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , )
UpperCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(_A )[0].split('.' )[-2]
UpperCAmelCase__ = mapped_key.replace('*' , _A )
if "weight_g" in name:
UpperCAmelCase__ = 'weight_g'
elif "weight_v" in name:
UpperCAmelCase__ = 'weight_v'
elif "weight" in name:
UpperCAmelCase__ = 'weight'
elif "bias" in name:
UpperCAmelCase__ = 'bias'
else:
UpperCAmelCase__ = None
set_recursively(_A , _A , _A , _A , _A )
continue
if not is_used:
unused_weights.append(_A )
logger.warning(f"Unused weights: {unused_weights}" )
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str , snake_case__: Optional[int] , snake_case__: Dict , snake_case__: Tuple ) -> Optional[Any]:
UpperCAmelCase__ = full_name.split('conv_layers.' )[-1]
UpperCAmelCase__ = name.split('.' )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(_A )
@torch.no_grad()
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Dict , snake_case__: str=None , snake_case__: Tuple=None , snake_case__: Tuple=True ) -> List[str]:
if config_path is not None:
UpperCAmelCase__ = HubertConfig.from_pretrained(_A )
else:
UpperCAmelCase__ = HubertConfig()
if is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(_A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(_A , 'vocab.json' )
if not os.path.isdir(_A ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) )
return
os.makedirs(_A , exist_ok=_A )
with open(_A , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , _A )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
_A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , )
UpperCAmelCase__ = True if config.feat_extract_norm == 'layer' else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A )
processor.save_pretrained(_A )
UpperCAmelCase__ = HubertForCTC(_A )
else:
UpperCAmelCase__ = HubertModel(_A )
if is_finetuned:
UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(_A , _A , _A )
hf_wavavec.save_pretrained(_A )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
import numpy as np
import datasets
_UpperCamelCase = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
_UpperCamelCase = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
_UpperCamelCase = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ),
} ) , )
def UpperCamelCase__ (self , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = np.array(A__ )
UpperCAmelCase__ = np.array(A__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('Expected `X` to be a 2D vector' )
if len(reference_distribution.shape ) != 2:
raise ValueError('Expected `reference_distribution` to be a 2D vector' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ = X - np.mean(A__ )
UpperCAmelCase__ = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ = np.linalg.inv(A__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ = np.linalg.pinv(A__ )
UpperCAmelCase__ = np.dot(A__ , A__ )
UpperCAmelCase__ = np.dot(A__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def UpperCamelCase_( snake_case__: Optional[int] ) -> Any:
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
_UpperCamelCase = '''\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'''
class lowercase ( __a ):
'''simple docstring'''
@staticmethod
def UpperCamelCase__ (__a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = parser.add_parser(
'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , )
train_parser.add_argument('--model_type' , type=a__ , required=a__ , help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint' , type=a__ , required=a__ , help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output' , type=a__ , required=a__ , help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config' , type=a__ , default='' , help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name' , type=a__ , default=a__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , )
train_parser.set_defaults(func=a__ )
def __init__(self , __a , __a , __a , __a , __a , *__a , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = logging.get_logger('transformers-cli/converting' )
self._logger.info(F"Loading model {model_type}" )
UpperCAmelCase__ = model_type
UpperCAmelCase__ = tf_checkpoint
UpperCAmelCase__ = pytorch_dump_output
UpperCAmelCase__ = config
UpperCAmelCase__ = finetuning_task_name
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(a__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''
else:
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''
convert_transfo_xl_checkpoint_to_pytorch(
a__ , self._config , self._pytorch_dump_output , a__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(a__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase ( lowerCamelCase__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : str = (EulerDiscreteScheduler,)
__SCREAMING_SNAKE_CASE : List[str] = 10
def UpperCamelCase__ (self , **__a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.00_01,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**__A )
return config
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=__A )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=__A , beta_end=__A )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__A )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(__A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase__ = scheduler.scale_model_input(__A , __A )
UpperCAmelCase__ = model(__A , __A )
UpperCAmelCase__ = scheduler.step(__A , __A , __A , generator=__A )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(__A ) )
UpperCAmelCase__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.01_31 ) < 1E-3
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(prediction_type='v_prediction' )
UpperCAmelCase__ = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(__A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase__ = scheduler.scale_model_input(__A , __A )
UpperCAmelCase__ = model(__A , __A )
UpperCAmelCase__ = scheduler.step(__A , __A , __A , generator=__A )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(__A ) )
UpperCAmelCase__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 0.00_02 ) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**__A )
scheduler.set_timesteps(self.num_inference_steps , device=__A )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase__ = sample.to(__A )
for t in scheduler.timesteps:
UpperCAmelCase__ = scheduler.scale_model_input(__A , __A )
UpperCAmelCase__ = model(__A , __A )
UpperCAmelCase__ = scheduler.step(__A , __A , __A , generator=__A )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(__A ) )
UpperCAmelCase__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.01_31 ) < 1E-3
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**__A , use_karras_sigmas=__A )
scheduler.set_timesteps(self.num_inference_steps , device=__A )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase__ = sample.to(__A )
for t in scheduler.timesteps:
UpperCAmelCase__ = scheduler.scale_model_input(__A , __A )
UpperCAmelCase__ = model(__A , __A )
UpperCAmelCase__ = scheduler.step(__A , __A , __A , generator=__A )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(__A ) )
UpperCAmelCase__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2
assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1E-3
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''],
'''convert_funnel_original_tf_checkpoint_to_pytorch''': [],
'''tokenization_funnel''': ['''FunnelTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FunnelTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FunnelBaseModel''',
'''FunnelForMaskedLM''',
'''FunnelForMultipleChoice''',
'''FunnelForPreTraining''',
'''FunnelForQuestionAnswering''',
'''FunnelForSequenceClassification''',
'''FunnelForTokenClassification''',
'''FunnelModel''',
'''FunnelPreTrainedModel''',
'''load_tf_weights_in_funnel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFFunnelBaseModel''',
'''TFFunnelForMaskedLM''',
'''TFFunnelForMultipleChoice''',
'''TFFunnelForPreTraining''',
'''TFFunnelForQuestionAnswering''',
'''TFFunnelForSequenceClassification''',
'''TFFunnelForTokenClassification''',
'''TFFunnelModel''',
'''TFFunnelPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
def UpperCamelCase_( snake_case__: str = 10_00 ) -> int:
UpperCAmelCase__ = -1
UpperCAmelCase__ = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
UpperCAmelCase__ = (n * n - 2 * a * n) // (2 * n - 2 * a)
UpperCAmelCase__ = n - a - b
if c * c == (a * a + b * b):
UpperCAmelCase__ = a * b * c
if candidate >= product:
UpperCAmelCase__ = candidate
return product
if __name__ == "__main__":
print(F"""{solution() = }""")
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=2 , __a=32 , __a=16 , __a=3 , __a=True , __a=True , __a=32 , __a=4 , __a=[0, 1, 2, 3] , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.02 , __a=3 , __a=[1, 384, 24, 24] , __a=True , __a=None , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = backbone_out_indices
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = backbone_featmap_shape
UpperCAmelCase__ = scope
UpperCAmelCase__ = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ = (image_size // patch_size) ** 2
UpperCAmelCase__ = num_patches + 1
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
'hidden_sizes': [96, 192, 384, 768],
'num_groups': 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = DPTModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase__ = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = DPTForDepthEstimation(_A )
model.to(_A )
model.eval()
UpperCAmelCase__ = model(_A )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = DPTForSemanticSegmentation(_A )
model.to(_A )
model.eval()
UpperCAmelCase__ = model(_A , labels=_A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( snake_case__ , snake_case__ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = DPTModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='DPT does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , nn.Linear ) )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_A )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*_A )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_A )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
if model_class in get_values(_A ):
continue
UpperCAmelCase__ = model_class(_A )
model.to(_A )
model.train()
UpperCAmelCase__ = self._prepare_for_class(_A , _A , return_labels=_A )
UpperCAmelCase__ = model(**_A ).loss
loss.backward()
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = False
UpperCAmelCase__ = True
if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing:
continue
UpperCAmelCase__ = model_class(_A )
model.to(_A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase__ = self._prepare_for_class(_A , _A , return_labels=_A )
UpperCAmelCase__ = model(**_A ).loss
loss.backward()
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(_A )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=_A )
# Skip the check for the backbone
UpperCAmelCase__ = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
UpperCAmelCase__ = [F"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
UpperCAmelCase__ = DPTModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 'add'
with self.assertRaises(_A ):
UpperCAmelCase__ = DPTForDepthEstimation(_A )
def UpperCamelCase_( ) -> Tuple:
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
@slow
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' )
UpperCAmelCase__ = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_A )
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=_A , return_tensors='pt' ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**_A )
UpperCAmelCase__ = outputs.predicted_depth
# verify the predicted depth
UpperCAmelCase__ = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , _A )
UpperCAmelCase__ = torch.tensor(
[[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_A )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _A , atol=1E-4 ) )
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
_UpperCamelCase = 0B101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
_UpperCamelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class lowercase :
'''simple docstring'''
def __init__(self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = WATERMARK_BITS
UpperCAmelCase__ = WatermarkEncoder()
self.encoder.set_watermark('bits' , self.watermark )
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
if images.shape[-1] < 256:
return images
UpperCAmelCase__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase__ = [self.encoder.encode(SCREAMING_SNAKE_CASE_ , 'dwtDct' ) for image in images]
UpperCAmelCase__ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).permute(0 , 3 , 1 , 2 )
UpperCAmelCase__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
def UpperCamelCase_( snake_case__: int = 1_00 ) -> int:
"""simple docstring"""
UpperCAmelCase__ = set()
UpperCAmelCase__ = 0
UpperCAmelCase__ = n + 1 # maximum limit
for a in range(2 , lowerCAmelCase__ ):
for b in range(2 , lowerCAmelCase__ ):
UpperCAmelCase__ = a**b # calculates the current power
collect_powers.add(lowerCAmelCase__ ) # adds the result to the set
return len(lowerCAmelCase__ )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowercase :
'''simple docstring'''
@staticmethod
def UpperCamelCase__ (*__a , **__a ) -> int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , )
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_classifier(__lowercase , candidate_labels=['a', 'b', 'c'] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowercase ) , [
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}],
[{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}],
] , )
UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowercase ) , [
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
] , )
@require_tf
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = pipeline(
model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' )
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_classifier(__lowercase , candidate_labels=['a', 'b', 'c'] )
self.assertEqual(
nested_simplify(__lowercase ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , )
UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowercase ) , [
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
[
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
{'score': 0.3_33, 'label': ANY(__lowercase )},
],
] , )
@slow
@require_torch
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = pipeline(
task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , )
# This is an image of 2 cats with remotes and no planes
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_classifier(__lowercase , candidate_labels=['cat', 'plane', 'remote'] )
self.assertEqual(
nested_simplify(__lowercase ) , [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
] , )
UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowercase ) , [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5 , )
@slow
@require_tf
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = pipeline(
task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' )
# This is an image of 2 cats with remotes and no planes
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_classifier(__lowercase , candidate_labels=['cat', 'plane', 'remote'] )
self.assertEqual(
nested_simplify(__lowercase ) , [
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
] , )
UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowercase ) , [
[
{'score': 0.5_11, 'label': 'remote'},
{'score': 0.4_85, 'label': 'cat'},
{'score': 0.0_04, 'label': 'plane'},
],
]
* 5 , ) | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = dataset
UpperCAmelCase__ = process
UpperCAmelCase__ = params
def __len__(self ) -> Any:
"""simple docstring"""
return len(self.dataset )
def __getitem__(self , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.dataset[i]
UpperCAmelCase__ = self.process(__a , **self.params )
return processed
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a=None ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = loader
UpperCAmelCase__ = infer
UpperCAmelCase__ = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCAmelCase__ = None
UpperCAmelCase__ = loader_batch_size
# Internal bookkeeping
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def __len__(self ) -> Dict:
"""simple docstring"""
return len(self.loader )
def __iter__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = iter(self.loader )
return self
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCAmelCase__ = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCAmelCase__ = {}
for k, element in self._loader_batch_data.items():
if isinstance(__a , __a ):
# Convert ModelOutput to tuple first
UpperCAmelCase__ = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
UpperCAmelCase__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCAmelCase__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__a , __a ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
UpperCAmelCase__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCAmelCase__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCAmelCase__ = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase__ = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase__ = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCAmelCase__ = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCAmelCase__ = self._loader_batch_data.__class__(__a )
self._loader_batch_index += 1
return result
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCAmelCase__ = next(self.iterator )
UpperCAmelCase__ = self.infer(__a , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(__a , torch.Tensor ):
UpperCAmelCase__ = processed
else:
UpperCAmelCase__ = list(processed.keys() )[0]
UpperCAmelCase__ = processed[key]
if isinstance(__a , __a ):
UpperCAmelCase__ = len(__a )
else:
UpperCAmelCase__ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase__ = observed_batch_size
# Setting internal index to unwrap the batch
UpperCAmelCase__ = processed
UpperCAmelCase__ = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a=None ) -> List[Any]:
"""simple docstring"""
super().__init__(__a , __a , __a )
def __iter__(self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = iter(self.loader )
UpperCAmelCase__ = None
return self
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
if self.subiterator is None:
UpperCAmelCase__ = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
UpperCAmelCase__ = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCAmelCase__ = self.infer(next(self.iterator ) , **self.params )
UpperCAmelCase__ = next(self.subiterator )
return processed
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __iter__(self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = iter(self.loader )
return self
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase__ = self.loader_batch_item()
UpperCAmelCase__ = item.pop('is_last' )
accumulator.append(__a )
if is_last:
return accumulator
while not is_last:
UpperCAmelCase__ = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(__a , torch.Tensor ):
UpperCAmelCase__ = processed
else:
UpperCAmelCase__ = list(processed.keys() )[0]
UpperCAmelCase__ = processed[key]
if isinstance(__a , __a ):
UpperCAmelCase__ = len(__a )
else:
UpperCAmelCase__ = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase__ = observed_batch_size
UpperCAmelCase__ = processed
UpperCAmelCase__ = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase__ = self.loader_batch_item()
UpperCAmelCase__ = item.pop('is_last' )
accumulator.append(__a )
if is_last:
return accumulator
else:
UpperCAmelCase__ = processed
UpperCAmelCase__ = item.pop('is_last' )
accumulator.append(__a )
return accumulator
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__(self , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = dataset
UpperCAmelCase__ = key
def __len__(self ) -> Optional[Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__(self , __a ) -> Optional[int]:
"""simple docstring"""
return self.dataset[i][self.key]
class lowercase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = dataset
UpperCAmelCase__ = keya
UpperCAmelCase__ = keya
def __len__(self ) -> int:
"""simple docstring"""
return len(self.dataset )
def __getitem__(self , __a ) -> Dict:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]} | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
_UpperCamelCase = {
# 1536-bit
5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 2048-bit
14: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 3072-bit
15: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 4096-bit
16: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'''
+ '''FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 6144-bit
17: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'''
+ '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'''
+ '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'''
+ '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'''
+ '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'''
+ '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'''
+ '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'''
+ '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'''
+ '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'''
+ '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'''
+ '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'''
+ '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'''
+ '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'''
+ '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'''
+ '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'''
+ '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'''
+ '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'''
+ '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'''
+ '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'''
+ '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'''
+ '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'''
+ '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'''
+ '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'''
+ '''6DCC4024FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 8192-bit
18: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'''
+ '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'''
+ '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'''
+ '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'''
+ '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'''
+ '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'''
+ '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'''
+ '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'''
+ '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'''
+ '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'''
+ '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'''
+ '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'''
+ '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'''
+ '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'''
+ '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'''
+ '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'''
+ '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'''
+ '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'''
+ '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'''
+ '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'''
+ '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
}
class lowercase :
'''simple docstring'''
def __init__(self , __a = 14 ) -> Optional[int]:
"""simple docstring"""
if group not in primes:
raise ValueError('Unsupported Group' )
UpperCAmelCase__ = primes[group]['prime']
UpperCAmelCase__ = primes[group]['generator']
UpperCAmelCase__ = int(hexlify(urandom(32 ) ) , base=16 )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return hex(self.__private_key )[2:]
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = pow(self.generator , self.__private_key , self.prime )
return hex(_UpperCAmelCase )[2:]
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
return (
2 <= key <= self.prime - 2
and pow(_UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = int(_UpperCAmelCase , base=16 )
if not self.is_valid_public_key(_UpperCAmelCase ):
raise ValueError('Invalid public key' )
UpperCAmelCase__ = pow(_UpperCAmelCase , self.__private_key , self.prime )
return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest()
@staticmethod
def UpperCamelCase__ (__a , __a ) -> Dict:
"""simple docstring"""
return (
2 <= remote_public_key_str <= prime - 2
and pow(_UpperCAmelCase , (prime - 1) // 2 , _UpperCAmelCase ) == 1
)
@staticmethod
def UpperCamelCase__ (__a , __a , __a = 14 ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = int(_UpperCAmelCase , base=16 )
UpperCAmelCase__ = int(_UpperCAmelCase , base=16 )
UpperCAmelCase__ = primes[group]['prime']
if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('Invalid public key' )
UpperCAmelCase__ = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Tuple ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def UpperCamelCase_( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
_UpperCamelCase = 0 # The first color of the flag.
_UpperCamelCase = 1 # The second color of the flag.
_UpperCamelCase = 2 # The third color of the flag.
_UpperCamelCase = (red, white, blue)
def UpperCamelCase_( snake_case__: list ) -> List[Any]:
if not sequence:
return []
if len(__lowerCAmelCase ) == 1:
return list(__lowerCAmelCase )
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(__lowerCAmelCase ) - 1
UpperCAmelCase__ = 0
while mid <= high:
if sequence[mid] == colors[0]:
UpperCAmelCase__ , UpperCAmelCase__ = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
UpperCAmelCase__ , UpperCAmelCase__ = sequence[high], sequence[mid]
high -= 1
else:
UpperCAmelCase__ = f"The elements inside the sequence must contains only {colors} values"
raise ValueError(__lowerCAmelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by commas:\n''').strip()
_UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import os
from pathlib import Path
def UpperCamelCase_( ) -> List[Any]:
from torch.utils.cpp_extension import load
UpperCAmelCase__ = Path(snake_case__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr'
UpperCAmelCase__ = [
root / filename
for filename in [
'vision.cpp',
os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ),
os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ),
]
]
load(
'MultiScaleDeformableAttention' , snake_case__ , with_cuda=snake_case__ , extra_include_paths=[str(snake_case__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[
'-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer
__SCREAMING_SNAKE_CASE = OpenAIGPTTokenizerFast
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
return "lower newer", "lower newer"
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
def UpperCamelCase__ (self , __a=15 ) -> int:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a )
# Simple input
UpperCAmelCase__ = 'This is a simple input'
UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2']
UpperCAmelCase__ = ('This is a simple input', 'This is a pair')
UpperCAmelCase__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
# Pair input
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
@require_ftfy
@require_spacy
@require_tokenizers
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
pass
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
@require_torch
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
UpperCAmelCase__ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(__a )
BertModel.from_pretrained(__a )
BertTokenizer.from_pretrained(__a )
pipeline(task='fill-mask' , model=__a )
# baseline - just load from_pretrained with normal network
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
UpperCAmelCase__ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase__ = '1'
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
UpperCAmelCase__ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(__a )
BertModel.from_pretrained(__a )
BertTokenizer.from_pretrained(__a )
pipeline(task='fill-mask' , model=__a )
# baseline - just load from_pretrained with normal network
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
UpperCAmelCase__ = self.get_env()
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
UpperCAmelCase__ = self.get_env()
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase__ = '1'
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = '\nfrom transformers import pipeline\n '
UpperCAmelCase__ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
UpperCAmelCase__ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
UpperCAmelCase__ = self.get_env()
UpperCAmelCase__ = '1'
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = '\nfrom transformers import AutoModel\n '
UpperCAmelCase__ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
UpperCAmelCase__ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
UpperCAmelCase__ = self.get_env()
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase__ = '1'
UpperCAmelCase__ = subprocess.run(__a , env=__a , check=__a , capture_output=__a )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def UpperCamelCase_( snake_case__: str ) -> str:
UpperCAmelCase__ = SwinConfig(image_size=1_92 )
if "base" in model_name:
UpperCAmelCase__ = 6
UpperCAmelCase__ = 1_28
UpperCAmelCase__ = (2, 2, 18, 2)
UpperCAmelCase__ = (4, 8, 16, 32)
elif "large" in model_name:
UpperCAmelCase__ = 12
UpperCAmelCase__ = 1_92
UpperCAmelCase__ = (2, 2, 18, 2)
UpperCAmelCase__ = (6, 12, 24, 48)
else:
raise ValueError('Model not supported, only supports base and large variants' )
UpperCAmelCase__ = window_size
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
return config
def UpperCamelCase_( snake_case__: Optional[Any] ) -> Dict:
if "encoder.mask_token" in name:
UpperCAmelCase__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' )
if "encoder.patch_embed.proj" in name:
UpperCAmelCase__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "encoder.patch_embed.norm" in name:
UpperCAmelCase__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' )
if "attn.proj" in name:
UpperCAmelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
UpperCAmelCase__ = name.replace('attn' , 'attention.self' )
if "norm1" in name:
UpperCAmelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCAmelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCAmelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCAmelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if name == "encoder.norm.weight":
UpperCAmelCase__ = 'layernorm.weight'
if name == "encoder.norm.bias":
UpperCAmelCase__ = 'layernorm.bias'
if "decoder" in name:
pass
else:
UpperCAmelCase__ = 'swin.' + name
return name
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn_mask" in key:
pass
elif "qkv" in key:
UpperCAmelCase__ = key.split('.' )
UpperCAmelCase__ = int(key_split[2] )
UpperCAmelCase__ = int(key_split[4] )
UpperCAmelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple , snake_case__: List[str] , snake_case__: Tuple , snake_case__: Dict ) -> Dict:
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = get_swin_config(snake_case__ )
UpperCAmelCase__ = SwinForMaskedImageModeling(snake_case__ )
model.eval()
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
model.load_state_dict(snake_case__ )
UpperCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCAmelCase__ = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} )
UpperCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
UpperCAmelCase__ = image_processor(images=snake_case__ , return_tensors='pt' )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ ).logits
print(outputs.keys() )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f"Pushing model and image processor for {model_name} to hub" )
model.push_to_hub(f"microsoft/{model_name}" )
image_processor.push_to_hub(f"microsoft/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
A_ = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
from __future__ import annotations
import math
class lowercase :
'''simple docstring'''
def __init__(self , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = size
# approximate the overall size of segment tree with given value
UpperCAmelCase__ = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
UpperCAmelCase__ = [0 for i in range(0 , 4 * size )]
UpperCAmelCase__ = [0 for i in range(0 , 4 * size )] # flag for lazy update
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
return idx * 2
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
return idx * 2 + 1
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> None:
"""simple docstring"""
if left_element == right_element:
UpperCAmelCase__ = a[left_element - 1]
else:
UpperCAmelCase__ = (left_element + right_element) // 2
self.build(self.left(__a ) , __a , __a , __a )
self.build(self.right(__a ) , mid + 1 , __a , __a )
UpperCAmelCase__ = max(
self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> bool:
"""simple docstring"""
if self.flag[idx] is True:
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = False
if left_element != right_element:
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
UpperCAmelCase__ = val
if left_element != right_element:
UpperCAmelCase__ = val
UpperCAmelCase__ = val
UpperCAmelCase__ = True
UpperCAmelCase__ = True
return True
UpperCAmelCase__ = (left_element + right_element) // 2
self.update(self.left(__a ) , __a , __a , __a , __a , __a )
self.update(self.right(__a ) , mid + 1 , __a , __a , __a , __a )
UpperCAmelCase__ = max(
self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] )
return True
def UpperCamelCase__ (self , __a , __a , __a , __a , __a ) -> int | float:
"""simple docstring"""
if self.flag[idx] is True:
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = False
if left_element != right_element:
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = self.lazy[idx]
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
UpperCAmelCase__ = (left_element + right_element) // 2
UpperCAmelCase__ = self.query(self.left(__a ) , __a , __a , __a , __a )
UpperCAmelCase__ = self.query(self.right(__a ) , mid + 1 , __a , __a , __a )
return max(__a , __a )
def __str__(self ) -> str:
"""simple docstring"""
return str([self.query(1 , 1 , self.size , __a , __a ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
_UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
_UpperCamelCase = 15
_UpperCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ) -> List[str]:
"""simple docstring"""
super().__init__(
features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , )
UpperCAmelCase__ = Generator(
cache_dir=__a , features=__a , generator=__a , gen_kwargs=__a , **__a , )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
if self.streaming:
UpperCAmelCase__ = self.builder.as_streaming_dataset(split='train' )
# Build regular (map-style) dataset
else:
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
self.builder.download_and_prepare(
download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , )
UpperCAmelCase__ = self.builder.as_dataset(
split='train' , verification_mode=__a , in_memory=self.keep_in_memory )
return dataset
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
_UpperCamelCase = '''src/diffusers'''
# Matches is_xxx_available()
_UpperCamelCase = re.compile(R'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
_UpperCamelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
_UpperCamelCase = '''
{0} = None
'''
_UpperCamelCase = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
_UpperCamelCase = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def UpperCamelCase_( snake_case__: List[str] ) -> Dict:
UpperCAmelCase__ = _re_backend.findall(snake_case__ )
if len(snake_case__ ) == 0:
return None
return "_and_".join(snake_case__ )
def UpperCamelCase_( ) -> Optional[int]:
with open(os.path.join(snake_case__ , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCAmelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase__ = 0
UpperCAmelCase__ = {}
# Go through the end of the file
while line_index < len(snake_case__ ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCAmelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(snake_case__ ) and len(lines[line_index] ) > 1:
UpperCAmelCase__ = lines[line_index]
UpperCAmelCase__ = _re_single_line_import.search(snake_case__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(snake_case__ ) > 0:
UpperCAmelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Union[str, Any]:
if name.isupper():
return DUMMY_CONSTANT.format(snake_case__ )
elif name.islower():
return DUMMY_FUNCTION.format(snake_case__ , snake_case__ )
else:
return DUMMY_CLASS.format(snake_case__ , snake_case__ )
def UpperCamelCase_( snake_case__: Any=None ) -> Tuple:
if backend_specific_objects is None:
UpperCAmelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase__ = '[' + ', '.join(f"\"{b}\"" for b in backend.split('_and_' ) ) + ']'
UpperCAmelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(snake_case__ , snake_case__ ) for o in objects] )
UpperCAmelCase__ = dummy_file
return dummy_files
def UpperCamelCase_( snake_case__: List[Any]=False ) -> Optional[int]:
UpperCAmelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCAmelCase__ = os.path.join(snake_case__ , 'utils' )
UpperCAmelCase__ = {
backend: os.path.join(snake_case__ , f"dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(snake_case__ ):
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCAmelCase__ = f.read()
else:
UpperCAmelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"Updating diffusers.utils.dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py as the main "
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f"diffusers.utils.dummy_{short_names.get(snake_case__ , snake_case__ )}_objects.py. Run `make fix-copies` "
'to fix this.' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_UpperCamelCase = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = min_resolution
UpperCAmelCase__ = max_resolution
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = size
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean
UpperCAmelCase__ = image_std
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = rescale_factor
UpperCAmelCase__ = do_pad
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase__ (self , __a , __a=False ) -> List[str]:
"""simple docstring"""
if not batched:
UpperCAmelCase__ = image_inputs[0]
if isinstance(__a , Image.Image ):
UpperCAmelCase__ , UpperCAmelCase__ = image.size
else:
UpperCAmelCase__ , UpperCAmelCase__ = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase__ = int(self.size['shortest_edge'] * h / w )
UpperCAmelCase__ = self.size['shortest_edge']
elif w > h:
UpperCAmelCase__ = self.size['shortest_edge']
UpperCAmelCase__ = int(self.size['shortest_edge'] * w / h )
else:
UpperCAmelCase__ = self.size['shortest_edge']
UpperCAmelCase__ = self.size['shortest_edge']
else:
UpperCAmelCase__ = []
for image in image_inputs:
UpperCAmelCase__ , UpperCAmelCase__ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase__ = max(__a , key=lambda __a : item[0] )[0]
UpperCAmelCase__ = max(__a , key=lambda __a : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = DeformableDetrImageProcessingTester(self )
@property
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__a , 'image_mean' ) )
self.assertTrue(hasattr(__a , 'image_std' ) )
self.assertTrue(hasattr(__a , 'do_normalize' ) )
self.assertTrue(hasattr(__a , 'do_resize' ) )
self.assertTrue(hasattr(__a , 'do_rescale' ) )
self.assertTrue(hasattr(__a , 'do_pad' ) )
self.assertTrue(hasattr(__a , 'size' ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , __a )
UpperCAmelCase__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , __a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a )
for image in image_inputs:
self.assertIsInstance(__a , Image.Image )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a )
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a )
for image in image_inputs:
self.assertIsInstance(__a , np.ndarray )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a )
for image in image_inputs:
self.assertIsInstance(__a , torch.Tensor )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor_tester.get_expected_values(__a , batched=__a )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = {'image_id': 39769, 'annotations': target}
# encode them
UpperCAmelCase__ = DeformableDetrImageProcessor()
UpperCAmelCase__ = image_processing(images=__a , annotations=__a , return_tensors='pt' )
# verify pixel values
UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , __a )
UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) )
# verify area
UpperCAmelCase__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) )
# verify boxes
UpperCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , __a )
UpperCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) )
# verify image_id
UpperCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) )
# verify is_crowd
UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) )
# verify class_labels
UpperCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) )
# verify orig_size
UpperCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) )
# verify size
UpperCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
UpperCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
UpperCAmelCase__ = DeformableDetrImageProcessor(format='coco_panoptic' )
UpperCAmelCase__ = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors='pt' )
# verify pixel values
UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , __a )
UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) )
# verify area
UpperCAmelCase__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) )
# verify boxes
UpperCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , __a )
UpperCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) )
# verify image_id
UpperCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) )
# verify is_crowd
UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) )
# verify class_labels
UpperCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) )
# verify masks
UpperCAmelCase__ = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __a )
# verify orig_size
UpperCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) )
# verify size
UpperCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) )
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_UpperCamelCase = logging.getLogger(__name__)
class lowercase :
'''simple docstring'''
def __init__(self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = False
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> int:
"""simple docstring"""
if not self.initialized:
UpperCAmelCase__ = RagRetriever(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , )
UpperCAmelCase__ = True
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
self.retriever.index.init_index()
def UpperCamelCase__ (self , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.retriever._main_retrieve(__a , __a )
return doc_ids, retrieved_doc_embeds
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a=None ) -> str:
"""simple docstring"""
if index is not None and index.is_initialized() and len(__a ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , )
UpperCAmelCase__ = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(__a , __a , __a , __a )
for worker in self.retrieval_workers
] )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def UpperCamelCase__ (self , __a , __a ) -> Dict:
"""simple docstring"""
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
UpperCAmelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
UpperCAmelCase__ , UpperCAmelCase__ = ray.get(random_worker.retrieve.remote(__a , __a ) )
else:
UpperCAmelCase__ , UpperCAmelCase__ = self._main_retrieve(__a , __a )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a )
@classmethod
def UpperCamelCase__ (cls , __a , __a=None , **__a ) -> Optional[int]:
"""simple docstring"""
return super(__a , cls ).get_tokenizers(__a , __a , **__a )
@classmethod
def UpperCamelCase__ (cls , __a , __a , __a=None , **__a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = kwargs.pop('config' , __a ) or RagConfig.from_pretrained(__a , **__a )
UpperCAmelCase__ = RagTokenizer.from_pretrained(__a , config=__a )
UpperCAmelCase__ = rag_tokenizer.question_encoder
UpperCAmelCase__ = rag_tokenizer.generator
if indexed_dataset is not None:
UpperCAmelCase__ = 'custom'
UpperCAmelCase__ = CustomHFIndex(config.retrieval_vector_size , __a )
else:
UpperCAmelCase__ = cls._build_index(__a )
return cls(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , retrieval_workers=__a , index=__a , )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_UpperCamelCase = logging.get_logger(__name__)
# General docstring
_UpperCamelCase = '''MobileNetV1Config'''
# Base docstring
_UpperCamelCase = '''google/mobilenet_v1_1.0_224'''
_UpperCamelCase = [1, 1024, 7, 7]
# Image classification docstring
_UpperCamelCase = '''google/mobilenet_v1_1.0_224'''
_UpperCamelCase = '''tabby, tabby cat'''
_UpperCamelCase = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: Optional[Any]=None ) -> int:
UpperCAmelCase__ = {}
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ = model.mobilenet_va
else:
UpperCAmelCase__ = model
UpperCAmelCase__ = 'MobilenetV1/Conv2d_0/'
UpperCAmelCase__ = backbone.conv_stem.convolution.weight
UpperCAmelCase__ = backbone.conv_stem.normalization.bias
UpperCAmelCase__ = backbone.conv_stem.normalization.weight
UpperCAmelCase__ = backbone.conv_stem.normalization.running_mean
UpperCAmelCase__ = backbone.conv_stem.normalization.running_var
for i in range(13 ):
UpperCAmelCase__ = i + 1
UpperCAmelCase__ = i * 2
UpperCAmelCase__ = backbone.layer[pt_index]
UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_depthwise/"
UpperCAmelCase__ = pointer.convolution.weight
UpperCAmelCase__ = pointer.normalization.bias
UpperCAmelCase__ = pointer.normalization.weight
UpperCAmelCase__ = pointer.normalization.running_mean
UpperCAmelCase__ = pointer.normalization.running_var
UpperCAmelCase__ = backbone.layer[pt_index + 1]
UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_pointwise/"
UpperCAmelCase__ = pointer.convolution.weight
UpperCAmelCase__ = pointer.normalization.bias
UpperCAmelCase__ = pointer.normalization.weight
UpperCAmelCase__ = pointer.normalization.running_mean
UpperCAmelCase__ = pointer.normalization.running_var
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
UpperCAmelCase__ = model.classifier.weight
UpperCAmelCase__ = model.classifier.bias
return tf_to_pt_map
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple , snake_case__: Optional[Any] ) -> Optional[int]:
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.' )
raise
# Load weights from TF model
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}" )
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
# Build TF to PyTorch weights loading map
UpperCAmelCase__ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ )
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}" )
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping" )
continue
UpperCAmelCase__ = tf_weights[name]
if "depthwise_weights" in name:
logger.info('Transposing depthwise' )
UpperCAmelCase__ = np.transpose(snake_case__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('Transposing' )
if len(pointer.shape ) == 2: # copying into linear layer
UpperCAmelCase__ = array.squeeze().transpose()
else:
UpperCAmelCase__ = np.transpose(snake_case__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" )
logger.info(f"Initialize PyTorch weight {name} {array.shape}" )
UpperCAmelCase__ = torch.from_numpy(snake_case__ )
tf_weights.pop(snake_case__ , snake_case__ )
tf_weights.pop(name + '/RMSProp' , snake_case__ )
tf_weights.pop(name + '/RMSProp_1' , snake_case__ )
tf_weights.pop(name + '/ExponentialMovingAverage' , snake_case__ )
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" )
return model
def UpperCamelCase_( snake_case__: torch.Tensor , snake_case__: nn.Convad ) -> torch.Tensor:
UpperCAmelCase__ , UpperCAmelCase__ = features.shape[-2:]
UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.stride
UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.kernel_size
if in_height % stride_height == 0:
UpperCAmelCase__ = max(kernel_height - stride_height , 0 )
else:
UpperCAmelCase__ = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
UpperCAmelCase__ = max(kernel_width - stride_width , 0 )
else:
UpperCAmelCase__ = max(kernel_width - (in_width % stride_width) , 0 )
UpperCAmelCase__ = pad_along_width // 2
UpperCAmelCase__ = pad_along_width - pad_left
UpperCAmelCase__ = pad_along_height // 2
UpperCAmelCase__ = pad_along_height - pad_top
UpperCAmelCase__ = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(snake_case__ , snake_case__ , 'constant' , 0.0 )
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a = 1 , __a = 1 , __a = False , __a = True , __a = True , ) -> None:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = config
if in_channels % groups != 0:
raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." )
if out_channels % groups != 0:
raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." )
UpperCAmelCase__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
UpperCAmelCase__ = nn.Convad(
in_channels=__a , out_channels=__a , kernel_size=__a , stride=__a , padding=__a , groups=__a , bias=__a , padding_mode='zeros' , )
if use_normalization:
UpperCAmelCase__ = nn.BatchNormad(
num_features=__a , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__a , track_running_stats=__a , )
else:
UpperCAmelCase__ = None
if use_activation:
if isinstance(__a , __a ):
UpperCAmelCase__ = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __a ):
UpperCAmelCase__ = ACTaFN[config.hidden_act]
else:
UpperCAmelCase__ = config.hidden_act
else:
UpperCAmelCase__ = None
def UpperCamelCase__ (self , __a ) -> torch.Tensor:
"""simple docstring"""
if self.config.tf_padding:
UpperCAmelCase__ = apply_tf_padding(__a , self.convolution )
UpperCAmelCase__ = self.convolution(__a )
if self.normalization is not None:
UpperCAmelCase__ = self.normalization(__a )
if self.activation is not None:
UpperCAmelCase__ = self.activation(__a )
return features
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MobileNetVaConfig
__SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE = """mobilenet_v1"""
__SCREAMING_SNAKE_CASE = """pixel_values"""
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self , __a ) -> None:
"""simple docstring"""
if isinstance(__a , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__a , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_UpperCamelCase = R'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
_UpperCamelCase = R'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"""The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a = True ) -> int:
"""simple docstring"""
super().__init__(__a )
UpperCAmelCase__ = config
UpperCAmelCase__ = 32
UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth )
UpperCAmelCase__ = MobileNetVaConvLayer(
__a , in_channels=config.num_channels , out_channels=__a , kernel_size=3 , stride=2 , )
UpperCAmelCase__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
UpperCAmelCase__ = nn.ModuleList()
for i in range(13 ):
UpperCAmelCase__ = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
__a , in_channels=__a , out_channels=__a , kernel_size=3 , stride=strides[i] , groups=__a , ) )
self.layer.append(
MobileNetVaConvLayer(
__a , in_channels=__a , out_channels=__a , kernel_size=1 , ) )
UpperCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase__ (self , __a ) -> str:
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase__ (self , __a = None , __a = None , __a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
"""simple docstring"""
UpperCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
UpperCAmelCase__ = self.conv_stem(__a )
UpperCAmelCase__ = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
UpperCAmelCase__ = layer_module(__a )
if output_hidden_states:
UpperCAmelCase__ = all_hidden_states + (hidden_states,)
UpperCAmelCase__ = hidden_states
if self.pooler is not None:
UpperCAmelCase__ = torch.flatten(self.pooler(__a ) , start_dim=1 )
else:
UpperCAmelCase__ = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__a , pooler_output=__a , hidden_states=__a , )
@add_start_docstrings(
"""
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , _UpperCamelCase , )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a ) -> None:
"""simple docstring"""
super().__init__(__a )
UpperCAmelCase__ = config.num_labels
UpperCAmelCase__ = MobileNetVaModel(__a )
UpperCAmelCase__ = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
UpperCAmelCase__ = nn.Dropout(config.classifier_dropout_prob , inplace=__a )
UpperCAmelCase__ = nn.Linear(__a , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase__ = self.mobilenet_va(__a , output_hidden_states=__a , return_dict=__a )
UpperCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase__ = self.classifier(self.dropout(__a ) )
UpperCAmelCase__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase__ = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase__ = 'single_label_classification'
else:
UpperCAmelCase__ = 'multi_label_classification'
if self.config.problem_type == "regression":
UpperCAmelCase__ = MSELoss()
if self.num_labels == 1:
UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCAmelCase__ = loss_fct(__a , __a )
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase__ = CrossEntropyLoss()
UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase__ = BCEWithLogitsLoss()
UpperCAmelCase__ = loss_fct(__a , __a )
if not return_dict:
UpperCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__a , logits=__a , hidden_states=outputs.hidden_states , )
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = '''tapas'''
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Optional[Any] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : List[Any] = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Optional[Any] = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
UpperCAmelCase__ = str(bin(snake_case__ ) )
binary_number += "0" * shift_amount
return binary_number
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
UpperCAmelCase__ = str(bin(snake_case__ ) )[2:]
if shift_amount >= len(snake_case__ ):
return "0b0"
UpperCAmelCase__ = binary_number[: len(snake_case__ ) - shift_amount]
return "0b" + shifted_binary_number
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> str:
if number >= 0: # Get binary representation of positive number
UpperCAmelCase__ = '0' + str(bin(snake_case__ ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase__ = len(bin(snake_case__ )[3:] ) # Find 2's complement of number
UpperCAmelCase__ = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase__ = (
'1' + '0' * (binary_number_length - len(snake_case__ )) + binary_number
)
if shift_amount >= len(snake_case__ ):
return "0b" + binary_number[0] * len(snake_case__ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(snake_case__ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
_UpperCamelCase = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
_UpperCamelCase = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
_UpperCamelCase = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[
'https://github.com/m-popovic/chrF',
] , )
def UpperCamelCase__ (self , __a , __a , __a = CHRF.CHAR_ORDER , __a = CHRF.WORD_ORDER , __a = CHRF.BETA , __a = False , __a = False , __a = False , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = len(references[0] )
if any(len(__a ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
UpperCAmelCase__ = [[refs[i] for refs in references] for i in range(__a )]
UpperCAmelCase__ = CHRF(__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = sb_chrf.corpus_score(__a , __a )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """swinv2"""
__SCREAMING_SNAKE_CASE = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__(self , __a=224 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1E-5 , __a=32 , **__a , ) -> Dict:
"""simple docstring"""
super().__init__(**__a )
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = len(__a )
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase__ = int(embed_dim * 2 ** (len(__a ) - 1) )
UpperCAmelCase__ = (0, 0, 0, 0)
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """xmod"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , __a=False , __a=2 , __a=False , __a=True , __a=True , __a=("en_XX",) , __a=None , **__a , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = classifier_dropout
UpperCAmelCase__ = pre_norm
UpperCAmelCase__ = adapter_reduction_factor
UpperCAmelCase__ = adapter_layer_norm
UpperCAmelCase__ = adapter_reuse_layer_norm
UpperCAmelCase__ = ln_before_adapter
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = default_language
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
@property
def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCAmelCase__ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if hor == 1_28:
UpperCAmelCase__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
UpperCAmelCase__ = (32, 1_28, 2_56)
UpperCAmelCase__ = ('UpResnetBlock1D', 'UpResnetBlock1D')
elif hor == 32:
UpperCAmelCase__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
UpperCAmelCase__ = (32, 64, 1_28, 2_56)
UpperCAmelCase__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D')
UpperCAmelCase__ = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
UpperCAmelCase__ = model.state_dict()
UpperCAmelCase__ = {
'down_block_types': down_block_types,
'block_out_channels': block_out_channels,
'up_block_types': up_block_types,
'layers_per_block': 1,
'use_timestep_embedding': True,
'out_block_type': 'OutConv1DBlock',
'norm_num_groups': 8,
'downsample_each_block': False,
'in_channels': 14,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'flip_sin_to_cos': False,
'freq_shift': 1,
'sample_size': 6_55_36,
'mid_block_type': 'MidResTemporalBlock1D',
'act_fn': 'mish',
}
UpperCAmelCase__ = UNetaDModel(**snake_case__ )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
UpperCAmelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
UpperCAmelCase__ = state_dict.pop(snake_case__ )
hf_value_function.load_state_dict(snake_case__ )
torch.save(hf_value_function.state_dict() , f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" , 'w' ) as f:
json.dump(snake_case__ , snake_case__ )
def UpperCamelCase_( ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = {
'in_channels': 14,
'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'),
'up_block_types': (),
'out_block_type': 'ValueFunction',
'mid_block_type': 'ValueFunctionMidBlock1D',
'block_out_channels': (32, 64, 1_28, 2_56),
'layers_per_block': 1,
'downsample_each_block': True,
'sample_size': 6_55_36,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'use_timestep_embedding': True,
'flip_sin_to_cos': False,
'freq_shift': 1,
'norm_num_groups': 8,
'act_fn': 'mish',
}
UpperCAmelCase__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' )
UpperCAmelCase__ = model
UpperCAmelCase__ = UNetaDModel(**snake_case__ )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
UpperCAmelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
UpperCAmelCase__ = state_dict.pop(snake_case__ )
hf_value_function.load_state_dict(snake_case__ )
torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' )
with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f:
json.dump(snake_case__ , snake_case__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int:
while b:
UpperCAmelCase__ , UpperCAmelCase__ = b, a % b
return a
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int:
return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b )
def UpperCamelCase_( ) -> Tuple:
print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" )
print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" )
print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" )
print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" )
print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" )
print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" )
print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" )
print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" )
print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" )
print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" )
if __name__ == "__main__":
main() | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=3 , __a=32 , __a=3 , __a=10 , __a=[8, 16, 32, 64] , __a=[1, 1, 2, 1] , __a=True , __a=True , __a="relu" , __a=3 , __a=None , __a=["stage2", "stage3", "stage4"] , __a=[2, 3, 4] , __a=1 , ) -> int:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embeddings_size
UpperCAmelCase__ = hidden_sizes
UpperCAmelCase__ = depths
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = scope
UpperCAmelCase__ = len(__a )
UpperCAmelCase__ = out_features
UpperCAmelCase__ = out_indices
UpperCAmelCase__ = num_groups
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = BitModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = BitForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = BitBackbone(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase__ = None
UpperCAmelCase__ = BitBackbone(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = BitModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , has_text_modality=__a )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return
@unittest.skip(reason='Bit does not output attentions' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, module in model.named_modules():
if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
def check_hidden_states_output(__a , __a , __a ):
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase__ = self.model_tester.num_stages
self.assertEqual(len(__a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase__ = layer_type
UpperCAmelCase__ = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
check_hidden_states_output(__a , __a , __a )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = BitModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
@require_torch
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (BitBackbone,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = BitConfig
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BitModelTester(self ) | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any]=7 ) -> Union[str, Any]:
UpperCAmelCase__ = None
if token is not None:
UpperCAmelCase__ = {'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"}
# The id of a workflow (not of a workflow run)
UpperCAmelCase__ = '636036'
UpperCAmelCase__ = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"
UpperCAmelCase__ = requests.get(snake_case__ , headers=snake_case__ ).json()
return result["workflow_runs"]
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Any:
UpperCAmelCase__ = get_daily_ci_runs(snake_case__ )
UpperCAmelCase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
UpperCAmelCase__ = workflow_run['id']
break
return workflow_run_id
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: str , snake_case__: List[str] ) -> Optional[Any]:
UpperCAmelCase__ = get_last_daily_ci_runs(snake_case__ )
if workflow_run_id is not None:
UpperCAmelCase__ = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
UpperCAmelCase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: int , snake_case__: Optional[int] ) -> List[Any]:
get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = {}
for artifact_name in artifact_names:
UpperCAmelCase__ = os.path.join(snake_case__ , f"{artifact_name}.zip" )
if os.path.isfile(snake_case__ ):
UpperCAmelCase__ = {}
with zipfile.ZipFile(snake_case__ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case__ ):
# read the file
with z.open(snake_case__ ) as f:
UpperCAmelCase__ = f.read().decode('UTF-8' )
return results
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
class lowercase :
'''simple docstring'''
def __init__(self , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = val
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
if self.val:
if val < self.val:
if self.left is None:
UpperCAmelCase__ = Node(__a )
else:
self.left.insert(__a )
elif val > self.val:
if self.right is None:
UpperCAmelCase__ = Node(__a )
else:
self.right.insert(__a )
else:
UpperCAmelCase__ = val
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str ) -> Dict:
# Recursive traversal
if root:
inorder(root.left , snake_case__ )
res.append(root.val )
inorder(root.right , snake_case__ )
def UpperCamelCase_( snake_case__: Optional[Any] ) -> Union[str, Any]:
# Build BST
if len(snake_case__ ) == 0:
return arr
UpperCAmelCase__ = Node(arr[0] )
for i in range(1 , len(snake_case__ ) ):
root.insert(arr[i] )
# Traverse BST in order.
UpperCAmelCase__ = []
inorder(snake_case__ , snake_case__ )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=[30, 30] , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=3 , __a=None , __a=8 , __a=10 , ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = scope
UpperCAmelCase__ = n_targets
UpperCAmelCase__ = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
UpperCAmelCase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size)
UpperCAmelCase__ = num_patches + 1 + self.num_detection_tokens
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
UpperCAmelCase__ = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
UpperCAmelCase__ = []
for i in range(self.batch_size ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=__a )
UpperCAmelCase__ = torch.rand(self.n_targets , 4 , device=__a )
labels.append(__a )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def UpperCamelCase__ (self , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = YolosModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = YolosForObjectDetection(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(pixel_values=__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
UpperCAmelCase__ = model(pixel_values=__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self , __a , __a , __a=False ) -> str:
"""simple docstring"""
UpperCAmelCase__ = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
UpperCAmelCase__ = []
for i in range(self.model_tester.batch_size ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = torch.ones(
size=(self.model_tester.n_targets,) , device=__a , dtype=torch.long )
UpperCAmelCase__ = torch.ones(
self.model_tester.n_targets , 4 , device=__a , dtype=torch.float )
labels.append(__a )
UpperCAmelCase__ = labels
return inputs_dict
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = YolosModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
# in YOLOS, the seq_len is different
UpperCAmelCase__ = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = 1
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(__a , __a , __a ):
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
# YOLOS has a different seq_length
UpperCAmelCase__ = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
check_hidden_states_output(__a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
check_hidden_states_output(__a , __a , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*__a )
@slow
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = YolosModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase_( ) -> str:
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(inputs.pixel_values )
# verify outputs
UpperCAmelCase__ = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor(
[[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] , device=__a , )
UpperCAmelCase__ = torch.tensor(
[[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] , device=__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1E-4 ) )
# verify postprocessing
UpperCAmelCase__ = image_processor.post_process_object_detection(
__a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
UpperCAmelCase__ = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(__a )
UpperCAmelCase__ = [75, 75, 17, 63, 17]
UpperCAmelCase__ = torch.tensor([335.0609, 79.38_48, 375.4216, 187.2495] ).to(__a )
self.assertEqual(len(results['scores'] ) , 5 )
self.assertTrue(torch.allclose(results['scores'] , __a , atol=1E-4 ) )
self.assertSequenceEqual(results['labels'].tolist() , __a )
self.assertTrue(torch.allclose(results['boxes'][0, :] , __a ) )
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , __a = 128 , __a = 256 , __a = 2000.0 , __a = 768 , __a = 12 , __a = 12 , __a = 64 , __a = 2048 , __a = 0.1 , ) -> Tuple:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Sequential(
nn.Linear(__a , d_model * 4 , bias=__a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__a ) , nn.SiLU() , )
UpperCAmelCase__ = nn.Embedding(__a , __a )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a )
UpperCAmelCase__ = nn.Dropout(p=__a )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(__a ):
# FiLM conditional T5 decoder
UpperCAmelCase__ = DecoderLayer(d_model=__a , d_kv=__a , num_heads=__a , d_ff=__a , dropout_rate=__a )
self.decoders.append(__a )
UpperCAmelCase__ = TaLayerNorm(__a )
UpperCAmelCase__ = nn.Dropout(p=__a )
UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a )
def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCamelCase__ (self , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
UpperCAmelCase__ = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
UpperCAmelCase__ = self.conditioning_emb(__a ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
UpperCAmelCase__ = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
UpperCAmelCase__ = torch.broadcast_to(
torch.arange(__a , device=decoder_input_tokens.device ) , (batch, seq_length) , )
UpperCAmelCase__ = self.position_encoding(__a )
UpperCAmelCase__ = self.continuous_inputs_projection(__a )
inputs += position_encodings
UpperCAmelCase__ = self.dropout(__a )
# decoder: No padding present.
UpperCAmelCase__ = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
UpperCAmelCase__ = [(x, self.encoder_decoder_mask(__a , __a )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
UpperCAmelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
UpperCAmelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
UpperCAmelCase__ = lyr(
__a , conditioning_emb=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )[0]
UpperCAmelCase__ = self.decoder_norm(__a )
UpperCAmelCase__ = self.post_dropout(__a )
UpperCAmelCase__ = self.spec_out(__a )
return spec_out
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a , __a=1E-6 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a , layer_norm_epsilon=__a , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__a , d_ff=__a , dropout_rate=__a , layer_norm_epsilon=__a ) )
def UpperCamelCase__ (self , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.layer[0](
__a , conditioning_emb=__a , attention_mask=__a , )
if encoder_hidden_states is not None:
UpperCAmelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to(
encoder_hidden_states.dtype )
UpperCAmelCase__ = self.layer[1](
__a , key_value_states=__a , attention_mask=__a , )
# Apply Film Conditional Feed Forward layer
UpperCAmelCase__ = self.layer[-1](__a , __a )
return (hidden_states,)
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a ) -> List[str]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = TaLayerNorm(__a )
UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a )
UpperCAmelCase__ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a )
UpperCAmelCase__ = nn.Dropout(__a )
def UpperCamelCase__ (self , __a , __a=None , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.layer_norm(__a )
if conditioning_emb is not None:
UpperCAmelCase__ = self.FiLMLayer(__a , __a )
# Self-attention block
UpperCAmelCase__ = self.attention(__a )
UpperCAmelCase__ = hidden_states + self.dropout(__a )
return hidden_states
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a )
UpperCAmelCase__ = TaLayerNorm(__a , eps=__a )
UpperCAmelCase__ = nn.Dropout(__a )
def UpperCamelCase__ (self , __a , __a=None , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.layer_norm(__a )
UpperCAmelCase__ = self.attention(
__a , encoder_hidden_states=__a , attention_mask=attention_mask.squeeze(1 ) , )
UpperCAmelCase__ = hidden_states + self.dropout(__a )
return layer_output
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = TaDenseGatedActDense(d_model=__a , d_ff=__a , dropout_rate=__a )
UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__a )
UpperCAmelCase__ = TaLayerNorm(__a , eps=__a )
UpperCAmelCase__ = nn.Dropout(__a )
def UpperCamelCase__ (self , __a , __a=None ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.layer_norm(__a )
if conditioning_emb is not None:
UpperCAmelCase__ = self.film(__a , __a )
UpperCAmelCase__ = self.DenseReluDense(__a )
UpperCAmelCase__ = hidden_states + self.dropout(__a )
return hidden_states
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> int:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a )
UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a )
UpperCAmelCase__ = nn.Linear(__a , __a , bias=__a )
UpperCAmelCase__ = nn.Dropout(__a )
UpperCAmelCase__ = NewGELUActivation()
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.act(self.wi_a(__a ) )
UpperCAmelCase__ = self.wi_a(__a )
UpperCAmelCase__ = hidden_gelu * hidden_linear
UpperCAmelCase__ = self.dropout(__a )
UpperCAmelCase__ = self.wo(__a )
return hidden_states
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a=1E-6 ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.ones(__a ) )
UpperCAmelCase__ = eps
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__a )
UpperCAmelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
UpperCAmelCase__ = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class lowercase ( nn.Module ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> torch.Tensor:
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__a , 3.0 )) ))
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a ) -> Optional[int]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Linear(__a , out_features * 2 , bias=__a )
def UpperCamelCase__ (self , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.scale_bias(__a )
UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__a , 2 , -1 )
UpperCAmelCase__ = x * (1 + scale) + shift
return x
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import requests
from bsa import BeautifulSoup
def UpperCamelCase_( snake_case__: str = "AAPL" ) -> str:
UpperCAmelCase__ = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
UpperCAmelCase__ = BeautifulSoup(requests.get(snake_case__ ).text , 'html.parser' )
UpperCAmelCase__ = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''',
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align_text_model"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0 , __a="absolute" , __a=True , **__a , ) -> Tuple:
"""simple docstring"""
super().__init__(**__a )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = pad_token_id
@classmethod
def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a )
# get the text config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
UpperCAmelCase__ = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__a , **__a )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align_vision_model"""
def __init__(self , __a = 3 , __a = 600 , __a = 2.0 , __a = 3.1 , __a = 8 , __a = [3, 3, 5, 3, 5, 5, 3] , __a = [32, 16, 24, 40, 80, 112, 192] , __a = [16, 24, 40, 80, 112, 192, 320] , __a = [] , __a = [1, 2, 2, 2, 1, 2, 1] , __a = [1, 2, 2, 3, 3, 4, 1] , __a = [1, 6, 6, 6, 6, 6, 6] , __a = 0.25 , __a = "swish" , __a = 2560 , __a = "mean" , __a = 0.02 , __a = 0.0_01 , __a = 0.99 , __a = 0.2 , **__a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__a )
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = image_size
UpperCAmelCase__ = width_coefficient
UpperCAmelCase__ = depth_coefficient
UpperCAmelCase__ = depth_divisor
UpperCAmelCase__ = kernel_sizes
UpperCAmelCase__ = in_channels
UpperCAmelCase__ = out_channels
UpperCAmelCase__ = depthwise_padding
UpperCAmelCase__ = strides
UpperCAmelCase__ = num_block_repeats
UpperCAmelCase__ = expand_ratios
UpperCAmelCase__ = squeeze_expansion_ratio
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dim
UpperCAmelCase__ = pooling_type
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = batch_norm_eps
UpperCAmelCase__ = batch_norm_momentum
UpperCAmelCase__ = drop_connect_rate
UpperCAmelCase__ = sum(__a ) * 4
@classmethod
def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
UpperCAmelCase__ = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__a , **__a )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align"""
__SCREAMING_SNAKE_CASE = True
def __init__(self , __a=None , __a=None , __a=640 , __a=1.0 , __a=0.02 , **__a , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**__a )
if text_config is None:
UpperCAmelCase__ = {}
logger.info('text_config is None. Initializing the AlignTextConfig with default values.' )
if vision_config is None:
UpperCAmelCase__ = {}
logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' )
UpperCAmelCase__ = AlignTextConfig(**__a )
UpperCAmelCase__ = AlignVisionConfig(**__a )
UpperCAmelCase__ = projection_dim
UpperCAmelCase__ = temperature_init_value
UpperCAmelCase__ = initializer_range
@classmethod
def UpperCamelCase__ (cls , __a , __a , **__a ) -> int:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ = self.text_config.to_dict()
UpperCAmelCase__ = self.vision_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
A_ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
A_ = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] , snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Optional[int] ) -> List[Any]:
for attribute in key.split('.' ):
UpperCAmelCase__ = getattr(snake_case__ , snake_case__ )
if weight_type is not None:
UpperCAmelCase__ = getattr(snake_case__ , snake_case__ ).shape
else:
UpperCAmelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def UpperCamelCase_( snake_case__: int , snake_case__: List[Any] ) -> List[str]:
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(snake_case__ )[0].split('.' )[-2]
UpperCAmelCase__ = mapped_key.replace('*' , snake_case__ )
if "weight_g" in name:
UpperCAmelCase__ = 'weight_g'
elif "weight_v" in name:
UpperCAmelCase__ = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
UpperCAmelCase__ = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = 'weight'
else:
UpperCAmelCase__ = None
set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
continue
if not is_used:
unused_weights.append(snake_case__ )
logger.warning(f"Unused weights: {unused_weights}" )
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: str ) -> Union[str, Any]:
UpperCAmelCase__ = full_name.split('conv_layers.' )[-1]
UpperCAmelCase__ = name.split('.' )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
UpperCAmelCase__ = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(snake_case__ )
@torch.no_grad()
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: int=None ) -> int:
# load the pre-trained checkpoints
UpperCAmelCase__ = torch.load(snake_case__ )
UpperCAmelCase__ = WavLMConfigOrig(checkpoint['cfg'] )
UpperCAmelCase__ = WavLMOrig(snake_case__ )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
UpperCAmelCase__ = WavLMConfig.from_pretrained(snake_case__ )
else:
UpperCAmelCase__ = WavLMConfig()
UpperCAmelCase__ = WavLMModel(snake_case__ )
recursively_load_weights(snake_case__ , snake_case__ )
hf_wavlm.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
A_ = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """naver-clova-ix/donut-base-finetuned-docvqa"""
__SCREAMING_SNAKE_CASE = (
"""This is a tool that answers a question about an document (pdf). It takes an input named `document` which """
"""should be the document containing the information, as well as a `question` that is the question about the """
"""document. It returns a text that contains the answer to the question."""
)
__SCREAMING_SNAKE_CASE = """document_qa"""
__SCREAMING_SNAKE_CASE = AutoProcessor
__SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel
__SCREAMING_SNAKE_CASE = ["""image""", """text"""]
__SCREAMING_SNAKE_CASE = ["""text"""]
def __init__(self , *__a , **__a ) -> Tuple:
"""simple docstring"""
if not is_vision_available():
raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' )
super().__init__(*__a , **__a )
def UpperCamelCase__ (self , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>'
UpperCAmelCase__ = task_prompt.replace('{user_input}' , __a )
UpperCAmelCase__ = self.pre_processor.tokenizer(
__a , add_special_tokens=__a , return_tensors='pt' ).input_ids
UpperCAmelCase__ = self.pre_processor(__a , return_tensors='pt' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
return self.model.generate(
inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.pre_processor.batch_decode(__a )[0]
UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' )
UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' )
UpperCAmelCase__ = re.sub(r'<.*?>' , '' , __a , count=1 ).strip() # remove first task start token
UpperCAmelCase__ = self.pre_processor.tokenajson(__a )
return sequence["answer"]
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> int:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRoFormerModelTester(self )
@slow
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
@require_flax
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
UpperCAmelCase__ = jnp.array([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = 50000
UpperCAmelCase__ = (1, 6, vocab_size)
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
from math import sqrt
def UpperCamelCase_( snake_case__: int ) -> bool:
assert isinstance(snake_case__ , snake_case__ ) and (
number >= 0
), "'number' must been an int and positive"
UpperCAmelCase__ = True
# 0 and 1 are none primes.
if number <= 1:
UpperCAmelCase__ = False
for divisor in range(2 , int(round(sqrt(snake_case__ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
UpperCAmelCase__ = False
break
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'status' must been from type bool"
return status
def UpperCamelCase_( snake_case__: str ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
UpperCAmelCase__ = list(range(2 , n + 1 ) )
UpperCAmelCase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(snake_case__ ) ):
for j in range(i + 1 , len(snake_case__ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
UpperCAmelCase__ = 0
# filters actual prime numbers.
UpperCAmelCase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: int ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2"
UpperCAmelCase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(snake_case__ ):
ans.append(snake_case__ )
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ ) and number >= 0, "'number' must been an int and >= 0"
UpperCAmelCase__ = [] # this list will be returns of the function.
# potential prime number factors.
UpperCAmelCase__ = 2
UpperCAmelCase__ = number
if number == 0 or number == 1:
ans.append(snake_case__ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(snake_case__ ):
while quotient != 1:
if is_prime(snake_case__ ) and (quotient % factor == 0):
ans.append(snake_case__ )
quotient /= factor
else:
factor += 1
else:
ans.append(snake_case__ )
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase__ = 0
# prime factorization of 'number'
UpperCAmelCase__ = prime_factorization(snake_case__ )
UpperCAmelCase__ = max(snake_case__ )
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int"
return ans
def UpperCamelCase_( snake_case__: Dict ) -> List[Any]:
assert isinstance(snake_case__ , snake_case__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase__ = 0
# prime factorization of 'number'
UpperCAmelCase__ = prime_factorization(snake_case__ )
UpperCAmelCase__ = min(snake_case__ )
# precondition
assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int"
return ans
def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , snake_case__ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , snake_case__ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[int]:
assert (
isinstance(snake_case__ , snake_case__ ) and (number > 2) and is_even(snake_case__ )
), "'number' must been an int, even and > 2"
UpperCAmelCase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
UpperCAmelCase__ = get_prime_numbers(snake_case__ )
UpperCAmelCase__ = len(snake_case__ )
# run variable for while-loops.
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
# exit variable. for break up the loops
UpperCAmelCase__ = True
while i < len_pn and loop:
UpperCAmelCase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
UpperCAmelCase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(snake_case__ , snake_case__ )
and (len(snake_case__ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Tuple ) -> Optional[Any]:
assert (
isinstance(snake_case__ , snake_case__ )
and isinstance(snake_case__ , snake_case__ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase__ = 0
while numbera != 0:
UpperCAmelCase__ = numbera % numbera
UpperCAmelCase__ = numbera
UpperCAmelCase__ = rest
# precondition
assert isinstance(snake_case__ , snake_case__ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[Any] ) -> Optional[int]:
assert (
isinstance(snake_case__ , snake_case__ )
and isinstance(snake_case__ , snake_case__ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
UpperCAmelCase__ = prime_factorization(snake_case__ )
UpperCAmelCase__ = prime_factorization(snake_case__ )
elif numbera == 1 or numbera == 1:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
UpperCAmelCase__ = prime_fac_a.count(snake_case__ )
UpperCAmelCase__ = prime_fac_a.count(snake_case__ )
for _ in range(max(snake_case__ , snake_case__ ) ):
ans *= n
else:
UpperCAmelCase__ = prime_fac_a.count(snake_case__ )
for _ in range(snake_case__ ):
ans *= n
done.append(snake_case__ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
UpperCAmelCase__ = prime_fac_a.count(snake_case__ )
for _ in range(snake_case__ ):
ans *= n
done.append(snake_case__ )
# precondition
assert isinstance(snake_case__ , snake_case__ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> List[str]:
assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'number' must been a positive int"
UpperCAmelCase__ = 0
UpperCAmelCase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(snake_case__ ):
ans += 1
# precondition
assert isinstance(snake_case__ , snake_case__ ) and is_prime(
snake_case__ ), "'ans' must been a prime number and from type int"
return ans
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple ) -> Tuple:
assert (
is_prime(snake_case__ ) and is_prime(snake_case__ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
UpperCAmelCase__ = p_number_a + 1 # jump to the next number
UpperCAmelCase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(snake_case__ ):
number += 1
while number < p_number_a:
ans.append(snake_case__ )
number += 1
# fetch the next prime number.
while not is_prime(snake_case__ ):
number += 1
# precondition
assert (
isinstance(snake_case__ , snake_case__ )
and ans[0] != p_number_a
and ans[len(snake_case__ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> Any:
assert isinstance(snake_case__ , snake_case__ ) and (n >= 1), "'n' must been int and >= 1"
UpperCAmelCase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(snake_case__ )
# precondition
assert ans[0] == 1 and ans[len(snake_case__ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCamelCase_( snake_case__: Any ) -> Optional[int]:
assert isinstance(snake_case__ , snake_case__ ) and (
number > 1
), "'number' must been an int and >= 1"
UpperCAmelCase__ = get_divisors(snake_case__ )
# precondition
assert (
isinstance(snake_case__ , snake_case__ )
and (divisors[0] == 1)
and (divisors[len(snake_case__ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCamelCase_( snake_case__: int , snake_case__: Tuple ) -> Optional[int]:
assert (
isinstance(snake_case__ , snake_case__ )
and isinstance(snake_case__ , snake_case__ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
UpperCAmelCase__ = gcd(abs(snake_case__ ) , abs(snake_case__ ) )
# precondition
assert (
isinstance(snake_case__ , snake_case__ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCamelCase_( snake_case__: Any ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been a int and >= 0"
UpperCAmelCase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCamelCase_( snake_case__: Any ) -> Any:
assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been an int and >= 0"
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
UpperCAmelCase__ = 1 # this will be return
for _ in range(n - 1 ):
UpperCAmelCase__ = ans
ans += fiba
UpperCAmelCase__ = tmp
return ans
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
from math import pi
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> float:
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import os
def UpperCamelCase_( snake_case__: str = "matrix.txt" ) -> int:
with open(os.path.join(os.path.dirname(snake_case__ ) , snake_case__ ) ) as in_file:
UpperCAmelCase__ = in_file.read()
UpperCAmelCase__ = [[int(snake_case__ ) for cell in row.split(',' )] for row in data.strip().splitlines()]
UpperCAmelCase__ = [[0 for cell in row] for row in grid]
UpperCAmelCase__ = len(grid[0] )
UpperCAmelCase__ = [[0 for i in range(snake_case__ )] for j in range(snake_case__ )]
UpperCAmelCase__ = grid[0][0]
for i in range(1 , snake_case__ ):
UpperCAmelCase__ = grid[0][i] + dp[0][i - 1]
for i in range(1 , snake_case__ ):
UpperCAmelCase__ = grid[i][0] + dp[i - 1][0]
for i in range(1 , snake_case__ ):
for j in range(1 , snake_case__ ):
UpperCAmelCase__ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
_UpperCamelCase = {
'''abeja/gpt-neox-japanese-2.7b''': 2048,
}
def UpperCamelCase_( snake_case__: List[str] , snake_case__: str ) -> str:
with open(snake_case__ , 'r' , encoding='utf-8' ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = collections.OrderedDict()
UpperCAmelCase__ = collections.OrderedDict()
UpperCAmelCase__ = collections.OrderedDict()
with open(snake_case__ , 'r' , encoding='utf-8' ) as f:
UpperCAmelCase__ = f.readlines()
UpperCAmelCase__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(snake_case__ ):
UpperCAmelCase__ = b
UpperCAmelCase__ = idx
for wd in b:
UpperCAmelCase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""]
def __init__(self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , )
if not os.path.isfile(__a ):
raise ValueError(
F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(__a ):
raise ValueError(
F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
UpperCAmelCase__ = do_clean_text
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_vocab_and_emoji(__a , __a )
UpperCAmelCase__ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return len(self.raw_vocab )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder )
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text )
def UpperCamelCase__ (self , __a ) -> str:
"""simple docstring"""
return self.vocab.get(__a , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(__a )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = ''.join(__a ).strip()
return out_string
def UpperCamelCase__ (self , __a ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )
if len(__a ) > self.model_max_length:
UpperCAmelCase__ = input_ids[-self.model_max_length :]
return input_ids
def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase__ = 0
if os.path.isdir(__a ):
UpperCAmelCase__ = os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
UpperCAmelCase__ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
UpperCAmelCase__ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(__a , 'w' , encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
' Please check that the vocabulary is not corrupted!' )
UpperCAmelCase__ = token_index
writer.write(','.join(__a ) + '\n' )
index += 1
with open(__a , 'w' , encoding='utf-8' ) as writer:
json.dump(self.emoji , __a )
return vocab_file, emoji_file
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = vocab # same as swe
UpperCAmelCase__ = ids_to_tokens # same as bpe
UpperCAmelCase__ = emoji
UpperCAmelCase__ = np.max([len(__a ) for w in self.vocab.keys()] )
UpperCAmelCase__ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
UpperCAmelCase__ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
UpperCAmelCase__ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
UpperCAmelCase__ = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
UpperCAmelCase__ = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
UpperCAmelCase__ = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
UpperCAmelCase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
UpperCAmelCase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
UpperCAmelCase__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__(self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.ids_to_tokens )
def UpperCamelCase__ (self , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.content_repattera.sub('<URL>' , __a )
UpperCAmelCase__ = self.content_repattera.sub('<EMAIL>' , __a )
UpperCAmelCase__ = self.content_repattera.sub('<TEL>' , __a )
UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a )
UpperCAmelCase__ = self.content_repattera.sub('<DATE>' , __a )
UpperCAmelCase__ = self.content_repattera.sub('<PRICE>' , __a )
UpperCAmelCase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
UpperCAmelCase__ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' )
return content
def UpperCamelCase__ (self , __a , __a=False ) -> str:
"""simple docstring"""
UpperCAmelCase__ = text.replace(' ' , '<SP>' )
UpperCAmelCase__ = text.replace(' ' , '<SP>' )
UpperCAmelCase__ = text.replace('\r\n' , '<BR>' )
UpperCAmelCase__ = text.replace('\n' , '<BR>' )
UpperCAmelCase__ = text.replace('\r' , '<BR>' )
UpperCAmelCase__ = text.replace('\t' , '<TAB>' )
UpperCAmelCase__ = text.replace('—' , 'ー' )
UpperCAmelCase__ = text.replace('−' , 'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
UpperCAmelCase__ = text.replace(__a , __a )
if clean:
UpperCAmelCase__ = self.clean_text(__a )
def check_simbol(__a ):
UpperCAmelCase__ = x.encode()
if len(__a ) == 1 and len(__a ) == 2:
UpperCAmelCase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xc2a1 and c <= 0xc2bf)
or (c >= 0xc780 and c <= 0xc783)
or (c >= 0xcab9 and c <= 0xcbbf)
or (c >= 0xcc80 and c <= 0xcda2)
):
return True
return False
def checkuae(__a ):
UpperCAmelCase__ = x.encode()
if len(__a ) == 1 and len(__a ) == 3:
UpperCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xe2_8080 and c <= 0xe2_b07f:
return True
return False
UpperCAmelCase__ = 0
UpperCAmelCase__ = []
while pos < len(__a ):
UpperCAmelCase__ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
UpperCAmelCase__ = [] # (token_id, token, pos)
for e in range(__a , __a , -1 ):
UpperCAmelCase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__a ) > 2:
UpperCAmelCase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__a ) > 0:
# the smallest token_id is adopted
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sorted(__a , key=lambda __a : x[0] )[0]
result.append(__a )
UpperCAmelCase__ = e
else:
UpperCAmelCase__ = pos + 1
UpperCAmelCase__ = text[pos:end]
if check_simbol(__a ):
result.append('<KIGOU>' )
elif checkuae(__a ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
UpperCAmelCase__ = end
return result
def UpperCamelCase__ (self , __a , __a="\n" ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__a ) > 0:
words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) )
UpperCAmelCase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(__a )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(__a )
if len(__a ) > 0:
words.append(bytearray(__a ).decode('utf-8' , errors='replace' ) )
UpperCAmelCase__ = ''.join(__a )
return text
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''',
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """umt5"""
__SCREAMING_SNAKE_CASE = ["""past_key_values"""]
def __init__(self , __a=250112 , __a=512 , __a=64 , __a=1024 , __a=8 , __a=None , __a=6 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gated-gelu" , __a=True , __a=True , __a="T5Tokenizer" , __a=True , __a=0 , __a=1 , __a=0 , **__a , ) -> List[str]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=__a , tokenizer_class=__a , tie_word_embeddings=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = d_model
UpperCAmelCase__ = d_kv
UpperCAmelCase__ = d_ff
UpperCAmelCase__ = num_layers
UpperCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = relative_attention_num_buckets
UpperCAmelCase__ = relative_attention_max_distance
UpperCAmelCase__ = dropout_rate
UpperCAmelCase__ = layer_norm_epsilon
UpperCAmelCase__ = initializer_factor
UpperCAmelCase__ = feed_forward_proj
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = self.feed_forward_proj.split('-' )
UpperCAmelCase__ = act_info[-1]
UpperCAmelCase__ = act_info[0] == 'gated'
if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2:
raise ValueError(
F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
UpperCAmelCase__ = 'gelu_new'
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return self.d_model
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return self.num_heads
@property
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return self.num_layers
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
UpperCAmelCase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
UpperCAmelCase__ = 'past_encoder_sequence + sequence'
UpperCAmelCase__ = {0: 'batch'}
UpperCAmelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
UpperCAmelCase__ = {0: 'batch', 1: 'decoder_sequence'}
UpperCAmelCase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(__a , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return 13
@property
def UpperCamelCase__ (self ) -> float:
"""simple docstring"""
return 5E-4
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def UpperCamelCase_( ) -> Tuple:
UpperCAmelCase__ = HfArgumentParser(snake_case__ )
UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase__ = TensorFlowBenchmark(args=snake_case__ )
try:
UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
UpperCAmelCase__ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.'
UpperCAmelCase__ = ' '.join(str(snake_case__ ).split(' ' )[:-1] )
UpperCAmelCase__ = ''
UpperCAmelCase__ = eval(str(snake_case__ ).split(' ' )[-1] )
UpperCAmelCase__ = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(snake_case__ )
if len(snake_case__ ) > 0:
UpperCAmelCase__ = full_error_msg + begin_error_msg + str(snake_case__ )
raise ValueError(snake_case__ )
benchmark.run()
if __name__ == "__main__":
main()
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
_UpperCamelCase = False
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a=32 ) -> int:
"""simple docstring"""
set_seed(0 )
UpperCAmelCase__ = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 )
UpperCAmelCase__ = torch.optim.SGD(model.parameters() , lr=0.00_01 )
return model, optimizer
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
UpperCAmelCase__ = DDPMScheduler(
num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , )
UpperCAmelCase__ = DDIMScheduler(
num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )]
UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )]
UpperCAmelCase__ = [torch.randint(0 , 1000 , (4,) ).long().to(__a ) for _ in range(4 )]
# train with a DDPM scheduler
UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 )
model.train().to(__a )
for i in range(4 ):
optimizer.zero_grad()
UpperCAmelCase__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
UpperCAmelCase__ = model(__a , timesteps[i] ).sample
UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 )
model.train().to(__a )
for i in range(4 ):
optimizer.zero_grad()
UpperCAmelCase__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
UpperCAmelCase__ = model(__a , timesteps[i] ).sample
UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) )
self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) )
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
_UpperCamelCase = tuple[float, float, float]
_UpperCamelCase = tuple[float, float, float]
def UpperCamelCase_( snake_case__: Pointad , snake_case__: Pointad ) -> Vectorad:
UpperCAmelCase__ = end_pointa[0] - end_pointa[0]
UpperCAmelCase__ = end_pointa[1] - end_pointa[1]
UpperCAmelCase__ = end_pointa[2] - end_pointa[2]
return (x, y, z)
def UpperCamelCase_( snake_case__: Vectorad , snake_case__: Vectorad ) -> Vectorad:
UpperCAmelCase__ = ab[1] * ac[2] - ab[2] * ac[1] # *i
UpperCAmelCase__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
UpperCAmelCase__ = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def UpperCamelCase_( snake_case__: Vectorad , snake_case__: int ) -> bool:
return tuple(round(snake_case__ , snake_case__ ) for x in vector ) == (0, 0, 0)
def UpperCamelCase_( snake_case__: Pointad , snake_case__: Pointad , snake_case__: Pointad , snake_case__: int = 10 ) -> bool:
UpperCAmelCase__ = create_vector(snake_case__ , snake_case__ )
UpperCAmelCase__ = create_vector(snake_case__ , snake_case__ )
return is_zero_vector(get_ad_vectors_cross(snake_case__ , snake_case__ ) , snake_case__ ) | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a ) | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
import heapq
def UpperCamelCase_( snake_case__: dict ) -> set[int]:
UpperCAmelCase__ = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(snake_case__ , [-1 * len(snake_case__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
UpperCAmelCase__ = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
UpperCAmelCase__ = heapq.heappop(snake_case__ )[1][0]
chosen_vertices.add(snake_case__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
UpperCAmelCase__ = elem[1][1].index(snake_case__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(snake_case__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def UpperCamelCase_( snake_case__: int ) -> List[str]: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def UpperCamelCase_( ) -> Any:
with parallel_backend('spark' ):
assert ParallelBackendConfig.backend_name == "spark"
UpperCAmelCase__ = [1, 2, 3]
with pytest.raises(snake_case__ ):
with parallel_backend('unsupported backend' ):
map_nested(snake_case__ , snake_case__ , num_proc=2 )
with pytest.raises(snake_case__ ):
with parallel_backend('unsupported backend' ):
map_nested(snake_case__ , snake_case__ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('num_proc' , [2, -1] )
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
UpperCAmelCase__ = [1, 2]
UpperCAmelCase__ = {'a': 1, 'b': 2}
UpperCAmelCase__ = {'a': [1, 2], 'b': [3, 4]}
UpperCAmelCase__ = {'a': {'1': 1}, 'b': 2}
UpperCAmelCase__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
UpperCAmelCase__ = [2, 3]
UpperCAmelCase__ = {'a': 2, 'b': 3}
UpperCAmelCase__ = {'a': [2, 3], 'b': [4, 5]}
UpperCAmelCase__ = {'a': {'1': 2}, 'b': 3}
UpperCAmelCase__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5}
with parallel_backend('spark' ):
assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> int:
if len(snake_case__ ) != len(snake_case__ ):
raise ValueError('String lengths must match!' )
UpperCAmelCase__ = 0
for chara, chara in zip(snake_case__ , snake_case__ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """informer"""
__SCREAMING_SNAKE_CASE = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__(self , __a = None , __a = None , __a = "student_t" , __a = "nll" , __a = 1 , __a = None , __a = "mean" , __a = 0 , __a = 0 , __a = 0 , __a = 0 , __a = None , __a = None , __a = 64 , __a = 32 , __a = 32 , __a = 2 , __a = 2 , __a = 2 , __a = 2 , __a = True , __a = "gelu" , __a = 0.05 , __a = 0.1 , __a = 0.1 , __a = 0.1 , __a = 0.1 , __a = 100 , __a = 0.02 , __a=True , __a = "prob" , __a = 5 , __a = True , **__a , ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = prediction_length
UpperCAmelCase__ = context_length or prediction_length
UpperCAmelCase__ = distribution_output
UpperCAmelCase__ = loss
UpperCAmelCase__ = input_size
UpperCAmelCase__ = num_time_features
UpperCAmelCase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
UpperCAmelCase__ = scaling
UpperCAmelCase__ = num_dynamic_real_features
UpperCAmelCase__ = num_static_real_features
UpperCAmelCase__ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(__a ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
UpperCAmelCase__ = cardinality
else:
UpperCAmelCase__ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(__a ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
UpperCAmelCase__ = embedding_dimension
else:
UpperCAmelCase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
UpperCAmelCase__ = num_parallel_samples
# Transformer architecture configuration
UpperCAmelCase__ = input_size * len(self.lags_sequence ) + self._number_of_features
UpperCAmelCase__ = d_model
UpperCAmelCase__ = encoder_attention_heads
UpperCAmelCase__ = decoder_attention_heads
UpperCAmelCase__ = encoder_ffn_dim
UpperCAmelCase__ = decoder_ffn_dim
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = encoder_layerdrop
UpperCAmelCase__ = decoder_layerdrop
UpperCAmelCase__ = activation_function
UpperCAmelCase__ = init_std
UpperCAmelCase__ = use_cache
# Informer
UpperCAmelCase__ = attention_type
UpperCAmelCase__ = sampling_factor
UpperCAmelCase__ = distil
super().__init__(is_encoder_decoder=__a , **__a )
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """dandelin/vilt-b32-finetuned-vqa"""
__SCREAMING_SNAKE_CASE = (
"""This is a tool that answers a question about an image. It takes an input named `image` which should be the """
"""image containing the information, as well as a `question` which should be the question in English. It """
"""returns a text that is the answer to the question."""
)
__SCREAMING_SNAKE_CASE = """image_qa"""
__SCREAMING_SNAKE_CASE = AutoProcessor
__SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering
__SCREAMING_SNAKE_CASE = ["""image""", """text"""]
__SCREAMING_SNAKE_CASE = ["""text"""]
def __init__(self , *__a , **__a ) -> int:
"""simple docstring"""
requires_backends(self , ['vision'] )
super().__init__(*__a , **__a )
def UpperCamelCase__ (self , __a , __a ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__a , __a , return_tensors='pt' )
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__a ).logits
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
def UpperCamelCase_( snake_case__: list ) -> float:
UpperCAmelCase__ = 0
while len(snake_case__ ) > 1:
UpperCAmelCase__ = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
UpperCAmelCase__ = files.index(min(snake_case__ ) )
temp += files[min_index]
files.pop(snake_case__ )
files.append(snake_case__ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
import torch
from torch import nn
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a=1 , __a=False ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = n_token
UpperCAmelCase__ = d_embed
UpperCAmelCase__ = d_proj
UpperCAmelCase__ = cutoffs + [n_token]
UpperCAmelCase__ = [0] + self.cutoffs
UpperCAmelCase__ = div_val
UpperCAmelCase__ = self.cutoffs[0]
UpperCAmelCase__ = len(self.cutoffs ) - 1
UpperCAmelCase__ = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) )
UpperCAmelCase__ = nn.ModuleList()
UpperCAmelCase__ = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) )
else:
self.out_projs.append(__a )
self.out_layers.append(nn.Linear(__a , __a ) )
else:
for i in range(len(self.cutoffs ) ):
UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCAmelCase__ = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) )
self.out_layers.append(nn.Linear(__a , r_idx - l_idx ) )
UpperCAmelCase__ = keep_order
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
if proj is None:
UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
UpperCAmelCase__ = nn.functional.linear(__a , proj.t().contiguous() )
UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase__ (self , __a , __a=None , __a=False ) -> List[str]:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
UpperCAmelCase__ = hidden[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) )
UpperCAmelCase__ = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError('Input and labels should have the same size in the batch dimension.' )
else:
UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
UpperCAmelCase__ = labels != -100
UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device )
UpperCAmelCase__ = (
-nn.functional.log_softmax(__a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=-1 )
else:
# construct weights and biases
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx]
UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx]
else:
UpperCAmelCase__ = self.out_layers[i].weight
UpperCAmelCase__ = self.out_layers[i].bias
if i == 0:
UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 )
UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__a )
biases.append(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0]
UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a )
UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 )
if labels is None:
UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device )
UpperCAmelCase__ = 0
UpperCAmelCase__ = [0] + self.cutoffs
for i in range(len(__a ) - 1 ):
UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
UpperCAmelCase__ = (labels >= l_idx) & (labels < r_idx)
UpperCAmelCase__ = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
UpperCAmelCase__ = labels.index_select(0 , __a ) - l_idx
UpperCAmelCase__ = head_logprob.index_select(0 , __a )
UpperCAmelCase__ = hidden.index_select(0 , __a )
else:
UpperCAmelCase__ = hidden
if i == 0:
if labels is not None:
UpperCAmelCase__ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]]
else:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i]
UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a )
UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 )
UpperCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
UpperCAmelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
UpperCAmelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
UpperCAmelCase__ = logprob_i
if labels is not None:
if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order:
out.index_copy_(0 , __a , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
if self.n_clusters == 0:
UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(__a , dim=-1 )
else:
# construct weights and biases
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx]
UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx]
else:
UpperCAmelCase__ = self.out_layers[i].weight
UpperCAmelCase__ = self.out_layers[i].bias
if i == 0:
UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 )
UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(__a )
biases.append(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0]
UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a )
UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) )
UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 )
UpperCAmelCase__ = [0] + self.cutoffs
for i in range(len(__a ) - 1 ):
UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]]
else:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i]
UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a )
UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 )
UpperCAmelCase__ = head_logprob[:, -i] + tail_logprob_i
UpperCAmelCase__ = logprob_i
return out
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
if not is_accelerate_available():
return method
UpperCAmelCase__ = version.parse(accelerate.__version__ ).base_version
if version.parse(snake_case__ ) < version.parse('0.17.0' ):
return method
def wrapper(self: List[str] , *snake_case__: List[Any] , **snake_case__: Union[str, Any] ):
if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ):
self._hf_hook.pre_forward(self )
return method(self , *snake_case__ , **snake_case__ )
return wrapper
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
def UpperCamelCase_( snake_case__: int = 2_00 ) -> int:
UpperCAmelCase__ = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
UpperCAmelCase__ = [0] * (pence + 1)
UpperCAmelCase__ = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(snake_case__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
_UpperCamelCase = logging.getLogger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sequence-classification"""
def __init__(self , __a ) -> Optional[Any]:
"""simple docstring"""
if type(__a ) == dict:
UpperCAmelCase__ = Namespace(**__a )
UpperCAmelCase__ = glue_output_modes[hparams.task]
UpperCAmelCase__ = glue_tasks_num_labels[hparams.task]
super().__init__(__a , __a , self.mode )
def UpperCamelCase__ (self , **__a ) -> Tuple:
"""simple docstring"""
return self.model(**__a )
def UpperCamelCase__ (self , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
UpperCAmelCase__ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
UpperCAmelCase__ = self(**__a )
UpperCAmelCase__ = outputs[0]
UpperCAmelCase__ = self.trainer.lr_schedulers[0]['scheduler']
UpperCAmelCase__ = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.hparams
UpperCAmelCase__ = processors[args.task]()
UpperCAmelCase__ = processor.get_labels()
for mode in ["train", "dev"]:
UpperCAmelCase__ = self._feature_file(__a )
if os.path.exists(__a ) and not args.overwrite_cache:
logger.info('Loading features from cached file %s' , __a )
else:
logger.info('Creating features from dataset file at %s' , args.data_dir )
UpperCAmelCase__ = (
processor.get_dev_examples(args.data_dir )
if mode == 'dev'
else processor.get_train_examples(args.data_dir )
)
UpperCAmelCase__ = convert_examples_to_features(
__a , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info('Saving features into cached file %s' , __a )
torch.save(__a , __a )
def UpperCamelCase__ (self , __a , __a , __a = False ) -> DataLoader:
"""simple docstring"""
UpperCAmelCase__ = 'dev' if mode == 'test' else mode
UpperCAmelCase__ = self._feature_file(__a )
logger.info('Loading features from cached file %s' , __a )
UpperCAmelCase__ = torch.load(__a )
UpperCAmelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
UpperCAmelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
UpperCAmelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
UpperCAmelCase__ = torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
UpperCAmelCase__ = torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(__a , __a , __a , __a ) , batch_size=__a , shuffle=__a , )
def UpperCamelCase__ (self , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
UpperCAmelCase__ = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
UpperCAmelCase__ = self(**__a )
UpperCAmelCase__ , UpperCAmelCase__ = outputs[:2]
UpperCAmelCase__ = logits.detach().cpu().numpy()
UpperCAmelCase__ = inputs['labels'].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def UpperCamelCase__ (self , __a ) -> tuple:
"""simple docstring"""
UpperCAmelCase__ = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item()
UpperCAmelCase__ = np.concatenate([x['pred'] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
UpperCAmelCase__ = np.argmax(__a , axis=1 )
elif self.hparams.glue_output_mode == "regression":
UpperCAmelCase__ = np.squeeze(__a )
UpperCAmelCase__ = np.concatenate([x['target'] for x in outputs] , axis=0 )
UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )]
UpperCAmelCase__ = [[] for _ in range(out_label_ids.shape[0] )]
UpperCAmelCase__ = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __a , __a )}
UpperCAmelCase__ = dict(results.items() )
UpperCAmelCase__ = results
return ret, preds_list, out_label_list
def UpperCamelCase__ (self , __a ) -> dict:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(__a )
UpperCAmelCase__ = ret['log']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def UpperCamelCase__ (self , __a ) -> dict:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._eval_end(__a )
UpperCAmelCase__ = ret['log']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def UpperCamelCase__ (__a , __a ) -> Any:
"""simple docstring"""
BaseTransformer.add_model_specific_args(__a , __a )
parser.add_argument(
'--max_seq_length' , default=128 , type=__a , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--task' , default='' , type=__a , required=__a , help='The GLUE task to run' , )
parser.add_argument(
'--gpus' , default=0 , type=__a , help='The number of GPUs allocated for this, it is by default 0 meaning none' , )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
return parser
def UpperCamelCase_( ) -> Tuple:
UpperCAmelCase__ = argparse.ArgumentParser()
add_generic_args(snake_case__ , os.getcwd() )
UpperCAmelCase__ = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() )
UpperCAmelCase__ = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
UpperCAmelCase__ = os.path.join(
'./results' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , )
os.makedirs(args.output_dir )
UpperCAmelCase__ = GLUETransformer(snake_case__ )
UpperCAmelCase__ = generic_train(snake_case__ , snake_case__ )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
UpperCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=snake_case__ ) )
UpperCAmelCase__ = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(snake_case__ )
if __name__ == "__main__":
main()
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''')
@require_sentencepiece
@require_tokenizers
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = GPTSwaTokenizer
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase__ = GPTSwaTokenizer(__a , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'This is a test'
UpperCAmelCase__ = 'This is a test'
return input_text, output_text
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = '<s>'
UpperCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(__a ) , 2000 )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 2000 )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = GPTSwaTokenizer(__a )
UpperCAmelCase__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [465, 287, 265, 631, 842] )
UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
# fmt: off
self.assertListEqual(
__a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , )
# fmt: on
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(
__a , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__a )
# fmt: off
self.assertListEqual(
__a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] )
# fmt: on
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = GPTSwaTokenizer(__a )
UpperCAmelCase__ = ['This is a test', 'I was born in 92000, and this is falsé.']
UpperCAmelCase__ = [
[465, 287, 265, 631, 842],
[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(__a , __a ):
self.assertListEqual(tokenizer.encode_fast(__a ) , __a )
# Test that decode_fast returns the input text
for text, token_ids in zip(__a , __a ):
self.assertEqual(tokenizer.decode_fast(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = [
'<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')',
'Hey there, how are you doing this fine day?',
'This is a text with a trailing spaces followed by a dot .',
'Häj sväjs lillebrör! =)',
'Det är inget fel på Mr. Cool',
]
# fmt: off
UpperCAmelCase__ = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__a , )
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
_UpperCamelCase = sys.version_info >= (3, 10)
def UpperCamelCase_( snake_case__: Tuple=None , snake_case__: str=None ) -> int:
return field(default_factory=lambda: default , metadata=snake_case__ )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """titi"""
__SCREAMING_SNAKE_CASE = """toto"""
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """titi"""
__SCREAMING_SNAKE_CASE = """toto"""
__SCREAMING_SNAKE_CASE = 42
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = BasicEnum(self.foo )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[] )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[1, 2, 3] )
__SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] )
__SCREAMING_SNAKE_CASE = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = field()
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] )
if is_python_no_less_than_3_10:
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[] )
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
UpperCAmelCase__ = {k: v for k, v in vars(__a ).items() if k != 'container'}
UpperCAmelCase__ = {k: v for k, v in vars(__a ).items() if k != 'container'}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('choices' , __a ) and yy.get('choices' , __a ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['type'](__a ) , yy['type'](__a ) )
del xx["type"], yy["type"]
self.assertEqual(__a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=__a , required=__a )
expected.add_argument('--bar' , type=__a , required=__a )
expected.add_argument('--baz' , type=__a , required=__a )
expected.add_argument('--flag' , type=__a , default=__a , const=__a , nargs='?' )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = ['--foo', '1', '--baz', 'quux', '--bar', '0.5']
((UpperCAmelCase__ ) , ) = parser.parse_args_into_dataclasses(__a , look_for_args_file=__a )
self.assertFalse(example.flag )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , default=42 , type=__a )
expected.add_argument('--baz' , default='toto' , type=__a , help='help message' )
self.argparsersEqual(__a , __a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=__a , default=__a , const=__a , nargs='?' )
expected.add_argument('--baz' , type=__a , default=__a , const=__a , nargs='?' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('--no_baz' , action='store_false' , default=__a , dest='baz' )
expected.add_argument('--opt' , type=__a , default=__a )
UpperCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__a )
for dataclass_type in dataclass_types:
UpperCAmelCase__ = HfArgumentParser(__a )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(__a , Namespace(foo=__a , baz=__a , opt=__a ) )
UpperCAmelCase__ = parser.parse_args(['--foo', '--no_baz'] )
self.assertEqual(__a , Namespace(foo=__a , baz=__a , opt=__a ) )
UpperCAmelCase__ = parser.parse_args(['--foo', '--baz'] )
self.assertEqual(__a , Namespace(foo=__a , baz=__a , opt=__a ) )
UpperCAmelCase__ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] )
self.assertEqual(__a , Namespace(foo=__a , baz=__a , opt=__a ) )
UpperCAmelCase__ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] )
self.assertEqual(__a , Namespace(foo=__a , baz=__a , opt=__a ) )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
UpperCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
UpperCAmelCase__ = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
UpperCAmelCase__ = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__a )
expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__a )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__a )
expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__a )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , )
UpperCAmelCase__ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() )
self.assertEqual(__a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , default=__a , type=__a )
expected.add_argument('--bar' , default=__a , type=__a , help='help message' )
expected.add_argument('--baz' , default=__a , type=__a )
expected.add_argument('--ces' , nargs='+' , default=[] , type=__a )
expected.add_argument('--des' , nargs='+' , default=[] , type=__a )
UpperCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__a )
for dataclass_type in dataclass_types:
UpperCAmelCase__ = HfArgumentParser(__a )
self.argparsersEqual(__a , __a )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(__a , Namespace(foo=__a , bar=__a , baz=__a , ces=[] , des=[] ) )
UpperCAmelCase__ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() )
self.assertEqual(__a , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--required_list' , nargs='+' , type=__a , required=__a )
expected.add_argument('--required_str' , type=__a , required=__a )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__a , )
self.argparsersEqual(__a , __a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=__a , required=__a )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__a , )
expected.add_argument('--opt' , type=__a , default=__a )
expected.add_argument('--baz' , default='toto' , type=__a , help='help message' )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__a )
self.argparsersEqual(__a , __a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
UpperCAmelCase__ = parser.parse_dict(__a )[0]
UpperCAmelCase__ = BasicExample(**__a )
self.assertEqual(__a , __a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
'extra': 42,
}
self.assertRaises(__a , parser.parse_dict , __a , allow_extra_keys=__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(__a , 'temp_json' )
os.mkdir(__a )
with open(temp_local_path + '.json' , 'w+' ) as f:
json.dump(__a , __a )
UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0]
UpperCAmelCase__ = BasicExample(**__a )
self.assertEqual(__a , __a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
UpperCAmelCase__ = {
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(__a , 'temp_yaml' )
os.mkdir(__a )
with open(temp_local_path + '.yaml' , 'w+' ) as f:
yaml.dump(__a , __a )
UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0]
UpperCAmelCase__ = BasicExample(**__a )
self.assertEqual(__a , __a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(__a )
self.assertIsNotNone(__a )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: int , snake_case__: Dict ) -> List[str]:
# Initialise PyTorch model
UpperCAmelCase__ = LxmertConfig.from_json_file(snake_case__ )
print(f"Building PyTorch model from configuration: {config}" )
UpperCAmelCase__ = LxmertForPreTraining(snake_case__ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(snake_case__ , snake_case__ , snake_case__ )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def UpperCamelCase_( snake_case__: Optional[int] ) -> Union[str, Any]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
if k.startswith('encoder' ):
UpperCAmelCase__ = k.replace('.attn' , '.self_attn' )
UpperCAmelCase__ = k.replace('norm1' , 'self_attn_layer_norm' )
UpperCAmelCase__ = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
UpperCAmelCase__ = k.replace('norm1' , 'self_attn_layer_norm' )
UpperCAmelCase__ = k.replace('norm2' , 'encoder_attn_layer_norm' )
UpperCAmelCase__ = k.replace('norm3' , 'final_layer_norm' )
return k
def UpperCamelCase_( snake_case__: List[Any] ) -> Union[str, Any]:
UpperCAmelCase__ = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
UpperCAmelCase__ = sd.pop(snake_case__ )
UpperCAmelCase__ = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
UpperCAmelCase__ = v
_UpperCamelCase = ['''START''']
@torch.no_grad()
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]:
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )
UpperCAmelCase__ = model['model']
UpperCAmelCase__ = BlenderbotConfig.from_json_file(snake_case__ )
UpperCAmelCase__ = BlenderbotForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = m.model.state_dict().keys()
UpperCAmelCase__ = []
UpperCAmelCase__ = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
UpperCAmelCase__ = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case__ )
m.model.load_state_dict(snake_case__ , strict=snake_case__ )
m.half()
m.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
_UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
def UpperCamelCase_( snake_case__: list[list[int]] , snake_case__: int , snake_case__: int , snake_case__: set ) -> int:
UpperCAmelCase__ , UpperCAmelCase__ = len(snake_case__ ), len(grid[0] )
if (
min(snake_case__ , snake_case__ ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
UpperCAmelCase__ = 0
count += depth_first_search(snake_case__ , row + 1 , snake_case__ , snake_case__ )
count += depth_first_search(snake_case__ , row - 1 , snake_case__ , snake_case__ )
count += depth_first_search(snake_case__ , snake_case__ , col + 1 , snake_case__ )
count += depth_first_search(snake_case__ , snake_case__ , col - 1 , snake_case__ )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def UpperCamelCase_( snake_case__: str , snake_case__: str , snake_case__: str , snake_case__: Path , snake_case__: str = None , snake_case__: str = None , snake_case__: str = None , ) -> List[str]:
if config_name_or_path is None:
UpperCAmelCase__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base'
if generator_tokenizer_name_or_path is None:
UpperCAmelCase__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
UpperCAmelCase__ = question_encoder_name_or_path
UpperCAmelCase__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration
# Save model.
UpperCAmelCase__ = RagConfig.from_pretrained(snake_case__ )
UpperCAmelCase__ = AutoConfig.from_pretrained(snake_case__ )
UpperCAmelCase__ = AutoConfig.from_pretrained(snake_case__ )
UpperCAmelCase__ = gen_config
UpperCAmelCase__ = question_encoder_config
UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator(
snake_case__ , snake_case__ , config=snake_case__ )
rag_model.save_pretrained(snake_case__ )
# Sanity check.
model_class.from_pretrained(snake_case__ )
# Save tokenizers.
UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ )
gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(snake_case__ )
question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
_UpperCamelCase = 3
def UpperCamelCase_( snake_case__: int ) -> int:
print('Generating primitive root of p' )
while True:
UpperCAmelCase__ = random.randrange(3 , snake_case__ )
if pow(snake_case__ , 2 , snake_case__ ) == 1:
continue
if pow(snake_case__ , snake_case__ , snake_case__ ) == 1:
continue
return g
def UpperCamelCase_( snake_case__: int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print('Generating prime p...' )
UpperCAmelCase__ = rabin_miller.generate_large_prime(snake_case__ ) # select large prime number.
UpperCAmelCase__ = primitive_root(snake_case__ ) # one primitive root on modulo p.
UpperCAmelCase__ = random.randrange(3 , snake_case__ ) # private_key -> have to be greater than 2 for safety.
UpperCAmelCase__ = cryptomath.find_mod_inverse(pow(snake_case__ , snake_case__ , snake_case__ ) , snake_case__ )
UpperCAmelCase__ = (key_size, e_a, e_a, p)
UpperCAmelCase__ = (key_size, d)
return public_key, private_key
def UpperCamelCase_( snake_case__: str , snake_case__: int ) -> None:
if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ):
print('\nWARNING:' )
print(
f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"
'Use a different name or delete these files and re-run this program.' )
sys.exit()
UpperCAmelCase__ , UpperCAmelCase__ = generate_key(snake_case__ )
print(f"\nWriting public key to file {name}_pubkey.txt..." )
with open(f"{name}_pubkey.txt" , 'w' ) as fo:
fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" )
print(f"Writing private key to file {name}_privkey.txt..." )
with open(f"{name}_privkey.txt" , 'w' ) as fo:
fo.write(f"{private_key[0]},{private_key[1]}" )
def UpperCamelCase_( ) -> None:
print('Making key files...' )
make_key_files('elgamal' , 20_48 )
print('Key files generation successful' )
if __name__ == "__main__":
main()
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
from __future__ import annotations
from fractions import Fraction
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> bool:
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def UpperCamelCase_( snake_case__: int ) -> list[str]:
UpperCAmelCase__ = []
UpperCAmelCase__ = 11
UpperCAmelCase__ = int('1' + '0' * digit_len )
for num in range(snake_case__ , snake_case__ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(snake_case__ , snake_case__ ):
solutions.append(f"{num}/{den}" )
den += 1
num += 1
UpperCAmelCase__ = 10
return solutions
def UpperCamelCase_( snake_case__: int = 2 ) -> int:
UpperCAmelCase__ = 1.0
for fraction in fraction_list(snake_case__ ):
UpperCAmelCase__ = Fraction(snake_case__ )
result *= frac.denominator / frac.numerator
return int(snake_case__ )
if __name__ == "__main__":
print(solution())
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=64 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> int:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = embedding_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = scope
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , attention_mask=__a , token_type_ids=__a )
UpperCAmelCase__ = model(__a , token_type_ids=__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertForMaskedLM(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertForCausalLM(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertForNextSentencePrediction(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertForPreTraining(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertForQuestionAnswering(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(
__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = MegatronBertForSequenceClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = MegatronBertForTokenClassification(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = MegatronBertForMultipleChoice(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = model(
__a , attention_mask=__a , token_type_ids=__a , labels=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": MegatronBertModel,
"""fill-mask""": MegatronBertForMaskedLM,
"""question-answering""": MegatronBertForQuestionAnswering,
"""text-classification""": MegatronBertForSequenceClassification,
"""text-generation""": MegatronBertForCausalLM,
"""token-classification""": MegatronBertForTokenClassification,
"""zero-shot""": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
# test_resize_embeddings = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self , __a , __a , __a=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class in get_values(__a ):
UpperCAmelCase__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a )
UpperCAmelCase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__a )
return inputs_dict
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = MegatronBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__a )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__a )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__a )
def UpperCamelCase_( snake_case__: Dict ) -> List[Any]:
return torch.tensor(
snake_case__ , dtype=torch.long , device=snake_case__ , )
_UpperCamelCase = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip('Model is not available.' )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = 'nvidia/megatron-bert-uncased-345m'
if "MYDIR" in os.environ:
UpperCAmelCase__ = os.path.join(os.environ['MYDIR'] , __a )
UpperCAmelCase__ = MegatronBertModel.from_pretrained(__a )
model.to(__a )
model.half()
UpperCAmelCase__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = torch.Size((1, 9, 1024) )
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28]
for ii in range(3 ):
for jj in range(3 ):
UpperCAmelCase__ = output[0, ii, jj]
UpperCAmelCase__ = expected[3 * ii + jj]
UpperCAmelCase__ = 'ii={} jj={} a={} b={}'.format(__a , __a , __a , __a )
self.assertTrue(math.isclose(__a , __a , rel_tol=__a , abs_tol=__a ) , msg=__a )
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
def UpperCamelCase_( snake_case__: int ) -> int:
"""simple docstring"""
UpperCAmelCase__ = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def UpperCamelCase_( snake_case__: int ) -> int:
"""simple docstring"""
UpperCAmelCase__ = 0
while number > 0:
UpperCAmelCase__ = number % 10
sum_of_digits += last_digit
UpperCAmelCase__ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def UpperCamelCase_( snake_case__: int = 1_00 ) -> int:
"""simple docstring"""
UpperCAmelCase__ = factorial(snake_case__ )
UpperCAmelCase__ = split_and_add(snake_case__ )
return result
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=0.9 , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = size if size is not None else {'shortest_edge': 30}
UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 30, 'width': 30}
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = min_resolution
UpperCAmelCase__ = max_resolution
UpperCAmelCase__ = do_resize_and_center_crop
UpperCAmelCase__ = size
UpperCAmelCase__ = crop_pct
UpperCAmelCase__ = crop_size
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean
UpperCAmelCase__ = image_std
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = PoolFormerImageProcessor if is_vision_available() else None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = PoolFormerImageProcessingTester(self )
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__a , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(__a , 'size' ) )
self.assertTrue(hasattr(__a , 'crop_pct' ) )
self.assertTrue(hasattr(__a , 'do_normalize' ) )
self.assertTrue(hasattr(__a , 'image_mean' ) )
self.assertTrue(hasattr(__a , 'image_std' ) )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a )
for image in image_inputs:
self.assertIsInstance(__a , Image.Image )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a )
for image in image_inputs:
self.assertIsInstance(__a , np.ndarray )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a )
for image in image_inputs:
self.assertIsInstance(__a , torch.Tensor )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
for param in module.parameters():
UpperCAmelCase__ = False
def UpperCamelCase_( ) -> List[str]:
UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase__ = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
UpperCAmelCase__ = plt.imshow(snake_case__ )
fig.axes.get_xaxis().set_visible(snake_case__ )
fig.axes.get_yaxis().set_visible(snake_case__ )
plt.show()
def UpperCamelCase_( ) -> Any:
UpperCAmelCase__ = datetime.now()
UpperCAmelCase__ = current_time.strftime('%H:%M:%S' )
return timestamp | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
super().__init__(*__a , **__a )
UpperCAmelCase__ = eval_examples
UpperCAmelCase__ = post_process_function
def UpperCamelCase__ (self , __a = None , __a=None , __a = None , __a = "eval" , **__a , ) -> Dict[str, float]:
"""simple docstring"""
UpperCAmelCase__ = gen_kwargs.copy()
UpperCAmelCase__ = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length
)
UpperCAmelCase__ = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams
)
UpperCAmelCase__ = gen_kwargs
UpperCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase__ = self.get_eval_dataloader(__a )
UpperCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = time.time()
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
UpperCAmelCase__ = compute_metrics
UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase__ = self.post_process_function(__a , __a , __a )
UpperCAmelCase__ = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase__ = metrics.pop(__a )
metrics.update(output.metrics )
else:
UpperCAmelCase__ = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ (self , __a , __a , __a=None , __a = "test" , **__a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = gen_kwargs.copy()
UpperCAmelCase__ = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = time.time()
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
UpperCAmelCase__ = compute_metrics
UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase__ = self.post_process_function(__a , __a , __a , 'predict' )
UpperCAmelCase__ = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase__ = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
_UpperCamelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''DPTFeatureExtractor''']
_UpperCamelCase = ['''DPTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DPTForDepthEstimation''',
'''DPTForSemanticSegmentation''',
'''DPTModel''',
'''DPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import numpy as np
import datasets
_UpperCamelCase = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_UpperCamelCase = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_UpperCamelCase = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ),
} ) , )
def UpperCamelCase__ (self , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = np.array(__a )
UpperCAmelCase__ = np.array(__a )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('Expected `X` to be a 2D vector' )
if len(reference_distribution.shape ) != 2:
raise ValueError('Expected `reference_distribution` to be a 2D vector' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ = X - np.mean(__a )
UpperCAmelCase__ = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ = np.linalg.inv(__a )
except np.linalg.LinAlgError:
UpperCAmelCase__ = np.linalg.pinv(__a )
UpperCAmelCase__ = np.dot(__a , __a )
UpperCAmelCase__ = np.dot(__a , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[int] ) -> Optional[int]:
UpperCAmelCase__ = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, nicht wahr?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
UpperCAmelCase__ = {
'wmt16-en-de-dist-12-1': [28.3, 27.52],
'wmt16-en-de-dist-6-1': [27.4, 27.11],
'wmt16-en-de-12-1': [26.9, 25.75],
}
UpperCAmelCase__ = f"{src_lang}-{tgt_lang}"
UpperCAmelCase__ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n"
model_card_dir.mkdir(parents=snake_case__ , exist_ok=snake_case__ )
UpperCAmelCase__ = os.path.join(snake_case__ , 'README.md' )
print(f"Generating {path}" )
with open(snake_case__ , 'w' , encoding='utf-8' ) as f:
f.write(snake_case__ )
# make sure we are under the root of the project
_UpperCamelCase = Path(__file__).resolve().parent.parent.parent
_UpperCamelCase = repo_dir / '''model_cards'''
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
_UpperCamelCase = model_cards_dir / '''allenai''' / model_name
write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
from __future__ import annotations
import queue
class lowercase :
'''simple docstring'''
def __init__(self , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = data
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def UpperCamelCase_( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
UpperCAmelCase__ = input('Enter the value of the root node: ' ).strip().lower()
UpperCAmelCase__ = queue.Queue()
UpperCAmelCase__ = TreeNode(int(snake_case__ ) )
q.put(snake_case__ )
while not q.empty():
UpperCAmelCase__ = q.get()
UpperCAmelCase__ = f"Enter the left node of {node_found.data}: "
UpperCAmelCase__ = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCAmelCase__ = TreeNode(int(snake_case__ ) )
UpperCAmelCase__ = left_node
q.put(snake_case__ )
UpperCAmelCase__ = f"Enter the right node of {node_found.data}: "
UpperCAmelCase__ = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCAmelCase__ = TreeNode(int(snake_case__ ) )
UpperCAmelCase__ = right_node
q.put(snake_case__ )
raise
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCAmelCase__ = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCAmelCase__ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCAmelCase__ = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCAmelCase__ = []
while not q.empty():
UpperCAmelCase__ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(snake_case__ )
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCAmelCase__ = []
UpperCAmelCase__ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(snake_case__ )
UpperCAmelCase__ = n.left
# end of while means current node doesn't have left child
UpperCAmelCase__ = stack.pop()
# start to traverse its right child
UpperCAmelCase__ = n.right
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCAmelCase__ = []
UpperCAmelCase__ = node
while n or stack:
while n:
stack.append(snake_case__ )
UpperCAmelCase__ = n.left
UpperCAmelCase__ = stack.pop()
print(n.data , end=',' )
UpperCAmelCase__ = n.right
def UpperCamelCase_( snake_case__: TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCAmelCase__ , UpperCAmelCase__ = [], []
UpperCAmelCase__ = node
stacka.append(snake_case__ )
while stacka: # to find the reversed order of post order, store it in stack2
UpperCAmelCase__ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(snake_case__ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def UpperCamelCase_( snake_case__: str = "" , snake_case__: Optional[Any]=50 , snake_case__: str="*" ) -> str:
if not s:
return "\n" + width * char
UpperCAmelCase__ , UpperCAmelCase__ = divmod(width - len(snake_case__ ) - 2 , 2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
_UpperCamelCase = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
import torch
from diffusers import DiffusionPipeline
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a ) -> List[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=__a , scheduler=__a )
def __call__(self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
UpperCAmelCase__ = 1
UpperCAmelCase__ = self.unet(__a , __a ).sample
UpperCAmelCase__ = self.scheduler.step(__a , __a , __a ).prev_sample
UpperCAmelCase__ = scheduler_output - scheduler_output + torch.ones_like(__a )
return result
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
from __future__ import annotations
_UpperCamelCase = []
def UpperCamelCase_( snake_case__: list[list[int]] , snake_case__: int , snake_case__: int ) -> bool:
for i in range(len(snake_case__ ) ):
if board[row][i] == 1:
return False
for i in range(len(snake_case__ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , len(snake_case__ ) ) ):
if board[i][j] == 1:
return False
return True
def UpperCamelCase_( snake_case__: list[list[int]] , snake_case__: int ) -> bool:
if row >= len(snake_case__ ):
solution.append(snake_case__ )
printboard(snake_case__ )
print()
return True
for i in range(len(snake_case__ ) ):
if is_safe(snake_case__ , snake_case__ , snake_case__ ):
UpperCAmelCase__ = 1
solve(snake_case__ , row + 1 )
UpperCAmelCase__ = 0
return False
def UpperCamelCase_( snake_case__: list[list[int]] ) -> None:
for i in range(len(snake_case__ ) ):
for j in range(len(snake_case__ ) ):
if board[i][j] == 1:
print('Q' , end=' ' )
else:
print('.' , end=' ' )
print()
# n=int(input("The no. of queens"))
_UpperCamelCase = 8
_UpperCamelCase = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
from __future__ import annotations
import pandas as pd
def UpperCamelCase_( snake_case__: list[int] , snake_case__: list[int] , snake_case__: int ) -> list[int]:
UpperCAmelCase__ = [0] * no_of_processes
UpperCAmelCase__ = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(snake_case__ ):
UpperCAmelCase__ = burst_time[i]
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 9_99_99_99_99
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(snake_case__ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
UpperCAmelCase__ = remaining_time[j]
UpperCAmelCase__ = j
UpperCAmelCase__ = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
UpperCAmelCase__ = remaining_time[short]
if minm == 0:
UpperCAmelCase__ = 9_99_99_99_99
if remaining_time[short] == 0:
complete += 1
UpperCAmelCase__ = False
# Find finish time of current process
UpperCAmelCase__ = increment_time + 1
# Calculate waiting time
UpperCAmelCase__ = finish_time - arrival_time[short]
UpperCAmelCase__ = finar - burst_time[short]
if waiting_time[short] < 0:
UpperCAmelCase__ = 0
# Increment time
increment_time += 1
return waiting_time
def UpperCamelCase_( snake_case__: list[int] , snake_case__: int , snake_case__: list[int] ) -> list[int]:
UpperCAmelCase__ = [0] * no_of_processes
for i in range(snake_case__ ):
UpperCAmelCase__ = burst_time[i] + waiting_time[i]
return turn_around_time
def UpperCamelCase_( snake_case__: list[int] , snake_case__: list[int] , snake_case__: int ) -> None:
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for i in range(snake_case__ ):
UpperCAmelCase__ = total_waiting_time + waiting_time[i]
UpperCAmelCase__ = total_turn_around_time + turn_around_time[i]
print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" )
print('Average turn around time =' , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('''Enter how many process you want to analyze''')
_UpperCamelCase = int(input())
_UpperCamelCase = [0] * no_of_processes
_UpperCamelCase = [0] * no_of_processes
_UpperCamelCase = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('''Enter the arrival time and burst time for process:--''' + str(i + 1))
_UpperCamelCase , _UpperCamelCase = map(int, input().split())
_UpperCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_UpperCamelCase = burst_time
_UpperCamelCase = no_of_processes
_UpperCamelCase = waiting_time
_UpperCamelCase = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
_UpperCamelCase = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'''Process''',
'''BurstTime''',
'''ArrivalTime''',
'''WaitingTime''',
'''TurnAroundTime''',
],
)
# Printing the dataFrame
pd.set_option('''display.max_rows''', fcfs.shape[0] + 1)
print(fcfs)
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def UpperCamelCase_( snake_case__: str , snake_case__: str , **snake_case__: Tuple ) -> Optional[Any]:
UpperCAmelCase__ = AutoConfig.from_pretrained(snake_case__ , **snake_case__ )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_config(snake_case__ )
model.save_pretrained(snake_case__ )
AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
_UpperCamelCase = TypeVar('''T''')
class lowercase ( Generic[T] ):
'''simple docstring'''
def __init__(self , __a = True ) -> None:
"""simple docstring"""
UpperCAmelCase__ = {} # dictionary of lists
UpperCAmelCase__ = directed
def UpperCamelCase__ (self , __a , __a ) -> GraphAdjacencyList[T]:
"""simple docstring"""
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__a )
self.adj_list[destination_vertex].append(__a )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__a )
UpperCAmelCase__ = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(__a )
UpperCAmelCase__ = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
UpperCAmelCase__ = [destination_vertex]
UpperCAmelCase__ = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__a )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__a )
UpperCAmelCase__ = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
UpperCAmelCase__ = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
UpperCAmelCase__ = [destination_vertex]
UpperCAmelCase__ = []
return self
def __repr__(self ) -> str:
"""simple docstring"""
return pformat(self.adj_list )
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = BloomTokenizerFast
__SCREAMING_SNAKE_CASE = BloomTokenizerFast
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = """tokenizer_file"""
__SCREAMING_SNAKE_CASE = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
super().setUp()
UpperCAmelCase__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
UpperCAmelCase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
UpperCAmelCase__ = tokenizer.batch_encode_plus(__a )['input_ids']
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokenizer.batch_decode(__a )
self.assertListEqual(__a , __a )
def UpperCamelCase__ (self , __a=6 ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
UpperCAmelCase__ = 'This is a simple input'
UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2']
UpperCAmelCase__ = ('This is a simple input', 'This is a pair')
UpperCAmelCase__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(__a , max_length=__a )
tokenizer_r.encode_plus(__a , max_length=__a )
tokenizer_r.batch_encode_plus(__a , max_length=__a )
tokenizer_r.encode(__a , max_length=__a )
tokenizer_r.batch_encode_plus(__a , max_length=__a )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
UpperCAmelCase__ = None # Hotfixing padding = None
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
# Pair input
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__a )
UpperCAmelCase__ = next(iter(__a ) )['premise'] # pick up one data
UpperCAmelCase__ = list(sample_data.values() )
UpperCAmelCase__ = list(map(tokenizer.encode , __a ) )
UpperCAmelCase__ = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens]
self.assertListEqual(__a , __a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
import os
import numpy
import onnx
def UpperCamelCase_( snake_case__: str , snake_case__: Dict ) -> str:
UpperCAmelCase__ = a.name
UpperCAmelCase__ = b.name
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = a == b
UpperCAmelCase__ = name_a
UpperCAmelCase__ = name_b
return res
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] , snake_case__: Dict ) -> Optional[int]:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(snake_case__ , snake_case__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , snake_case__ , snake_case__ )
_graph_replace_input_with(node_proto.attribute[1].g , snake_case__ , snake_case__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , snake_case__ , snake_case__ )
def UpperCamelCase_( snake_case__: str , snake_case__: Any , snake_case__: Optional[Any] ) -> str:
for n in graph_proto.node:
_node_replace_input_with(snake_case__ , snake_case__ , snake_case__ )
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Optional[int] , snake_case__: Optional[Any] ) -> List[Any]:
UpperCAmelCase__ = list(model.graph.initializer )
UpperCAmelCase__ = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
UpperCAmelCase__ = inits[i].name
UpperCAmelCase__ = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , snake_case__ , snake_case__ )
def UpperCamelCase_( snake_case__: List[str] ) -> Optional[Any]:
UpperCAmelCase__ = os.path.dirname(snake_case__ )
UpperCAmelCase__ = os.path.basename(snake_case__ )
UpperCAmelCase__ = onnx.load(os.path.join(snake_case__ , snake_case__ ) )
UpperCAmelCase__ = list(model.graph.initializer )
UpperCAmelCase__ = set()
UpperCAmelCase__ = {}
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
for i in range(len(snake_case__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(snake_case__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(snake_case__ )
dup_set.add(snake_case__ )
UpperCAmelCase__ = inits[j].data_type
UpperCAmelCase__ = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('unexpected data type: ' , snake_case__ )
total_reduced_size += mem_size
UpperCAmelCase__ = inits[i].name
UpperCAmelCase__ = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(snake_case__ )
else:
UpperCAmelCase__ = [name_j]
ind_to_replace.append((j, i) )
print('total reduced size: ' , total_reduced_size / 10_24 / 10_24 / 10_24 , 'GB' )
UpperCAmelCase__ = sorted(snake_case__ )
_remove_dup_initializers_from_model(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = 'optimized_' + model_file_name
UpperCAmelCase__ = os.path.join(snake_case__ , snake_case__ )
onnx.save(snake_case__ , snake_case__ )
return new_model
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import os
_UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000}
def UpperCamelCase_( snake_case__: str ) -> int:
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
while index < len(snake_case__ ) - 1:
UpperCAmelCase__ = SYMBOLS[numerals[index]]
UpperCAmelCase__ = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def UpperCamelCase_( snake_case__: int ) -> str:
UpperCAmelCase__ = ''
UpperCAmelCase__ = num // 10_00
numerals += m_count * "M"
num %= 10_00
UpperCAmelCase__ = num // 1_00
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_00
UpperCAmelCase__ = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def UpperCamelCase_( snake_case__: str = "/p089_roman.txt" ) -> int:
UpperCAmelCase__ = 0
with open(os.path.dirname(snake_case__ ) + roman_numerals_filename ) as filea:
UpperCAmelCase__ = filea.readlines()
for line in lines:
UpperCAmelCase__ = line.strip()
UpperCAmelCase__ = parse_roman_numerals(snake_case__ )
UpperCAmelCase__ = generate_roman_numerals(snake_case__ )
savings += len(snake_case__ ) - len(snake_case__ )
return savings
if __name__ == "__main__":
print(F"""{solution() = }""")
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = 1
UpperCAmelCase__ = 3
UpperCAmelCase__ = (32, 32)
UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a )
return image
@property
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , )
return CLIPTextModel(__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ = self.dummy_cond_unet_upscale
UpperCAmelCase__ = DDPMScheduler()
UpperCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
UpperCAmelCase__ = self.dummy_vae
UpperCAmelCase__ = self.dummy_text_encoder
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
UpperCAmelCase__ = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
UpperCAmelCase__ = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
UpperCAmelCase__ = 'A painting of a squirrel eating a burger'
UpperCAmelCase__ = torch.Generator(device=__a ).manual_seed(0 )
UpperCAmelCase__ = sd_pipe(
[prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = torch.Generator(device=__a ).manual_seed(0 )
UpperCAmelCase__ = sd_pipe(
[prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=__a , )[0]
UpperCAmelCase__ = image[0, -3:, -3:, -1]
UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
UpperCAmelCase__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
UpperCAmelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ = self.dummy_cond_unet_upscale
UpperCAmelCase__ = DDPMScheduler()
UpperCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
UpperCAmelCase__ = self.dummy_vae
UpperCAmelCase__ = self.dummy_text_encoder
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
UpperCAmelCase__ = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
UpperCAmelCase__ = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
UpperCAmelCase__ = 'A painting of a squirrel eating a burger'
UpperCAmelCase__ = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
UpperCAmelCase__ = output.images
assert image.shape[0] == 2
UpperCAmelCase__ = torch.Generator(device=__a ).manual_seed(0 )
UpperCAmelCase__ = sd_pipe(
[prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
UpperCAmelCase__ = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.dummy_cond_unet_upscale
UpperCAmelCase__ = DDPMScheduler()
UpperCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' )
UpperCAmelCase__ = self.dummy_vae
UpperCAmelCase__ = self.dummy_text_encoder
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
UpperCAmelCase__ = unet.half()
UpperCAmelCase__ = text_encoder.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase__ = StableDiffusionUpscalePipeline(
unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , )
UpperCAmelCase__ = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
UpperCAmelCase__ = 'A painting of a squirrel eating a burger'
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = sd_pipe(
[prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ).images
UpperCAmelCase__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
UpperCAmelCase__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat.npy' )
UpperCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
UpperCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(__a )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
UpperCAmelCase__ = 'a cat sitting on a park bench'
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=__a , image=__a , generator=__a , output_type='np' , )
UpperCAmelCase__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1E-3
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
UpperCAmelCase__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat_fp16.npy' )
UpperCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
UpperCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(
__a , torch_dtype=torch.floataa , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing()
UpperCAmelCase__ = 'a cat sitting on a park bench'
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=__a , image=__a , generator=__a , output_type='np' , )
UpperCAmelCase__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
UpperCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler'
UpperCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(
__a , torch_dtype=torch.floataa , )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase__ = 'a cat sitting on a park bench'
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type='np' , )
UpperCAmelCase__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
_UpperCamelCase = parse(importlib.metadata.version('''torch'''))
def UpperCamelCase_( snake_case__: Union[str, Version] , snake_case__: str , snake_case__: str ) -> Tuple:
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" )
UpperCAmelCase__ = STR_OPERATION_TO_FUNC[operation]
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ = parse(importlib.metadata.version(snake_case__ ) )
return operation(snake_case__ , parse(snake_case__ ) )
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Any:
return compare_versions(snake_case__ , snake_case__ , snake_case__ )
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.