code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : int = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''swinv2''' __lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self : Optional[int] , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : int=96 , _lowerCAmelCase : Optional[int]=[2, 2, 6, 2] , _lowerCAmelCase : str=[3, 6, 12, 24] , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Tuple=4.0 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : List[str]=1e-5 , _lowerCAmelCase : Optional[Any]=32 , **_lowerCAmelCase : Tuple , ): super().__init__(**_lowerCAmelCase ) A = image_size A = patch_size A = num_channels A = embed_dim A = depths A = len(_lowerCAmelCase ) A = num_heads A = window_size A = mlp_ratio A = qkv_bias A = hidden_dropout_prob A = attention_probs_dropout_prob A = drop_path_rate A = hidden_act A = use_absolute_embeddings A = layer_norm_eps A = initializer_range A = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) A = (0, 0, 0, 0)
337
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _lowerCamelCase , _lowerCamelCase : str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _lowerCamelCase : List[Any] = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _lowerCamelCase : Optional[int] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCamelCase : Any = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
337
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->list[float]: """simple docstring""" A , A = coefficient_matrix.shape A , A = constant_matrix.shape if rowsa != colsa: A = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase ) if colsa != 1: A = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase ) if rowsa != rowsa: A = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(UpperCAmelCase ) if len(UpperCAmelCase ) != rowsa: A = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(UpperCAmelCase )} and {rowsa}""" ) raise ValueError(UpperCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) A = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) A , A = table.shape strictly_diagonally_dominant(UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase ): A = [] for row in range(UpperCAmelCase ): A = 0 for col in range(UpperCAmelCase ): if col == row: A = table[row][col] elif col == cols - 1: A = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A = (temp + val) / denom new_val.append(UpperCAmelCase ) A = new_val return [float(UpperCAmelCase ) for i in new_val] def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A , A = table.shape A = True for i in range(0 , UpperCAmelCase ): A = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' _lowerCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCamelCase : Optional[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->list[int]: """simple docstring""" A = True A = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) order.append(UpperCAmelCase ) return order def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->list[int]: """simple docstring""" A = True A = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return component def __a ( UpperCAmelCase ) ->list[list[int]]: """simple docstring""" A = len(UpperCAmelCase ) * [False] A = {vert: [] for vert in range(len(UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCAmelCase ) A = [] for i, was_visited in enumerate(UpperCAmelCase ): if not was_visited: order += topology_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = [] A = len(UpperCAmelCase ) * [False] for i in range(len(UpperCAmelCase ) ): A = order[len(UpperCAmelCase ) - i - 1] if not visited[vert]: A = find_components(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) components_list.append(UpperCAmelCase ) return components_list
337
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : Optional[Any] = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' def __a ( ) ->list[list[int]]: """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _lowerCamelCase : Optional[Any] = generate_large_matrix() _lowerCamelCase : str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( UpperCAmelCase ) ->None: """simple docstring""" assert all(row == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for row in grid ) assert all(list(UpperCAmelCase ) == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for col in zip(*UpperCAmelCase ) ) def __a ( UpperCAmelCase ) ->int: """simple docstring""" A = 0 A = len(UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A = (left + right) // 2 A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A = mid + 1 else: A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase ) def __a ( UpperCAmelCase ) ->int: """simple docstring""" A = 0 A = len(grid[0] ) for i in range(len(UpperCAmelCase ) ): A = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase ) * len(grid[0] )) - total def __a ( UpperCAmelCase ) ->int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def __a ( UpperCAmelCase ) ->int: """simple docstring""" A = 0 for row in grid: for i, number in enumerate(UpperCAmelCase ): if number < 0: total += len(UpperCAmelCase ) - i break return total def __a ( ) ->None: """simple docstring""" from timeit import timeit print("""Running benchmarks""" ) A = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A = timeit(f"""{func}(grid=grid)""" , setup=UpperCAmelCase , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : str = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } _lowerCamelCase : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } _lowerCamelCase : List[Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } _lowerCamelCase : List[str] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _lowerCamelCase : Dict = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _lowerCamelCase : int = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = DPRContextEncoderTokenizer class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = DPRQuestionEncoderTokenizer _lowerCamelCase : Union[str, Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _lowerCamelCase : Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _lowerCamelCase : Tuple = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A__ ) class __UpperCAmelCase : '''simple docstring''' def __call__(self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : List[Any] , ): if titles is None and texts is None: return super().__call__( _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) elif titles is None or texts is None: A = titles if texts is None else texts return super().__call__( _lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) A = titles if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [titles] A = texts if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [texts] A = len(_lowerCAmelCase ) A = questions if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [questions] * n_passages assert len(_lowerCAmelCase ) == len( _lowerCAmelCase ), F"""There should be as many titles than texts but got {len(_lowerCAmelCase )} titles and {len(_lowerCAmelCase )} texts.""" A = super().__call__(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] A = super().__call__(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] A = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCAmelCase , _lowerCAmelCase ) ] } if return_attention_mask is not False: A = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A = attention_mask return self.pad(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) def A (self : Union[str, Any] , _lowerCAmelCase : BatchEncoding , _lowerCAmelCase : DPRReaderOutput , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 4 , ): A = reader_input["""input_ids"""] A , A , A = reader_output[:3] A = len(_lowerCAmelCase ) A = sorted(range(_lowerCAmelCase ) , reverse=_lowerCAmelCase , key=relevance_logits.__getitem__ ) A = [] for doc_id in sorted_docs: A = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A = sequence_ids.index(self.pad_token_id ) else: A = len(_lowerCAmelCase ) A = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCAmelCase , top_spans=_lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCAmelCase , start_index=_lowerCAmelCase , end_index=_lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A (self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ): A = [] for start_index, start_score in enumerate(_lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] , reverse=_lowerCAmelCase ) A = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" A = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __UpperCAmelCase ( A__ , A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = DPRReaderTokenizer
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
1
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowerCamelCase : Tuple = datasets.logging.get_logger(__name__) _lowerCamelCase : List[str] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _lowerCamelCase : int = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _lowerCamelCase : Optional[Any] = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _lowerCamelCase : Dict = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def A (self : Any , _lowerCAmelCase : List[str] ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) A = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: A = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: A = self.config_name.upper() else: raise KeyError( F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer A = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) A = score.BleurtScorer(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) def A (self : str , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = self.scorer.score(references=_lowerCAmelCase , candidates=_lowerCAmelCase ) return {"scores": scores}
337
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart _lowerCamelCase : Optional[Any] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } _lowerCamelCase : int = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __a ( ) ->Optional[Any]: """simple docstring""" A = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A = bs[:] A = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase ) cs.append(2**8 + n ) n += 1 A = [chr(UpperCAmelCase ) for n in cs] return dict(zip(UpperCAmelCase , UpperCAmelCase ) ) def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__(self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]="replace" , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : List[str]="</s>" , _lowerCAmelCase : List[Any]="</s>" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : List[str]="<unk>" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Dict="<mask>" , _lowerCAmelCase : List[Any]=False , **_lowerCAmelCase : int , ): A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} A = errors # how to handle errors in decoding A = bytes_to_unicode() A = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in bpe_merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def A (self : List[Any] ): return len(self.encoder ) def A (self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[Any] , _lowerCAmelCase : Optional[Any] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """ """.join(_lowerCAmelCase ) A = word return word def A (self : Optional[int] , _lowerCAmelCase : Dict ): A = [] for token in re.findall(self.pat , _lowerCAmelCase ): A = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) ) return bpe_tokens def A (self : List[Any] , _lowerCAmelCase : List[str] ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] ): return self.decoder.get(_lowerCAmelCase ) def A (self : Optional[Any] , _lowerCAmelCase : Optional[int] ): A = """""".join(_lowerCAmelCase ) A = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def A (self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def A (self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A (self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def A (self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A (self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=False , **_lowerCAmelCase : Optional[int] ): A = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): A = """ """ + text return (text, kwargs)
337
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
1
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCamelCase : Optional[int] = '__DUMMY_TRANSFORMERS_USER__' _lowerCamelCase : Optional[Any] = 'Dummy User' _lowerCamelCase : Any = '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' _lowerCamelCase : Any = 'https://hub-ci.huggingface.co' _lowerCamelCase : str = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _lowerCamelCase : Union[str, Any] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _lowerCamelCase : int = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , UpperCAmelCase ) @pytest.fixture def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , UpperCAmelCase ) @pytest.fixture def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , UpperCAmelCase ) @pytest.fixture def __a ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" HfFolder.save_token(UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __a ( ) ->Tuple: """simple docstring""" return HfApi(endpoint=UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase ) @pytest.fixture def __a ( UpperCAmelCase ) ->str: """simple docstring""" def _cleanup_repo(UpperCAmelCase ): hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" @contextmanager def _temporary_repo(UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" A = f"""repo_txt_data-{int(time.time() * 10E3 )}""" A = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" A = f"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" A = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" A = f"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" A = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" , private=UpperCAmelCase ) hf_api.upload_file( token=UpperCAmelCase , path_or_fileobj=str(UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase , token=UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
337
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
1
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return number | (1 << position) def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return number & ~(1 << position) def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return number ^ (1 << position) def __a ( UpperCAmelCase , UpperCAmelCase ) ->bool: """simple docstring""" return ((number >> position) & 1) == 1 def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __UpperCAmelCase ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): '''simple docstring''' def __init__(self : Dict , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Optional[Any] ): super().__init__(features=_lowerCAmelCase ) A = torch_tensor_kwargs import torch # noqa import torch at initialization def A (self : Dict , _lowerCAmelCase : str ): import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def A (self : Tuple , _lowerCAmelCase : List[Any] ): import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): A = {"""dtype""": torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A (self : List[str] , _lowerCAmelCase : int ): import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , """__array__""" ) and not isinstance(_lowerCAmelCase , torch.Tensor ): A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def A (self : Dict , _lowerCAmelCase : dict ): return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) A = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def A (self : Optional[int] , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) A = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) A = self.recursive_tensorize(_lowerCAmelCase ) A = self._consolidate(_lowerCAmelCase ) return column def A (self : List[str] , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) A = self.python_features_decoder.decode_batch(_lowerCAmelCase ) A = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: A = self._consolidate(batch[column_name] ) return batch
337
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): '''simple docstring''' __lowerCAmelCase = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def __a ( ) ->Union[str, Any]: """simple docstring""" if os.name == "nt": A = CursorInfo() A = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) A = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __a ( ) ->int: """simple docstring""" if os.name == "nt": A = CursorInfo() A = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) A = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __a ( ) ->Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
337
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) ->Dict: """simple docstring""" A = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] A = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] A = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] A = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Union[str, Any]: """simple docstring""" if split_mlp_wi: A = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] A = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] A = (wi_a, wi_a) else: A = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] A = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def __a ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" A = traverse_util.flatten_dict(variables["""target"""] ) A = {"""/""".join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCAmelCase ) A = collections.OrderedDict() # Shared embeddings. A = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). A = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) A , A , A , A = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """attention""" ) A = layer_norm A = k.T A = o.T A = q.T A = v.T # Block i, layer 1 (MLP). A = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) A , A = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , """encoder""" , UpperCAmelCase ) A = layer_norm if split_mlp_wi: A = wi[0].T A = wi[1].T else: A = wi.T A = wo.T A = old[ """encoder/relpos_bias/rel_embedding""" ].T A = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). A = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) A , A , A , A = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """self_attention""" ) A = layer_norm A = k.T A = o.T A = q.T A = v.T # Block i, layer 1 (Cross Attention). A = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) A , A , A , A = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """encoder_decoder_attention""" ) A = layer_norm A = k.T A = o.T A = q.T A = v.T # Block i, layer 2 (MLP). A = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) A , A = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , """decoder""" , UpperCAmelCase ) A = layer_norm if split_mlp_wi: A = wi[0].T A = wi[1].T else: A = wi.T A = wo.T A = old["""decoder/decoder_norm/scale"""] A = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A = old["""decoder/logits_dense/kernel"""].T return new def __a ( UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) A = state_dict["""shared.weight"""] return state_dict def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = checkpoints.load_tax_checkpoint(UpperCAmelCase ) A = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase ) A = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) ->Optional[Any]: """simple docstring""" A = TaConfig.from_json_file(UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A = TaEncoderModel(UpperCAmelCase ) else: A = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print("""Done""" ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) _lowerCamelCase : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def A (self : Optional[int] , _lowerCAmelCase : list[list[float]] , _lowerCAmelCase : list[int] ): A = 0.0 A = 0.0 for i in range(len(_lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def A (self : int , _lowerCAmelCase : list[list[int | float]] , _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : float ): for i in range(len(_lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __a ( ) ->None: """simple docstring""" A = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A = SelfOrganizingMap() A = 3 A = 0.5 for _ in range(UpperCAmelCase ): for j in range(len(UpperCAmelCase ) ): # training sample A = training_samples[j] # Compute the winning vector A = self_organizing_map.get_winner(UpperCAmelCase , UpperCAmelCase ) # Update the winning vector A = self_organizing_map.update(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # classify test sample A = [0, 0, 0, 1] A = self_organizing_map.get_winner(UpperCAmelCase , UpperCAmelCase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
337
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''sew''' def __init__(self : Tuple , _lowerCAmelCase : Optional[Any]=32 , _lowerCAmelCase : str=768 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Any=3072 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : int=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowerCAmelCase : Union[str, Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowerCAmelCase : List[str]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowerCAmelCase : str=False , _lowerCAmelCase : int=128 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=0.05 , _lowerCAmelCase : Dict=10 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : int=10 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Optional[Any]="mean" , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Optional[int]=256 , _lowerCAmelCase : str=0 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Union[str, Any]=2 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) A = hidden_size A = feat_extract_norm A = feat_extract_activation A = list(_lowerCAmelCase ) A = list(_lowerCAmelCase ) A = list(_lowerCAmelCase ) A = conv_bias A = num_conv_pos_embeddings A = num_conv_pos_embedding_groups A = len(self.conv_dim ) A = num_hidden_layers A = intermediate_size A = squeeze_factor A = hidden_act A = num_attention_heads A = hidden_dropout A = attention_dropout A = activation_dropout A = feat_proj_dropout A = final_dropout A = layerdrop A = layer_norm_eps A = initializer_range A = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A = apply_spec_augment A = mask_time_prob A = mask_time_length A = mask_time_min_masks A = mask_feature_prob A = mask_feature_length A = mask_feature_min_masks # ctc loss A = ctc_loss_reduction A = ctc_zero_infinity # sequence classification A = use_weighted_layer_sum A = classifier_proj_size @property def A (self : Optional[Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
337
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ) ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: A = ( """Wrong input data's dimensions... """ f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: A = ( """Wrong input data's shape... """ f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: A = ( """Input data have different datatype... """ f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase ) A = [] for value in value_array: A = euclidean(UpperCAmelCase , dataset[0] ) A = dataset[0].tolist() for dataset_value in dataset[1:]: A = euclidean(UpperCAmelCase , UpperCAmelCase ) if dist > temp_dist: A = temp_dist A = dataset_value.tolist() answer.append([vector, dist] ) return answer def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" return np.dot(UpperCAmelCase , UpperCAmelCase ) / (norm(UpperCAmelCase ) * norm(UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCAmelCase : '''simple docstring''' def __init__(self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=10 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Union[str, Any]=32 * 8 , _lowerCAmelCase : List[Any]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : str=64 , ): A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def A (self : Union[str, Any] ): A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A (self : List[str] ): A = MaskaFormerConfig( hidden_size=self.hidden_dim , ) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def A (self : Optional[Any] ): A , A , A , A , A = self.prepare_config_and_inputs() A = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A (self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def A (self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=False ): with torch.no_grad(): A = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) A = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) A = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) A = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowerCAmelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : str ): A = MaskaFormerModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def A (self : Optional[int] ): self.config_tester.run_common_tests() def A (self : int ): A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def A (self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A (self : int ): pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A (self : Tuple ): pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A (self : Any ): pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A (self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A (self : Union[str, Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A (self : Optional[Any] ): pass def A (self : List[Any] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_lowerCAmelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def A (self : Union[str, Any] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A (self : Dict ): A = (self.model_tester.min_size,) * 2 A = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=_lowerCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) A = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def A (self : Union[str, Any] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def A (self : Tuple ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) A = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def A (self : List[str] ): if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() A = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def A (self : List[Any] ): A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() A = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCamelCase : List[str] = 1e-4 def __a ( ) ->int: """simple docstring""" A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A (self : List[str] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def A (self : Tuple ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A (self : Dict ): A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) A = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): A = model(**_lowerCAmelCase ) A = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) A = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) A = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def A (self : Any ): A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) A = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): A = model(**_lowerCAmelCase ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] A = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def A (self : Optional[int] ): A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) A = inputs["""pixel_values"""].to(_lowerCAmelCase ) A = [el.to(_lowerCAmelCase ) for el in inputs["""mask_labels"""]] A = [el.to(_lowerCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): A = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
337
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __a ( ) ->List[str]: """simple docstring""" A = HfArgumentParser(UpperCAmelCase ) A = parser.parse_args_into_dataclasses()[0] A = TensorFlowBenchmark(args=UpperCAmelCase ) try: A = parser.parse_args_into_dataclasses()[0] except ValueError as e: A = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A = """ """.join(str(UpperCAmelCase ).split(""" """ )[:-1] ) A = """""" A = eval(str(UpperCAmelCase ).split(""" """ )[-1] ) A = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: A = full_error_msg + begin_error_msg + str(UpperCAmelCase ) raise ValueError(UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ) ->List[Any]: """simple docstring""" A = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } A = Dataset.from_dict(UpperCAmelCase ) return dataset class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : Optional[Any] ): A = get_dataset() A = make_duplicate_clusters(_lowerCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A (self : List[str] ): A = get_dataset() A , A = deduplicate_dataset(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) print(_lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowerCAmelCase )
337
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCamelCase : Optional[int] = logging.getLogger(__name__) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" return (preds == labels).mean() @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __lowerCAmelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __lowerCAmelCase = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __lowerCAmelCase = field( default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __a ( ) ->str: """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: A = processors[data_args.task_name]() A = processor.get_labels() A = len(UpperCAmelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: A = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator A = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A = trainer.evaluate() A = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , UpperCAmelCase , UpperCAmelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(UpperCAmelCase ) return results def __a ( UpperCAmelCase ) ->str: """simple docstring""" main() if __name__ == "__main__": main()
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''cvt''' def __init__(self : List[Any] , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Dict=[7, 3, 3] , _lowerCAmelCase : Union[str, Any]=[4, 2, 2] , _lowerCAmelCase : Union[str, Any]=[2, 1, 1] , _lowerCAmelCase : Dict=[64, 192, 384] , _lowerCAmelCase : List[str]=[1, 3, 6] , _lowerCAmelCase : Union[str, Any]=[1, 2, 10] , _lowerCAmelCase : int=[4.0, 4.0, 4.0] , _lowerCAmelCase : Union[str, Any]=[0.0, 0.0, 0.0] , _lowerCAmelCase : List[Any]=[0.0, 0.0, 0.0] , _lowerCAmelCase : str=[0.0, 0.0, 0.1] , _lowerCAmelCase : Union[str, Any]=[True, True, True] , _lowerCAmelCase : Optional[Any]=[False, False, True] , _lowerCAmelCase : int=["dw_bn", "dw_bn", "dw_bn"] , _lowerCAmelCase : Optional[Any]=[3, 3, 3] , _lowerCAmelCase : Optional[int]=[1, 1, 1] , _lowerCAmelCase : int=[2, 2, 2] , _lowerCAmelCase : Optional[Any]=[1, 1, 1] , _lowerCAmelCase : Dict=[1, 1, 1] , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Union[str, Any]=1e-12 , **_lowerCAmelCase : Any , ): super().__init__(**_lowerCAmelCase ) A = num_channels A = patch_sizes A = patch_stride A = patch_padding A = embed_dim A = num_heads A = depth A = mlp_ratio A = attention_drop_rate A = drop_rate A = drop_path_rate A = qkv_bias A = cls_token A = qkv_projection_method A = kernel_qkv A = padding_kv A = stride_kv A = padding_q A = stride_q A = initializer_range A = layer_norm_eps
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCamelCase : List[Any] = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase ) def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main A = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase , id=UpperCAmelCase )
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __UpperCAmelCase ( A__ , A__ ): '''simple docstring''' @register_to_config def __init__(self : Tuple , _lowerCAmelCase : int = 768 , ): super().__init__() A = nn.Parameter(torch.zeros(1 , _lowerCAmelCase ) ) A = nn.Parameter(torch.ones(1 , _lowerCAmelCase ) ) def A (self : Dict , _lowerCAmelCase : Optional[Union[str, torch.device]] = None , _lowerCAmelCase : Optional[torch.dtype] = None , ): A = nn.Parameter(self.mean.to(_lowerCAmelCase ).to(_lowerCAmelCase ) ) A = nn.Parameter(self.std.to(_lowerCAmelCase ).to(_lowerCAmelCase ) ) return self def A (self : int , _lowerCAmelCase : str ): A = (embeds - self.mean) * 1.0 / self.std return embeds def A (self : Optional[Any] , _lowerCAmelCase : Optional[Any] ): A = (embeds * self.std) + self.mean return embeds
337
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
1
'''simple docstring''' import copy import re class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = '''hp''' __lowerCAmelCase = {} __lowerCAmelCase = None @classmethod def A (cls : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): A = prefix A = defaults cls.build_naming_info() @staticmethod def A (_lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): if len(_lowerCAmelCase ) == 0: return "" A = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_lowerCAmelCase ) + 1 ): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_lowerCAmelCase : Any ): A = """""" while integer != 0: A = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s A = 0 while True: A = word + """#""" + int_to_alphabetic(_lowerCAmelCase ) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def A (_lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): A = param_name.split("""_""" ) A = [TrialShortNamer.shortname_for_word(_lowerCAmelCase , _lowerCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ["""""", """_"""] for separator in separators: A = separator.join(_lowerCAmelCase ) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def A (_lowerCAmelCase : Tuple , _lowerCAmelCase : str ): A = TrialShortNamer.shortname_for_key(_lowerCAmelCase , _lowerCAmelCase ) A = short_name A = param_name @classmethod def A (cls : Optional[Any] ): if cls.NAMING_INFO is not None: return A = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_lowerCAmelCase , _lowerCAmelCase ) A = info @classmethod def A (cls : List[Any] , _lowerCAmelCase : List[Any] ): cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO["""short_param"""][k] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A = 1 if v else 0 A = """""" if isinstance(_lowerCAmelCase , (int, float) ) else """-""" A = F"""{key}{sep}{v}""" name.append(_lowerCAmelCase ) return "_".join(_lowerCAmelCase ) @classmethod def A (cls : Any , _lowerCAmelCase : Any ): A = repr[len(cls.PREFIX ) + 1 :] if repr == "": A = [] else: A = repr.split("""_""" ) A = {} for value in values: if "-" in value: A , A = value.split("""-""" ) else: A = re.sub("""[0-9.]""" , """""" , _lowerCAmelCase ) A = float(re.sub("""[^0-9.]""" , """""" , _lowerCAmelCase ) ) A = cls.NAMING_INFO["""reverse_short_param"""][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
337
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] ): super().__init__() A = nn.Linear(3 , 4 ) A = nn.BatchNormad(4 ) A = nn.Linear(4 , 5 ) def A (self : Dict , _lowerCAmelCase : str ): return self.lineara(self.batchnorm(self.lineara(_lowerCAmelCase ) ) ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : Union[str, Any] , _lowerCAmelCase : List[str] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[Any] ): return (args[0] + 1,) + args[1:], kwargs class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] ): return output + 1 class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Union[str, Any] ): A = ModelForTest() A = ModelHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(test_model._hf_hook , _lowerCAmelCase ) self.assertTrue(hasattr(_lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCAmelCase ) self.assertFalse(hasattr(_lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCAmelCase , """_old_forward""" ) ) def A (self : List[Any] ): A = ModelForTest() A = ModelHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase , append=_lowerCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCAmelCase ) self.assertFalse(hasattr(_lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCAmelCase , """_old_forward""" ) ) def A (self : List[Any] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(x + 1 ) A = test_model(x + 2 ) A = PreForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A = PreForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) def A (self : List[str] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(_lowerCAmelCase ) A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , output + 2 , atol=1e-5 ) def A (self : Optional[int] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(_lowerCAmelCase ) A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) A = True A = test_model(_lowerCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A (self : List[str] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowerCAmelCase , AlignDevicesHook(io_same_device=_lowerCAmelCase ) ) A = torch.randn(2 , 3 ).to(0 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def A (self : Union[str, Any] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload A = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A (self : int ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(_lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , offload_buffers=_lowerCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A (self : List[Any] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(_lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=_lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
337
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Union[str, Any] ): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
337
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = CTRLTokenizer __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] A = {"""unk_token""": """<unk>"""} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def A (self : Dict , **_lowerCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Tuple ): A = """adapt react readapt apt""" A = """adapt react readapt apt""" return input_text, output_text def A (self : List[str] ): A = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A = """adapt react readapt apt""" A = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() A = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A = tokens + [tokenizer.unk_token] A = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
337
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple=99 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=36 , _lowerCAmelCase : List[str]=6 , _lowerCAmelCase : Any=6 , _lowerCAmelCase : List[Any]=6 , _lowerCAmelCase : List[Any]=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[Any]=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = embedding_size A = hidden_size A = num_hidden_layers A = num_hidden_groups A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def A (self : List[Any] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A (self : Any ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A (self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): A = AlbertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A (self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): A = AlbertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , sentence_order_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): A = AlbertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A (self : Any , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): A = AlbertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A (self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Any ): A = self.num_labels A = AlbertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A (self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): A = self.num_labels A = AlbertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A (self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] ): A = self.num_choices A = AlbertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A (self : Dict ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True def A (self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]=False ): A = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def A (self : Optional[Any] ): A = AlbertModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def A (self : int ): self.config_tester.run_common_tests() def A (self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def A (self : Any ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def A (self : Optional[int] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def A (self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def A (self : Any ): A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def A (self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = AlbertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Optional[int] ): A = AlbertModel.from_pretrained("""albert-base-v2""" ) A = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] A = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) A = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
337
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCamelCase : List[str] = logging.get_logger(__name__) # General docstring _lowerCamelCase : Any = 'RegNetConfig' # Base docstring _lowerCamelCase : List[Any] = 'facebook/regnet-y-040' _lowerCamelCase : List[Any] = [1, 1088, 7, 7] # Image classification docstring _lowerCamelCase : int = 'facebook/regnet-y-040' _lowerCamelCase : str = 'tabby, tabby cat' _lowerCamelCase : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : str , ): super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , ) A = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) A = ACTaFN[activation] if activation is not None else tf.identity def A (self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ): A = self.convolution(self.padding(_lowerCAmelCase ) ) A = self.normalization(_lowerCAmelCase ) A = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : str , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : Tuple ): super().__init__(**_lowerCAmelCase ) A = config.num_channels A = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def A (self : str , _lowerCAmelCase : List[Any] ): A = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) A = self.embedder(_lowerCAmelCase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) A = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" ) A = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def A (self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ): return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : str , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Any ): super().__init__(**_lowerCAmelCase ) A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) A = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def A (self : str , _lowerCAmelCase : Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] A = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: A = layer_module(_lowerCAmelCase ) A = hidden_state * pooled return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Tuple ): super().__init__(**_lowerCAmelCase ) A = in_channels != out_channels or stride != 1 A = max(1 , out_channels // config.groups_width ) A = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ), ] A = ACTaFN[config.hidden_act] def A (self : Dict , _lowerCAmelCase : Optional[Any] ): A = hidden_state for layer_module in self.layers: A = layer_module(_lowerCAmelCase ) A = self.shortcut(_lowerCAmelCase ) hidden_state += residual A = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Tuple ): super().__init__(**_lowerCAmelCase ) A = in_channels != out_channels or stride != 1 A = max(1 , out_channels // config.groups_width ) A = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) A = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ), ] A = ACTaFN[config.hidden_act] def A (self : List[Any] , _lowerCAmelCase : Dict ): A = hidden_state for layer_module in self.layers: A = layer_module(_lowerCAmelCase ) A = self.shortcut(_lowerCAmelCase ) hidden_state += residual A = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : int ): super().__init__(**_lowerCAmelCase ) A = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer A = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def A (self : Dict , _lowerCAmelCase : List[str] ): for layer_module in self.layers: A = layer_module(_lowerCAmelCase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Optional[int] , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : Dict ): super().__init__(**_lowerCAmelCase ) A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) A = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=F"""stages.{i+1}""" ) ) def A (self : Any , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ): A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A = hidden_states + (hidden_state,) A = stage_module(_lowerCAmelCase ) if output_hidden_states: A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class __UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' __lowerCAmelCase = RegNetConfig def __init__(self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Union[str, Any] ): super().__init__(**_lowerCAmelCase ) A = config A = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" ) A = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" ) A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) @unpack_inputs def A (self : Tuple , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ): A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = return_dict if return_dict is not None else self.config.use_return_dict A = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) A = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) A = encoder_outputs[0] A = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules A = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) A = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = RegNetConfig __lowerCAmelCase = '''regnet''' __lowerCAmelCase = '''pixel_values''' @property def A (self : Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCamelCase : List[str] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase : str = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A__ , ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : int ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) A = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A (self : Any , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : List[str]=False , ): A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = return_dict if return_dict is not None else self.config.use_return_dict A = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A__ , ) class __UpperCAmelCase ( A__ , A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Any ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) A = config.num_labels A = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) # classification head A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A (self : Optional[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : str=False , ): A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = return_dict if return_dict is not None else self.config.use_return_dict A = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) A = outputs.pooler_output if return_dict else outputs[1] A = self.classifier[0](_lowerCAmelCase ) A = self.classifier[1](_lowerCAmelCase ) A = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
337
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
1
'''simple docstring''' from importlib import import_module from .logging import get_logger _lowerCamelCase : Optional[Any] = get_logger(__name__) class __UpperCAmelCase : '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=None ): A = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) A = module._original_module if isinstance(_lowerCAmelCase , _PatchedModuleObj ) else module class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = [] def __init__(self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]=None ): A = obj A = target A = new A = target.split(""".""" )[0] A = {} A = attrs or [] def __enter__(self : List[Any] ): *A , A = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_lowerCAmelCase ) ): try: A = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): A = getattr(self.obj , _lowerCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): A = obj_attr # patch at top level setattr(self.obj , _lowerCAmelCase , _PatchedModuleObj(_lowerCAmelCase , attrs=self.attrs ) ) A = getattr(self.obj , _lowerCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_lowerCAmelCase , _lowerCAmelCase , _PatchedModuleObj(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , attrs=self.attrs ) ) A = getattr(_lowerCAmelCase , _lowerCAmelCase ) # finally set the target attribute setattr(_lowerCAmelCase , _lowerCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: A = getattr(import_module(""".""".join(_lowerCAmelCase ) ) , _lowerCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _lowerCAmelCase ) is attr_value: A = getattr(self.obj , _lowerCAmelCase ) setattr(self.obj , _lowerCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" A = globals()["""__builtins__"""][target_attr] setattr(self.obj , _lowerCAmelCase , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__(self : Any , *_lowerCAmelCase : Optional[Any] ): for attr in list(self.original ): setattr(self.obj , _lowerCAmelCase , self.original.pop(_lowerCAmelCase ) ) def A (self : Dict ): self.__enter__() self._active_patches.append(self ) def A (self : Tuple ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _lowerCamelCase : Union[str, Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _lowerCamelCase : List[Any] = {'facebook/blenderbot-3B': 128} class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = BlenderbotTokenizer def __init__(self : Union[str, Any] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]="replace" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : Dict , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space A = """post_processor""" A = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A = tuple(state["""sep"""] ) if "cls" in state: A = tuple(state["""cls"""] ) A = False if state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = add_prefix_space A = True if state.get("""trim_offsets""" , _lowerCAmelCase ) != trim_offsets: A = trim_offsets A = True if changes_to_apply: A = getattr(_lowerCAmelCase , state.pop("""type""" ) ) A = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def A (self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A (self : List[Any] , _lowerCAmelCase : List[str] ): A = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value A = value def A (self : Union[str, Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Tuple ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A (self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def A (self : Tuple , _lowerCAmelCase : "Conversation" ): A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(_lowerCAmelCase ) A = """ """.join(_lowerCAmelCase ) A = self.encode(_lowerCAmelCase ) if len(_lowerCAmelCase ) > self.model_max_length: A = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
337
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''bert-generation''' def __init__(self : Any , _lowerCAmelCase : Tuple=5_0358 , _lowerCAmelCase : Tuple=1024 , _lowerCAmelCase : Tuple=24 , _lowerCAmelCase : int=16 , _lowerCAmelCase : str=4096 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Union[str, Any]="absolute" , _lowerCAmelCase : int=True , **_lowerCAmelCase : Optional[int] , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache
337
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
'''simple docstring''' def __a ( UpperCAmelCase ) ->list: """simple docstring""" for i in range(len(UpperCAmelCase ) - 1 , 0 , -1 ): A = False for j in range(UpperCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: A , A = unsorted[j - 1], unsorted[j] A = True for j in range(UpperCAmelCase ): if unsorted[j] > unsorted[j + 1]: A , A = unsorted[j + 1], unsorted[j] A = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Dict = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase : Any = [int(item) for item in user_input.split(',')] print(f"{cocktail_shaker_sort(unsorted) = }")
337
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''timm_backbone''' def __init__(self : Optional[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Optional[Any] , ): super().__init__(**_lowerCAmelCase ) A = backbone A = num_channels A = features_only A = use_pretrained_backbone A = True A = out_indices if out_indices is not None else (-1,)
337
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import requests def __a ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" A = {"""Content-Type""": """application/json"""} A = requests.post(UpperCAmelCase , json={"""text""": message_body} , headers=UpperCAmelCase ) if response.status_code != 200: A = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
337
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase : str = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = jnp.floataa __lowerCAmelCase = True def A (self : Optional[Any] ): super().setup() A = nn.Dense(5 , dtype=self.dtype ) def __call__(self : int , *_lowerCAmelCase : Any , **_lowerCAmelCase : Dict ): A = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) A = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = FlaxBigBirdForNaturalQuestionsModule def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" def cross_entropy(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): A = logits.shape[-1] A = (labels[..., None] == jnp.arange(UpperCAmelCase )[None]).astype("""f4""" ) A = jax.nn.log_softmax(UpperCAmelCase , axis=-1 ) A = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: A = reduction(UpperCAmelCase ) return loss A = partial(UpperCAmelCase , reduction=jnp.mean ) A = cross_entropy(UpperCAmelCase , UpperCAmelCase ) A = cross_entropy(UpperCAmelCase , UpperCAmelCase ) A = cross_entropy(UpperCAmelCase , UpperCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = "google/bigbird-roberta-base" __lowerCAmelCase = 30_00 __lowerCAmelCase = 1_05_00 __lowerCAmelCase = 1_28 __lowerCAmelCase = 3 __lowerCAmelCase = 1 __lowerCAmelCase = 5 # tx_args __lowerCAmelCase = 3e-5 __lowerCAmelCase = 0.0 __lowerCAmelCase = 2_00_00 __lowerCAmelCase = 0.0095 __lowerCAmelCase = "bigbird-roberta-natural-questions" __lowerCAmelCase = "training-expt" __lowerCAmelCase = "data/nq-training.jsonl" __lowerCAmelCase = "data/nq-validation.jsonl" def A (self : Union[str, Any] ): os.makedirs(self.base_dir , exist_ok=_lowerCAmelCase ) A = os.path.join(self.base_dir , self.save_dir ) A = self.batch_size_per_device * jax.device_count() @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 40_96 # no dynamic padding on TPUs def __call__(self : List[str] , _lowerCAmelCase : Optional[int] ): A = self.collate_fn(_lowerCAmelCase ) A = jax.tree_util.tree_map(_lowerCAmelCase , _lowerCAmelCase ) return batch def A (self : Tuple , _lowerCAmelCase : Union[str, Any] ): A , A = self.fetch_inputs(features["""input_ids"""] ) A = { """input_ids""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def A (self : Optional[int] , _lowerCAmelCase : list ): A = [self._fetch_inputs(_lowerCAmelCase ) for ids in input_ids] return zip(*_lowerCAmelCase ) def A (self : Any , _lowerCAmelCase : list ): A = [1 for _ in range(len(_lowerCAmelCase ) )] while len(_lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) ->int: """simple docstring""" if seed is not None: A = dataset.shuffle(seed=UpperCAmelCase ) for i in range(len(UpperCAmelCase ) // batch_size ): A = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase ) @partial(jax.pmap , axis_name="""batch""" ) def __a ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) ->int: """simple docstring""" def loss_fn(UpperCAmelCase ): A = model_inputs.pop("""start_labels""" ) A = model_inputs.pop("""end_labels""" ) A = model_inputs.pop("""pooled_labels""" ) A = state.apply_fn(**UpperCAmelCase , params=UpperCAmelCase , dropout_rng=UpperCAmelCase , train=UpperCAmelCase ) A , A , A = outputs return state.loss_fn( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) A , A = jax.random.split(UpperCAmelCase ) A = jax.value_and_grad(UpperCAmelCase ) A , A = grad_fn(state.params ) A = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) A = jax.lax.pmean(UpperCAmelCase , """batch""" ) A = state.apply_gradients(grads=UpperCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def __a ( UpperCAmelCase , **UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" A = model_inputs.pop("""start_labels""" ) A = model_inputs.pop("""end_labels""" ) A = model_inputs.pop("""pooled_labels""" ) A = state.apply_fn(**UpperCAmelCase , params=state.params , train=UpperCAmelCase ) A , A , A = outputs A = state.loss_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __UpperCAmelCase ( train_state.TrainState ): '''simple docstring''' __lowerCAmelCase = struct.field(pytree_node=A__ ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None def A (self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=None ): A = model.params A = TrainState.create( apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , loss_fn=_lowerCAmelCase , ) if ckpt_dir is not None: A , A , A , A , A = restore_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) A = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } A , A = build_tx(**_lowerCAmelCase ) A = train_state.TrainState( step=_lowerCAmelCase , apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , opt_state=_lowerCAmelCase , ) A = args A = data_collator A = lr A = params A = jax_utils.replicate(_lowerCAmelCase ) return state def A (self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): A = self.args A = len(_lowerCAmelCase ) // args.batch_size A = jax.random.PRNGKey(0 ) A = jax.random.split(_lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): A = jnp.array(0 , dtype=jnp.floataa ) A = get_batched_dataset(_lowerCAmelCase , args.batch_size , seed=_lowerCAmelCase ) A = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): A = self.data_collator(_lowerCAmelCase ) A , A , A = self.train_step_fn(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: A = jax_utils.unreplicate(state.step ) A = running_loss.item() / i A = self.scheduler_fn(state_step - 1 ) A = self.evaluate(_lowerCAmelCase , _lowerCAmelCase ) A = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(_lowerCAmelCase ) ) self.logger.log(_lowerCAmelCase , commit=_lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): A = get_batched_dataset(_lowerCAmelCase , self.args.batch_size ) A = len(_lowerCAmelCase ) // self.args.batch_size A = jnp.array(0 , dtype=jnp.floataa ) A = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc="""Evaluating ... """ ): A = self.data_collator(_lowerCAmelCase ) A = self.val_step_fn(_lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def A (self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ): A = jax_utils.unreplicate(_lowerCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=""" ... """ ) self.model_save_fn(_lowerCAmelCase , params=state.params ) with open(os.path.join(_lowerCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCAmelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(_lowerCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(_lowerCAmelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , _lowerCAmelCase ) print("""DONE""" ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=""" ... """ ) with open(os.path.join(UpperCAmelCase , """flax_model.msgpack""" ) , """rb""" ) as f: A = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCAmelCase , """opt_state.msgpack""" ) , """rb""" ) as f: A = from_bytes(state.opt_state , f.read() ) A = joblib.load(os.path.join(UpperCAmelCase , """args.joblib""" ) ) A = joblib.load(os.path.join(UpperCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(UpperCAmelCase , """training_state.json""" ) , """r""" ) as f: A = json.load(UpperCAmelCase ) A = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" A = num_train_steps - warmup_steps A = optax.linear_schedule(init_value=UpperCAmelCase , end_value=UpperCAmelCase , transition_steps=UpperCAmelCase ) A = optax.linear_schedule(init_value=UpperCAmelCase , end_value=1E-7 , transition_steps=UpperCAmelCase ) A = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" def weight_decay_mask(UpperCAmelCase ): A = traverse_util.flatten_dict(UpperCAmelCase ) A = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase ) A = scheduler_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = optax.adamw(learning_rate=UpperCAmelCase , weight_decay=UpperCAmelCase , mask=UpperCAmelCase ) return tx, lr
337
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = PegasusConfig __lowerCAmelCase = {} __lowerCAmelCase = '''gelu''' def __init__(self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Union[str, Any]=40 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : int=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def A (self : List[str] ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def A (self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): A = TFPegasusModel(config=_lowerCAmelCase ).get_decoder() A = inputs_dict["""input_ids"""] A = input_ids[:1, :] A = inputs_dict["""attention_mask"""][:1, :] A = inputs_dict["""head_mask"""] A = 1 # first forward pass A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) A , A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) ->Tuple: """simple docstring""" if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowerCAmelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Tuple ): A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase ) def A (self : Any ): self.config_tester.run_common_tests() def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __lowerCAmelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowerCAmelCase = '''google/pegasus-xsum''' @cached_property def A (self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A (self : List[Any] ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A (self : Any , **_lowerCAmelCase : Tuple ): A = self.translate_src_text(**_lowerCAmelCase ) assert self.expected_text == generated_words def A (self : Dict , **_lowerCAmelCase : Tuple ): A = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""tf""" ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def A (self : str ): self._assert_generated_batch_equal_expected()
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : int = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _lowerCamelCase : str = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _lowerCamelCase : List[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _lowerCamelCase : Union[str, Any] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : str = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def __a ( ) ->List[str]: """simple docstring""" A , A = randrange(len(UpperCAmelCase ) ), randrange(len(UpperCAmelCase ) ) A = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] A , A = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __a ( UpperCAmelCase = 100 ) ->Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(UpperCAmelCase )) @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" A = PokerHand(UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" assert PokerHand(UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" assert PokerHand(UpperCAmelCase ).compare_with(PokerHand(UpperCAmelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" assert PokerHand(UpperCAmelCase ).compare_with(PokerHand(UpperCAmelCase ) ) == expected def __a ( ) ->Dict: """simple docstring""" A = [PokerHand(UpperCAmelCase ) for hand in SORTED_HANDS] A = poker_hands.copy() shuffle(UpperCAmelCase ) A = chain(sorted(UpperCAmelCase ) ) for index, hand in enumerate(UpperCAmelCase ): assert hand == poker_hands[index] def __a ( ) ->int: """simple docstring""" A = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __a ( ) ->str: """simple docstring""" A = PokerHand("""2C 4S AS 3D 5C""" ) A = True A = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __a ( ) ->Tuple: """simple docstring""" A = 0 A = os.path.abspath(os.path.dirname(UpperCAmelCase ) ) A = os.path.join(UpperCAmelCase , """poker_hands.txt""" ) with open(UpperCAmelCase ) as file_hand: for line in file_hand: A = line[:14].strip() A = line[15:].strip() A , A = PokerHand(UpperCAmelCase ), PokerHand(UpperCAmelCase ) A = player.compare_with(UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__(self : str ): A = {} # Mapping from char to TrieNode A = False def A (self : List[str] , _lowerCAmelCase : list[str] ): for word in words: self.insert(_lowerCAmelCase ) def A (self : Optional[Any] , _lowerCAmelCase : str ): A = self for char in word: if char not in curr.nodes: A = TrieNode() A = curr.nodes[char] A = True def A (self : Union[str, Any] , _lowerCAmelCase : str ): A = self for char in word: if char not in curr.nodes: return False A = curr.nodes[char] return curr.is_leaf def A (self : Optional[int] , _lowerCAmelCase : str ): def _delete(_lowerCAmelCase : TrieNode , _lowerCAmelCase : str , _lowerCAmelCase : int ) -> bool: if index == len(_lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False A = False return len(curr.nodes ) == 0 A = word[index] A = curr.nodes.get(_lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted A = _delete(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCAmelCase , 0 ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" if node.is_leaf: print(UpperCAmelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(UpperCAmelCase , word + key ) def __a ( ) ->bool: """simple docstring""" A = """banana bananas bandana band apple all beast""".split() A = TrieNode() root.insert_many(UpperCAmelCase ) # print_words(root, "") assert all(root.find(UpperCAmelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __a ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" print(str(UpperCAmelCase ) , """works!""" if passes else """doesn't work :(""" ) def __a ( ) ->None: """simple docstring""" assert test_trie() def __a ( ) ->None: """simple docstring""" print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __a ( UpperCAmelCase = 8 ) ->str: """simple docstring""" A = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" i -= len(UpperCAmelCase ) A = i // 3 A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) A = ( chars_incl + random(UpperCAmelCase , quotient + remainder ) + random(UpperCAmelCase , UpperCAmelCase ) + random(UpperCAmelCase , UpperCAmelCase ) ) A = list(UpperCAmelCase ) shuffle(UpperCAmelCase ) return "".join(UpperCAmelCase ) # random is a generalised function for letters, characters and numbers def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" return "".join(secrets.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" pass # Put your code here... def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" pass # Put your code here... def __a ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" pass # Put your code here... def __a ( UpperCAmelCase , UpperCAmelCase = 8 ) ->bool: """simple docstring""" if len(UpperCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False A = any(char in ascii_uppercase for char in password ) A = any(char in ascii_lowercase for char in password ) A = any(char in digits for char in password ) A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __a ( ) ->int: """simple docstring""" A = int(input("""Please indicate the max length of your password: """ ).strip() ) A = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(UpperCAmelCase ) ) print( """Alternative Password generated:""" , alternative_password_generator(UpperCAmelCase , UpperCAmelCase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
337
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
1
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__(self : Optional[Any] , _lowerCAmelCase : list[int] ): A = len(_lowerCAmelCase ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 , _lowerCAmelCase ): A = self.prefix_sum[i - 1] + array[i] def A (self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A (self : Any , _lowerCAmelCase : int ): A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_lowerCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _lowerCamelCase : Any = CLIPImageProcessor() _lowerCamelCase : List[str] = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') _lowerCamelCase : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
337
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__(self : Optional[Any] , _lowerCAmelCase : Dict ): super().__init__(_lowerCAmelCase ) A = self.image_processor A = -10 A = self.image_processor.size["""longest_edge"""] def __call__(self : Optional[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Union[str, Any] , ): A = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless A = encoding_image_processor["""original_sizes"""] if hasattr(_lowerCAmelCase , """numpy""" ): # Checks if Torch or TF tensor A = original_sizes.numpy() A , A , A = self._check_and_preprocess_points( input_points=_lowerCAmelCase , input_labels=_lowerCAmelCase , input_boxes=_lowerCAmelCase , ) A = self._normalize_and_convert( _lowerCAmelCase , _lowerCAmelCase , input_points=_lowerCAmelCase , input_labels=_lowerCAmelCase , input_boxes=_lowerCAmelCase , return_tensors=_lowerCAmelCase , ) return encoding_image_processor def A (self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]="pt" , ): if input_points is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , original_sizes[0] ) for point in input_points ] else: A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , _lowerCAmelCase ) for point, original_size in zip(_lowerCAmelCase , _lowerCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: A , A = self._pad_points_and_labels(_lowerCAmelCase , _lowerCAmelCase ) A = np.array(_lowerCAmelCase ) if input_labels is not None: A = np.array(_lowerCAmelCase ) if input_boxes is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , original_sizes[0] , is_bounding_box=_lowerCAmelCase ) for box in input_boxes ] else: A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , _lowerCAmelCase , is_bounding_box=_lowerCAmelCase ) for box, original_size in zip(_lowerCAmelCase , _lowerCAmelCase ) ] A = np.array(_lowerCAmelCase ) if input_boxes is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # boxes batch size of 1 by default A = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # boxes batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # point batch size of 1 by default A = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # point batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # point batch size of 1 by default A = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # point batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def A (self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): A = max([point.shape[0] for point in input_points] ) A = [] for i, point in enumerate(_lowerCAmelCase ): if point.shape[0] != expected_nb_points: A = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) A = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_lowerCAmelCase ) A = processed_input_points return input_points, input_labels def A (self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False ): A , A = original_size A , A = self.image_processor._get_preprocess_shape(_lowerCAmelCase , longest_edge=_lowerCAmelCase ) A = deepcopy(_lowerCAmelCase ).astype(_lowerCAmelCase ) if is_bounding_box: A = coords.reshape(-1 , 2 , 2 ) A = coords[..., 0] * (new_w / old_w) A = coords[..., 1] * (new_h / old_h) if is_bounding_box: A = coords.reshape(-1 , 4 ) return coords def A (self : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , ): if input_points is not None: if hasattr(_lowerCAmelCase , """numpy""" ): # Checks for TF or Torch tensor A = input_points.numpy().tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_points[0] , _lowerCAmelCase ): raise ValueError("""Input points must be a list of list of floating points.""" ) A = [np.array(_lowerCAmelCase ) for input_point in input_points] else: A = None if input_labels is not None: if hasattr(_lowerCAmelCase , """numpy""" ): A = input_labels.numpy().tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_labels[0] , _lowerCAmelCase ): raise ValueError("""Input labels must be a list of list integers.""" ) A = [np.array(_lowerCAmelCase ) for label in input_labels] else: A = None if input_boxes is not None: if hasattr(_lowerCAmelCase , """numpy""" ): A = input_boxes.numpy().tolist() if ( not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_boxes[0] , _lowerCAmelCase ) or not isinstance(input_boxes[0][0] , _lowerCAmelCase ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) A = [np.array(_lowerCAmelCase ).astype(np.floataa ) for box in input_boxes] else: A = None return input_points, input_labels, input_boxes @property def A (self : Tuple ): A = self.image_processor.model_input_names return list(dict.fromkeys(_lowerCAmelCase ) ) def A (self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): return self.image_processor.post_process_masks(*_lowerCAmelCase , **_lowerCAmelCase )
337
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Union[str, Any]=18 , _lowerCAmelCase : Optional[Any]=30 , _lowerCAmelCase : List[str]=400 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , ): A = size if size is not None else {"""height""": 18, """width""": 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize A = image_mean A = image_std def A (self : Any ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DPTImageProcessor if is_vision_available() else None def A (self : List[str] ): A = DPTImageProcessingTester(self ) @property def A (self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A (self : List[Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def A (self : List[str] ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A (self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : Optional[int] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
337
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
1
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase = " " ) ->list: """simple docstring""" A = [] A = 0 for index, char in enumerate(UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) A = index + 1 elif index + 1 == len(UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
337
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowerCamelCase : Union[str, Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowerCamelCase : Dict = logging.get_logger(__name__) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''maskformer''' __lowerCAmelCase = {'''hidden_size''': '''mask_feature_size'''} __lowerCAmelCase = ['''resnet''', '''swin'''] __lowerCAmelCase = ['''detr'''] def __init__(self : Any , _lowerCAmelCase : int = 256 , _lowerCAmelCase : int = 256 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[Dict] = None , _lowerCAmelCase : Optional[Dict] = None , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : float = 20.0 , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : Tuple , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k A = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A = backbone_config.pop("""model_type""" ) A = CONFIG_MAPPING[backbone_model_type] A = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 A = DetrConfig() else: # verify that the decoder is supported A = ( decoder_config.pop("""model_type""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A = CONFIG_MAPPING[decoder_type] A = config_class.from_dict(_lowerCAmelCase ) A = backbone_config A = decoder_config # main feature dimension for the model A = fpn_feature_size A = mask_feature_size # initializer A = init_std A = init_xavier_std # Hungarian matcher && loss A = cross_entropy_weight A = dice_weight A = mask_weight A = use_auxiliary_loss A = no_object_weight A = output_auxiliary_logits A = self.decoder_config.encoder_attention_heads A = self.decoder_config.num_hidden_layers super().__init__(**_lowerCAmelCase ) @classmethod def A (cls : Optional[Any] , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Optional[int] ): return cls( backbone_config=_lowerCAmelCase , decoder_config=_lowerCAmelCase , **_lowerCAmelCase , ) def A (self : Tuple ): A = copy.deepcopy(self.__dict__ ) A = self.backbone_config.to_dict() A = self.decoder_config.to_dict() A = self.__class__.model_type return output
337
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _lowerCamelCase : List[Any] = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(UpperCAmelCase ) , version.parse(UpperCAmelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __a ( UpperCAmelCase , UpperCAmelCase = None ) ->None: """simple docstring""" A = f"""\n{hint}""" if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , UpperCAmelCase ): A , A , A = requirement, None, None else: A = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , UpperCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f""" got {requirement}""" ) A , A = match[0] A = want_full.split(""",""" ) # there could be multiple requirements A = {} for w in want_range: A = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , UpperCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f""" but got {requirement}""" ) A , A = match[0] A = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": A = """.""".join([str(UpperCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return # check if any version is installed try: A = importlib.metadata.version(UpperCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(UpperCAmelCase , UpperCAmelCase )
337
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : int=6 , _lowerCAmelCase : Tuple=17 , _lowerCAmelCase : Union[str, Any]=23 , _lowerCAmelCase : List[Any]=11 , _lowerCAmelCase : Optional[int]=True , ): A = parent A = batch_size A = seq_length A = act_dim A = state_dim A = hidden_size A = max_length A = is_training def A (self : Tuple ): A = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) A = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) A = floats_tensor((self.batch_size, self.seq_length, 1) ) A = floats_tensor((self.batch_size, self.seq_length, 1) ) A = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) A = random_attention_mask((self.batch_size, self.seq_length) ) A = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A (self : Optional[int] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A (self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , ): A = DecisionTransformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A (self : Union[str, Any] ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (DecisionTransformerModel,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCAmelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : List[Any] ): A = DecisionTransformerModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def A (self : Union[str, Any] ): self.config_tester.run_common_tests() def A (self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def A (self : str ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = DecisionTransformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A (self : Optional[int] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_lowerCAmelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = 2 # number of steps of autoregressive prediction we will perform A = 10 # defined by the RL environment, may be normalized A = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) A = model.to(_lowerCAmelCase ) A = model.config torch.manual_seed(0 ) A = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ) # env.reset() A = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_lowerCAmelCase ) A = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) A = state A = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa ) A = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa ) A = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCAmelCase ): A = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase )] , dim=1 ) A = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase )] , dim=1 ) A = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): A , A , A = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) A , A , A , A = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) A = action_pred[0, -1] A = torch.cat([states, state] , dim=1 ) A = returns_to_go[0, -1] - reward A = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) A = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
337
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
1
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = str(UpperCAmelCase ) return len(UpperCAmelCase ) == 9 and set(UpperCAmelCase ) == set("""123456789""" ) def __a ( ) ->int | None: """simple docstring""" for base_num in range(9999 , 4999 , -1 ): A = 100002 * base_num if is_9_pandigital(UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): A = 1002003 * base_num if is_9_pandigital(UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(f"{solution() = }")
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _lowerCamelCase : int = True except (ImportError, AttributeError): _lowerCamelCase : Optional[Any] = object def __a ( *UpperCAmelCase , **UpperCAmelCase ) ->int: """simple docstring""" pass _lowerCamelCase : List[str] = False _lowerCamelCase : List[str] = logging.get_logger('transformers-cli/serving') def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(UpperCAmelCase , args.host , args.port , args.workers ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' @staticmethod def A (_lowerCAmelCase : ArgumentParser ): A = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=_lowerCAmelCase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=_lowerCAmelCase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=_lowerCAmelCase , default=8888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=_lowerCAmelCase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=_lowerCAmelCase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=_lowerCAmelCase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=_lowerCAmelCase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=_lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=_lowerCAmelCase ) def __init__(self : List[Any] , _lowerCAmelCase : Pipeline , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ): A = pipeline A = host A = port A = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(F"""Serving model over {host}:{port}""" ) A = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=_lowerCAmelCase , response_class=_lowerCAmelCase , methods=["""POST"""] , ), ] , timeout=600 , ) def A (self : int ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def A (self : List[Any] ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def A (self : int , _lowerCAmelCase : str = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) ): try: A = self._pipeline.tokenizer.tokenize(_lowerCAmelCase ) if return_ids: A = self._pipeline.tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) return ServeTokenizeResult(tokens=_lowerCAmelCase , tokens_ids=_lowerCAmelCase ) else: return ServeTokenizeResult(tokens=_lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(_lowerCAmelCase )} ) def A (self : Any , _lowerCAmelCase : List[int] = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , _lowerCAmelCase : bool = Body(_lowerCAmelCase , embed=_lowerCAmelCase ) , ): try: A = self._pipeline.tokenizer.decode(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return ServeDeTokenizeResult(model="""""" , text=_lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(_lowerCAmelCase )} ) async def A (self : str , _lowerCAmelCase : Optional[int]=Body(_lowerCAmelCase , embed=_lowerCAmelCase ) ): # Check we don't have empty string if len(_lowerCAmelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model A = self._pipeline(_lowerCAmelCase ) return ServeForwardResult(output=_lowerCAmelCase ) except Exception as e: raise HTTPException(500 , {"""error""": str(_lowerCAmelCase )} )
337
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' def __a ( UpperCAmelCase = 4000000 ) ->int: """simple docstring""" A = [] A , A = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCAmelCase ) A , A = b, a + b return sum(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Any = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } _lowerCamelCase : List[Any] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } _lowerCamelCase : str = '▁' class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = AlbertTokenizer def __init__(self : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[str]="[CLS]" , _lowerCAmelCase : Tuple="[SEP]" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : Optional[Any]="[CLS]" , _lowerCAmelCase : str="[MASK]" , **_lowerCAmelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def A (self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A (self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A (self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
337
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
'''simple docstring''' import os import numpy import onnx def __a ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" A = a.name A = b.name A = """""" A = """""" A = a == b A = name_a A = name_b return res def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" A = list(model.graph.initializer ) A = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A = inits[i].name A = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = os.path.dirname(UpperCAmelCase ) A = os.path.basename(UpperCAmelCase ) A = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) A = list(model.graph.initializer ) A = set() A = {} A = [] A = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) A = inits[j].data_type A = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase ) total_reduced_size += mem_size A = inits[i].name A = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: A = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) A = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A = """optimized_""" + model_file_name A = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
337
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
1
'''simple docstring''' from __future__ import annotations class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : str , _lowerCAmelCase : str ): A , A = text, pattern A , A = len(_lowerCAmelCase ), len(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A (self : str , _lowerCAmelCase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A (self : List[str] ): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1 ): A = self.mismatch_in_text(_lowerCAmelCase ) if mismatch_index == -1: positions.append(_lowerCAmelCase ) else: A = self.match_in_pattern(self.text[mismatch_index] ) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCamelCase : str = 'ABAABA' _lowerCamelCase : List[str] = 'AB' _lowerCamelCase : Union[str, Any] = BoyerMooreSearch(text, pattern) _lowerCamelCase : Dict = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
337
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A = flax_key_tuple[:-1] + ("""weight""",) A = torch.permute(UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase ): # linear layer A = flax_key_tuple[:-1] + ("""weight""",) A = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" if "metadata" in layer: A = layer.split("""metadata""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: A = layer.split("""kvstore""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: A = layer.split("""/""" ) A = """/""".join(split_layer[:-1] ) A = (split_layer[-1],) if "kvstore/path" in layer: A = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: A = """file""" else: A = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __a ( UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = rename_keys(UpperCAmelCase ) A = {} for k, v in current_block.items(): A = v A = new_current_block torch.save(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = WEIGHTS_NAME ) ->Union[str, Any]: """simple docstring""" A = convert_file_size_to_int(UpperCAmelCase ) A = [] A = {} A = 0 A = 0 os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: A = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] A = flatten_dict(UpperCAmelCase , sep="""/""" ) A = {} for layer in checkpoint_info.keys(): A , A , A = get_key_and_tensorstore_dict( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if curr_real_layer_name in all_layers: A = content else: A = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A = torch.tensor(UpperCAmelCase ) A = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A , A = rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCAmelCase ) A = """/""".join(UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A = os.path.join( UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A = {} A = 0 A = raw_weights.to(getattr(UpperCAmelCase , UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A = os.path.join(UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A = {} A = {} for idx, shard in enumerate(UpperCAmelCase ): A = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(UpperCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} A = os.path.join(UpperCAmelCase , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(UpperCAmelCase , os.path.join(UpperCAmelCase , UpperCAmelCase ) ) A = shard for key in shard: A = shard_file # Add the metadata A = {"""total_size""": total_size} A = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , """w""" , encoding="""utf-8""" ) as f: A = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + """\n""" f.write(UpperCAmelCase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _lowerCamelCase : Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __a ( ) ->Any: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) A = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) A = TaTokenizer.from_pretrained("""t5-small""" ) A = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A = tokenizer(UpperCAmelCase , return_tensors="""pt""" ).input_ids A = model.generate(UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __a ( UpperCAmelCase = "laptop" ) ->DataFrame: """simple docstring""" A = f"""https://www.amazon.in/laptop/s?k={product}""" A = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } A = BeautifulSoup(requests.get(UpperCAmelCase , headers=UpperCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: A = item.ha.text A = """https://www.amazon.in/""" + item.ha.a["""href"""] A = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: A = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: A = """Not available""" try: A = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: A = """""" try: A = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: A = float("""nan""" ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = """ """ A = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCamelCase : List[Any] = 'headphones' get_amazon_product_data(product).to_csv(f"Amazon Product Data for {product}.csv")
337
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Union[str, Any] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['DeiTFeatureExtractor'] _lowerCamelCase : List[str] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
1
'''simple docstring''' def __a ( UpperCAmelCase ) ->int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) A = 0 A = str(UpperCAmelCase ) while len(UpperCAmelCase ) != 1: A = [int(UpperCAmelCase ) for i in num_string] A = 1 for i in range(0 , len(UpperCAmelCase ) ): total *= numbers[i] A = str(UpperCAmelCase ) steps += 1 return steps def __a ( UpperCAmelCase ) ->int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) A = 0 A = str(UpperCAmelCase ) while len(UpperCAmelCase ) != 1: A = [int(UpperCAmelCase ) for i in num_string] A = 0 for i in range(0 , len(UpperCAmelCase ) ): total += numbers[i] A = str(UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
337
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __a ( ) ->Dict: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCAmelCase , default=0 , help="""cuda_id.""" , ) A = parser.parse_args() return args def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" if not len(UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A , A = imgs[0].size A = Image.new("""RGB""" , size=(cols * w, rows * h) ) A , A = grid.size for i, img in enumerate(UpperCAmelCase ): grid.paste(UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __a ( UpperCAmelCase , UpperCAmelCase="robotic cat with wings" , UpperCAmelCase=7.5 , UpperCAmelCase=50 , UpperCAmelCase=1 , UpperCAmelCase=42 , ) ->Optional[int]: """simple docstring""" A = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase ) A = pipeline( UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , ).images A = int(math.sqrt(UpperCAmelCase ) ) A = image_grid(UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCamelCase : str = parse_args() # Load models and create wrapper for stable diffusion _lowerCamelCase : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCamelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCamelCase : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCamelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCamelCase : Any = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCamelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCamelCase : str = unet.to(torch.device('cuda', args.cuda_id)) _lowerCamelCase : Union[str, Any] = pipeline.to(unet.device) _lowerCamelCase , _lowerCamelCase : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCamelCase : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
337
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _lowerCamelCase : str = 'hf-internal-testing/tiny-random-bert' _lowerCamelCase : List[Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') _lowerCamelCase : int = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : List[str] ): A = cached_file(_lowerCAmelCase , _lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) ) with open(os.path.join(_lowerCAmelCase , """refs""" , """main""" ) ) as f: A = f.read() self.assertEqual(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """snapshots""" , _lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(os.path.isfile(_lowerCAmelCase ) ) # File is cached at the same place the second time. A = cached_file(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Using a specific revision to test the full commit hash. A = cached_file(_lowerCAmelCase , _lowerCAmelCase , revision="""9b8c223""" ) self.assertEqual(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """snapshots""" , _lowerCAmelCase , _lowerCAmelCase ) ) def A (self : int ): with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid model identifier""" ): A = cached_file("""tiny-random-bert""" , _lowerCAmelCase ) with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid git identifier""" ): A = cached_file(_lowerCAmelCase , _lowerCAmelCase , revision="""aaaa""" ) with self.assertRaisesRegex(_lowerCAmelCase , """does not appear to have a file named""" ): A = cached_file(_lowerCAmelCase , """conf""" ) def A (self : str ): with self.assertRaisesRegex(_lowerCAmelCase , """does not appear to have a file named""" ): A = cached_file(_lowerCAmelCase , """conf""" ) with open(os.path.join(_lowerCAmelCase , """refs""" , """main""" ) ) as f: A = f.read() self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """.no_exist""" , _lowerCAmelCase , """conf""" ) ) ) A = cached_file(_lowerCAmelCase , """conf""" , _raise_exceptions_for_missing_entries=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) A = cached_file(_lowerCAmelCase , """conf""" , local_files_only=_lowerCAmelCase , _raise_exceptions_for_missing_entries=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_lowerCAmelCase ) as mock_head: A = cached_file(_lowerCAmelCase , """conf""" , _raise_exceptions_for_connection_errors=_lowerCAmelCase ) self.assertIsNone(_lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def A (self : Dict ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowerCAmelCase ) ) def A (self : Any ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_lowerCAmelCase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _lowerCAmelCase , revision="""ahaha""" ) A = get_file_from_repo("""bert-base-cased""" , _lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. A = json.loads(open(_lowerCAmelCase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def A (self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: A = Path(_lowerCAmelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_lowerCAmelCase , """a.txt""" ) , str(_lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(_lowerCAmelCase , """b.txt""" ) )
337
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCamelCase : Optional[int] = get_logger() _lowerCamelCase : Optional[dict] = None class __UpperCAmelCase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] ): super().__init__(features=_lowerCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Expected {device} to be a `str` not {type(_lowerCAmelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) A = device if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) A = str(jax.devices()[0] ) A = jnp_array_kwargs @staticmethod def A (): import jax return {str(_lowerCAmelCase ): device for device in jax.devices()} def A (self : Tuple , _lowerCAmelCase : List[Any] ): import jax import jax.numpy as jnp if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_lowerCAmelCase , axis=0 ) return column def A (self : Tuple , _lowerCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A = {"""dtype""": jnp.intaa} else: A = {"""dtype""": jnp.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = np.asarray(_lowerCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_lowerCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def A (self : Union[str, Any] , _lowerCAmelCase : Dict ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_lowerCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_lowerCAmelCase , """__array__""" ) and not isinstance(_lowerCAmelCase , jax.Array ): A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : dict ): return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) A = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) A = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) A = self.recursive_tensorize(_lowerCAmelCase ) A = self._consolidate(_lowerCAmelCase ) return column def A (self : Tuple , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) A = self.python_features_decoder.decode_batch(_lowerCAmelCase ) A = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: A = self._consolidate(batch[column_name] ) return batch
337
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
1
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->int: """simple docstring""" if not nums: return 0 A = nums[0] A = 0 for num in nums[1:]: A , A = ( max_excluding + num, max(UpperCAmelCase , UpperCAmelCase ), ) return max(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=37 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Dict=512 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope A = projection_dim def A (self : List[Any] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) A = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A (self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ): A = TFDPRContextEncoder(config=_lowerCAmelCase ) A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A (self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFDPRQuestionEncoder(config=_lowerCAmelCase ) A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) A = model(_lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A (self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): A = TFDPRReader(config=_lowerCAmelCase ) A = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def A (self : List[str] ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowerCAmelCase = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : List[str] ): A = TFDPRModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def A (self : int ): self.config_tester.run_common_tests() def A (self : Optional[int] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_lowerCAmelCase ) def A (self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_lowerCAmelCase ) def A (self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_lowerCAmelCase ) @slow def A (self : Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRContextEncoder.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRContextEncoder.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRQuestionEncoder.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRReader.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Tuple ): A = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) A = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] A = model(_lowerCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
337
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _lowerCamelCase : int = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __UpperCAmelCase : '''simple docstring''' def __init__(self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : str=16 , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Tuple=14 , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : List[Any]=19 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : str=2 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Dict=[1, 2, 3, 4, 5] , _lowerCAmelCase : Tuple=25 , _lowerCAmelCase : str=5 , ): A = d_model A = parent A = batch_size A = prediction_length A = context_length A = cardinality A = num_time_features A = lags_sequence A = embedding_dimension A = is_training A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = context_length A = prediction_length + label_length A = label_length A = moving_average A = autocorrelation_factor def A (self : Dict ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A (self : int , _lowerCAmelCase : Union[str, Any] ): A = config.context_length + max(config.lags_sequence ) A = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) A = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) A = floats_tensor([self.batch_size, _past_length] ) A = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) A = floats_tensor([self.batch_size, config.prediction_length] ) A = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A (self : List[str] ): A = self.get_config() A = self.prepare_autoformer_inputs_dict(_lowerCAmelCase ) return config, inputs_dict def A (self : int ): A , A = self.prepare_config_and_inputs() return config, inputs_dict def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): A = AutoformerModel(config=_lowerCAmelCase ).to(_lowerCAmelCase ).eval() A = model(**_lowerCAmelCase ) A = outputs.encoder_last_hidden_state A = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: A = model.get_encoder() encoder.save_pretrained(_lowerCAmelCase ) A = AutoformerEncoder.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) A , A , A , A , A = model.create_network_inputs(**_lowerCAmelCase ) A , A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) A = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) A = encoder(inputs_embeds=_lowerCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) A = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) A = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) A = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) A = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: A = model.get_decoder() decoder.save_pretrained(_lowerCAmelCase ) A = AutoformerDecoder.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) A = decoder( trend=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __UpperCAmelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () __lowerCAmelCase = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Optional[Any] ): A = AutoformerModelTester(self ) A = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def A (self : Optional[int] ): self.config_tester.run_common_tests() def A (self : List[str] ): A , A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: A = model_class(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A , A = model_class.from_pretrained(_lowerCAmelCase , output_loading_info=_lowerCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def A (self : Any ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_lowerCAmelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A (self : Optional[int] ): pass def A (self : List[str] ): A = inspect.signature(getattr(_lowerCAmelCase , """forward""" ) ) # The main input is the name of the argument after `self` A = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _lowerCAmelCase ) def A (self : List[str] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_lowerCAmelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) def A (self : Tuple ): A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) A = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) A = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) A = getattr(self.model_tester , """d_model""" , _lowerCAmelCase ) A = getattr(self.model_tester , """num_attention_heads""" , _lowerCAmelCase ) A = d_model // num_attention_heads for model_class in self.all_model_classes: A = True A = False A = True A = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A = True A = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) A = outputs.encoder_attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) A = len(_lowerCAmelCase ) A = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # decoder attentions A = outputs.decoder_attentions self.assertIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions A = outputs.cross_attentions self.assertIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine A = True A = True A = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 2 , len(_lowerCAmelCase ) ) A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A (self : Optional[int] ): super().test_retain_grad_hidden_states_attentions() def __a ( UpperCAmelCase="train-batch.pt" ) ->Optional[Any]: """simple docstring""" A = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=UpperCAmelCase , repo_type="""dataset""" ) A = torch.load(UpperCAmelCase , map_location=UpperCAmelCase ) return batch @require_torch @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): A = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_lowerCAmelCase ) A = prepare_batch() with torch.no_grad(): A = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] A = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) A = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def A (self : List[Any] ): A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_lowerCAmelCase ) A = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): A = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state A = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _lowerCAmelCase ) A = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def A (self : List[str] ): A = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_lowerCAmelCase ) A = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): A = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _lowerCAmelCase ) A = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=_lowerCAmelCase ) A = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _lowerCAmelCase , rtol=1e-1 ) )
337
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if isinstance(UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def A (self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): pass def A (self : List[str] ): pass def A (self : Union[str, Any] ): pass def A (self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ): A = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = {"""vision_model""": vision_model, """text_model""": text_model} A = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A (self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) A = after_output[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def A (self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[Any] ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ): A = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def A (self : List[str] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def A (self : Optional[int] ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def A (self : List[Any] ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def A (self : int ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def A (self : Tuple ): A , A = self.get_pretrained_model_and_inputs() A = model_a(**_lowerCAmelCase ) A = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) A = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) A = model_a(**_lowerCAmelCase ) A = after_outputs[0].numpy() A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : int ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): A = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Union[str, Any] ): A = TFViTModelTester(self ) A = TFBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Optional[int] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Any ): A , A = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) A = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) A = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) A = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : str ): A = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) A = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : str ): A = TFDeiTModelTester(self ) A = TFRobertaModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' def A (self : Dict ): A = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A = 13 A = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) A = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def A (self : Optional[Any] ): A = TFCLIPVisionModelTester(self ) A = TFBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A , A = vision_config_and_inputs ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Any ): A = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) A = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) A = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
337
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Dict = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['YolosFeatureExtractor'] _lowerCamelCase : Dict = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Union[str, Any] = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int ): A = jnp.ones((batch_size, length) ) / length return scores def A (self : Optional[int] ): A = None A = 20 A = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore A = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTemperatureLogitsWarper(temperature=1.3 ) A = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) A = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def A (self : Optional[Any] ): A = None A = 10 A = 2 # create ramp distribution A = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() A = ramp_logits[1:, : vocab_size // 2] + vocab_size A = FlaxTopKLogitsWarper(3 ) A = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A = 5 A = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() A = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def A (self : Tuple ): A = None A = 10 A = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) A = FlaxTopPLogitsWarper(0.8 ) A = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits A = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept A = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def A (self : List[Any] ): A = 20 A = 4 A = 0 A = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 A = ids_tensor((batch_size, 20) , vocab_size=20 ) A = 5 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = 15 A = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def A (self : int ): A = 20 A = 4 A = 0 A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score A = ids_tensor((batch_size, 1) , vocab_size=20 ) A = 1 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A = 3 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def A (self : Dict ): A = 20 A = 4 A = 0 A = 5 A = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached A = ids_tensor((batch_size, 4) , vocab_size=20 ) A = 4 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A = 3 A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def A (self : List[str] ): A = 4 A = 10 A = 15 A = 2 A = 1 A = 15 # dummy input_ids and scores A = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) A = input_ids.copy() A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = scores.copy() # instantiate all dist processors A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTopKLogitsWarper(3 ) A = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) A = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) A = 10 # no processor list A = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list A = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def A (self : Optional[int] ): A = 4 A = 10 A = 15 A = 2 A = 1 A = 15 # dummy input_ids and scores A = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) A = input_ids.copy() A = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) A = scores.copy() # instantiate all dist processors A = FlaxTemperatureLogitsWarper(temperature=0.5 ) A = FlaxTopKLogitsWarper(3 ) A = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) A = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) A = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) A = 10 # no processor list def run_no_processor_list(_lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): A = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) A = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): A = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores A = jax.jit(_lowerCAmelCase ) A = jax.jit(_lowerCAmelCase ) A = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
337
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _lowerCamelCase : Union[str, Any] = random.Random() if is_torch_available(): import torch def __a ( UpperCAmelCase , UpperCAmelCase=1.0 , UpperCAmelCase=None , UpperCAmelCase=None ) ->Dict: """simple docstring""" if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int=7 , _lowerCAmelCase : Tuple=400 , _lowerCAmelCase : Tuple=2000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Union[str, Any]=1_6000 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : int=True , ): A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = feature_size A = padding_value A = sampling_rate A = return_attention_mask A = do_normalize def A (self : Optional[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A (self : Dict , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=False ): def _flatten(_lowerCAmelCase : Optional[Any] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ASTFeatureExtractor def A (self : str ): A = ASTFeatureExtractionTester(self ) def A (self : Optional[int] ): # Tests that all call wrap to encode_plus and batch_encode_plus A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input A = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values A = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched A = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ).input_values A = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A = [floats_list((1, x) )[0] for x in (800, 800, 800)] A = np.asarray(_lowerCAmelCase ) A = feat_extract(_lowerCAmelCase , return_tensors="""np""" ).input_values A = feat_extract(_lowerCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) @require_torch def A (self : Dict ): import torch A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A = np.random.rand(100 ).astype(np.floataa ) A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A (self : Dict , _lowerCAmelCase : Tuple ): from datasets import load_dataset A = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A = ds.sort("""id""" ).select(range(_lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def A (self : List[str] ): # fmt: off A = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on A = self._load_datasamples(1 ) A = ASTFeatureExtractor() A = feature_extractor(_lowerCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1e-4 ) )
337
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A , A = array[indexa], array[indexa] def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" if length > 1: A = int(length / 2 ) for i in range(UpperCAmelCase , low + middle ): comp_and_swap(UpperCAmelCase , UpperCAmelCase , i + middle , UpperCAmelCase ) bitonic_merge(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) bitonic_merge(UpperCAmelCase , low + middle , UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" if length > 1: A = int(length / 2 ) bitonic_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 1 ) bitonic_sort(UpperCAmelCase , low + middle , UpperCAmelCase , 0 ) bitonic_merge(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase : List[Any] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
337
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
1
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->None: """simple docstring""" if start is None: A = 0 if end is None: A = len(UpperCAmelCase ) - 1 if start >= end: return A = (start + end) // 2 slowsort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) slowsort(UpperCAmelCase , mid + 1 , UpperCAmelCase ) if sequence[end] < sequence[mid]: A , A = sequence[mid], sequence[end] slowsort(UpperCAmelCase , UpperCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
337
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
1
'''simple docstring''' import requests _lowerCamelCase : Dict = 'YOUR API KEY' def __a ( UpperCAmelCase , UpperCAmelCase = giphy_api_key ) ->list: """simple docstring""" A = """+""".join(query.split() ) A = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A = requests.get(UpperCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
337
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase : int = get_logger(__name__) class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : Optional[str] = None ): A = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) A = Extractor def A (self : Optional[int] , _lowerCAmelCase : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" A = os.path.abspath(_lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase ) ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : bool ): return force_extract or ( not os.path.isfile(_lowerCAmelCase ) and not (os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase )) ) def A (self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): A = self.extractor.infer_extractor_format(_lowerCAmelCase ) if not extractor_format: return input_path A = self._get_output_path(_lowerCAmelCase ) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase ): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return output_path class __UpperCAmelCase ( A__ ): '''simple docstring''' @classmethod @abstractmethod def A (cls : str , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : Tuple ): ... @staticmethod @abstractmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): ... class __UpperCAmelCase ( A__ , A__ ): '''simple docstring''' __lowerCAmelCase = [] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ): with open(_lowerCAmelCase , """rb""" ) as f: return f.read(_lowerCAmelCase ) @classmethod def A (cls : Any , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ): if not magic_number: A = max(len(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: A = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __UpperCAmelCase ( A__ ): '''simple docstring''' @classmethod def A (cls : Any , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : List[Any] ): return tarfile.is_tarfile(_lowerCAmelCase ) @staticmethod def A (_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): def resolved(_lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase ) ) def badpath(_lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ).startswith(_lowerCAmelCase ) def badlink(_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link A = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowerCAmelCase ) A = resolved(_lowerCAmelCase ) for finfo in members: if badpath(finfo.name , _lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) A = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase ) ) tar_file.close() class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\x1F\x8B'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): with gzip.open(_lowerCAmelCase , """rb""" ) as gzip_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def A (cls : List[str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ): if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""" ) as fp: A = _EndRecData(_lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: A = fp.read(_lowerCAmelCase ) # CD is where we expect it to be if len(_lowerCAmelCase ) == sizeCentralDir: A = struct.unpack(_lowerCAmelCase , _lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with zipfile.ZipFile(_lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): with lzma.open(_lowerCAmelCase ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) A = rarfile.RarFile(_lowerCAmelCase ) rf.extractall(_lowerCAmelCase ) rf.close() class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd A = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""" ) as ifh, open(_lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\x42\x5A\x68'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): with bza.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with pyazr.SevenZipFile(_lowerCAmelCase , """r""" ) as archive: archive.extractall(_lowerCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = [B'''\x04\x22\x4D\x18'''] @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A (cls : Union[str, Any] ): return max( len(_lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A (_lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ): try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase ) except OSError: return b"" @classmethod def A (cls : int , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bool = False ): warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_lowerCAmelCase , ) A = cls.infer_extractor_format(_lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A (cls : int , _lowerCAmelCase : Union[Path, str] ): # <Added version="2.4.0"/> A = cls._get_magic_number_max_length() A = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return extractor_format @classmethod def A (cls : Any , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(_lowerCAmelCase ) , exist_ok=_lowerCAmelCase ) # Prevent parallel extractions A = str(Path(_lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_lowerCAmelCase , ) A = extractor if extractor != """deprecated""" else extractor_format else: A = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase ): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase )
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Dict = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCAmelCase = '''canine''' def __init__(self : Optional[int] , _lowerCAmelCase : Union[str, Any]=768 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : List[str]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=1_6384 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Dict=0Xe_000 , _lowerCAmelCase : List[str]=0Xe_001 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[int]=8 , _lowerCAmelCase : Tuple=1_6384 , _lowerCAmelCase : Optional[int]=128 , **_lowerCAmelCase : int , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps # Character config: A = downsampling_rate A = upsampling_kernel_size A = num_hash_functions A = num_hash_buckets A = local_transformer_stride
350
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _lowerCamelCase : List[str] = """scheduler_config.json""" class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = 5 __lowerCAmelCase = 6 __lowerCAmelCase = 7 __lowerCAmelCase = 8 __lowerCAmelCase = 9 __lowerCAmelCase = 10 __lowerCAmelCase = 11 __lowerCAmelCase = 12 __lowerCAmelCase = 13 __lowerCAmelCase = 14 @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = SCHEDULER_CONFIG_NAME __lowerCAmelCase = [] __lowerCAmelCase = True @classmethod def A (cls : List[Any] , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : List[str]=False , **_lowerCAmelCase : Optional[Any] , ): A = cls.load_config( pretrained_model_name_or_path=__A , subfolder=__A , return_unused_kwargs=__A , return_commit_hash=__A , **__A , ) return cls.from_config(__A , return_unused_kwargs=__A , **__A ) def A (self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] = False , **_lowerCAmelCase : Dict ): self.save_config(save_directory=__A , push_to_hub=__A , **__A ) @property def A (self : List[Any] ): return self._get_compatibles() @classmethod def A (cls : Tuple ): A = list(set([cls.__name__] + cls._compatibles ) ) A = importlib.import_module(__name__.split(""".""" )[0] ) A = [ getattr(__A , __A ) for c in compatible_classes_str if hasattr(__A , __A ) ] return compatible_classes
351
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Dict = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
'''simple docstring''' _lowerCamelCase : List[Any] = 'Input must be a string of 8 numbers plus letter' _lowerCamelCase : str = 'TRWAGMYFPDXBNJZSQVHLCKE' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Expected string as input, found {type(UpperCAmelCase ).__name__}""" raise TypeError(UpperCAmelCase ) A = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCAmelCase ) != 9: raise ValueError(UpperCAmelCase ) try: A = int(spanish_id_clean[0:8] ) A = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__(self : Dict , _lowerCAmelCase : List[str]=2048 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=[16, 16] , _lowerCAmelCase : Any=128 , _lowerCAmelCase : str=4_4100 , _lowerCAmelCase : Union[str, Any]=86 , _lowerCAmelCase : List[Any]=2048 , _lowerCAmelCase : int=0.0 , **_lowerCAmelCase : List[Any] , ): super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case , ) A = spectrogram_length A = num_channels A = patch_size A = feature_size // self.patch_size[1] A = n_fft A = sampling_rate // hop_length_to_sampling_rate A = sampling_rate A = padding_value A = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__snake_case , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__snake_case , norm="""slaney""" , mel_scale="""slaney""" , ).T def A (self : List[Any] , _lowerCAmelCase : np.array ): A = spectrogram( __snake_case , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) A = log_spec[:, :-1] A = log_spec - 20.0 A = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self : Optional[Any] , _lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = True , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) A = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): A = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __snake_case ): A = [np.asarray(__snake_case , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A = np.array(__snake_case ).astype(np.floataa ) # convert into correct format for padding A = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A = np.ones([len(__snake_case ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A = padded_audio_features * self.padding_value for i in range(len(__snake_case ) ): A = audio_features[i] A = feature # return as BatchFeature if return_attention_mask: A = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A = {"""audio_values""": padded_audio_features} A = BatchFeature(data=__snake_case , tensor_type=__snake_case ) return encoded_inputs
353
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[Any] = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Any = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __UpperCAmelCase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = '''data2vec-vision''' def __init__(self : List[Any] , _lowerCAmelCase : Optional[Any]=768 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : Dict=3072 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=1e-12 , _lowerCAmelCase : Union[str, Any]=224 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : int=3 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=[3, 5, 7, 11] , _lowerCAmelCase : Any=[1, 2, 3, 6] , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=0.4 , _lowerCAmelCase : Optional[Any]=256 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : int=255 , **_lowerCAmelCase : List[str] , ): super().__init__(**_a ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = use_mask_token A = use_absolute_position_embeddings A = use_relative_position_bias A = use_shared_relative_position_bias A = layer_scale_init_value A = drop_path_rate A = use_mean_pooling # decode head attributes (semantic segmentation) A = out_indices A = pool_scales # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = semantic_loss_ignore_index class __UpperCAmelCase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Union[str, Any] ): return 1e-4
355
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = """▁""" _lowerCamelCase : List[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : str = { """google/pegasus-xsum""": 512, } _lowerCamelCase : Any = logging.get_logger(__name__) class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__(self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : Union[str, Any]="<unk>" , _lowerCAmelCase : Union[str, Any]="<mask_2>" , _lowerCAmelCase : Dict="<mask_1>" , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=103 , _lowerCAmelCase : Any = None , **_lowerCAmelCase : Dict , ): A = offset if additional_special_tokens is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCAmelCase )}, but is""" F""" {type(_lowerCAmelCase )}""" ) A = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCAmelCase ) , self.offset - 1 ) ] if len(set(_lowerCAmelCase ) ) != len(_lowerCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) A = additional_special_tokens_extended else: A = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token_sent=_lowerCAmelCase , offset=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) A = mask_token_sent A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # add special tokens to encoder dict A = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) A = {v: k for k, v in self.encoder.items()} @property def A (self : str ): return len(self.sp_model ) + self.offset def A (self : str ): A = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : List[str] ): A = self.__dict__.copy() A = None return state def __setstate__(self : List[Any] , _lowerCAmelCase : int ): A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A (self : Union[str, Any] , _lowerCAmelCase : int ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def A (self : Optional[int] , _lowerCAmelCase : Union[str, Any] ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A = self.sp_model.piece_to_id(_lowerCAmelCase ) return sp_id + self.offset def A (self : List[Any] , _lowerCAmelCase : Optional[Any] ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A = self.sp_model.IdToPiece(index - self.offset ) return token def A (self : List[Any] , _lowerCAmelCase : Optional[Any] ): A = [] A = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token A = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def A (self : List[Any] , _lowerCAmelCase : Optional[Any]=False ): return 1 def A (self : Union[str, Any] , _lowerCAmelCase : int ): A = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def A (self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = None , _lowerCAmelCase : Tuple = False ): if already_has_special_tokens: return self._special_token_mask(_lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A (self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: A = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
356
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
0
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__A , __A ) ) ) def __a ( UpperCAmelCase ) ->None: """simple docstring""" if point: if isinstance(__A , __A ): for item in point: if not isinstance(__A , (int, float) ): A = ( """Expected a list of numbers as input, found """ f"""{type(__A ).__name__}""" ) raise TypeError(__A ) else: A = f"""Expected a list of numbers as input, found {type(__A ).__name__}""" raise TypeError(__A ) else: raise ValueError("""Missing an input""" ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__A , __A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _lowerCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Union[str, Any] = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : Union[str, Any] = { 'unc-nlp/lxmert-base-uncased': 512, } _lowerCamelCase : str = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __UpperCAmelCase ( lowercase__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = LxmertTokenizer def __init__(self : Union[str, Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any="[UNK]" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : List[Any]="[PAD]" , _lowerCAmelCase : Tuple="[CLS]" , _lowerCAmelCase : int="[MASK]" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int , ): super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _UpperCamelCase ) != tokenize_chinese_chars ): A = getattr(_UpperCamelCase , normalizer_state.pop("""type""" ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_UpperCamelCase ) A = do_lower_case def A (self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A (self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A (self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
358
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
0