code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
370
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCamelCase_ = data_utils.TransfoXLTokenizer UpperCamelCase_ = data_utils.TransfoXLCorpus UpperCamelCase_ = data_utils UpperCamelCase_ = data_utils def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__UpperCAmelCase , '''rb''' ) as fp: UpperCAmelCase_ = pickle.load(__UpperCAmelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"Save vocabulary to {pytorch_vocab_dump_path}" ) UpperCAmelCase_ = corpus.vocab.__dict__ torch.save(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __UpperCAmelCase ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase_ = os.path.abspath(__UpperCAmelCase ) UpperCAmelCase_ = os.path.abspath(__UpperCAmelCase ) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase_ = TransfoXLConfig() else: UpperCAmelCase_ = TransfoXLConfig.from_json_file(__UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) UpperCAmelCase_ = TransfoXLLMHeadModel(__UpperCAmelCase ) UpperCAmelCase_ = load_tf_weights_in_transfo_xl(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) print(f"Save PyTorch model to {os.path.abspath(__UpperCAmelCase )}" ) torch.save(model.state_dict() , __UpperCAmelCase ) print(f"Save configuration file to {os.path.abspath(__UpperCAmelCase )}" ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) UpperCamelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
from math import factorial def A ( __UpperCAmelCase = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase_ = n // 2 return int(factorial(__UpperCAmelCase ) / (factorial(__UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
351
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "▁" UpperCamelCase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } UpperCamelCase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off UpperCamelCase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class a_ ( _snake_case ): UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[int] =["input_ids", "attention_mask"] UpperCamelCase__ : List[int] =[] UpperCamelCase__ : List[int] =[] def __init__( self :Optional[Any] , _lowercase :Dict , _lowercase :List[str] , _lowercase :Dict=None , _lowercase :Union[str, Any]=None , _lowercase :Union[str, Any]="<s>" , _lowercase :Any="</s>" , _lowercase :List[Any]="</s>" , _lowercase :List[str]="<pad>" , _lowercase :Union[str, Any]="<unk>" , _lowercase :Tuple="m2m100" , _lowercase :Optional[Dict[str, Any]] = None , _lowercase :str=8 , **_lowercase :Any , ) -> None: UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = language_codes UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase_ = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} UpperCAmelCase_ = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = load_json(_lowercase) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(_lowercase , self.sp_model_kwargs) UpperCAmelCase_ = len(self.encoder) UpperCAmelCase_ = { self.get_lang_token(_lowercase): self.encoder_size + i for i, lang_code in enumerate(_lowercase) } UpperCAmelCase_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase)} UpperCAmelCase_ = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase_ = src_lang if src_lang is not None else '''en''' UpperCAmelCase_ = tgt_lang UpperCAmelCase_ = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) UpperCAmelCase_ = num_madeup_words @property def __a ( self :Optional[Any]) -> int: return len(self.encoder) + len(self.lang_token_to_id) @property def __a ( self :int) -> str: return self._src_lang @src_lang.setter def __a ( self :Dict , _lowercase :str) -> None: UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __a ( self :Optional[Any] , _lowercase :str) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase) def __a ( self :Optional[int] , _lowercase :Tuple) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token]) def __a ( self :int , _lowercase :int) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token) def __a ( self :str , _lowercase :Any) -> Any: UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_lowercase) out_string += self.sp_model.decode(_lowercase) return out_string.strip() def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) UpperCAmelCase_ = [1] * len(self.prefix_tokens) UpperCAmelCase_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase)) + suffix_ones return prefix_ones + ([0] * len(_lowercase)) + ([0] * len(_lowercase)) + suffix_ones def __a ( self :List[Any] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :List[str]) -> Dict: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :str , _lowercase :Dict) -> None: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs) def __a ( self :Tuple , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = Path(_lowercase) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory") UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowercase) if os.path.abspath(self.spm_file) != os.path.abspath(_lowercase) and os.path.isfile(self.spm_file): copyfile(self.spm_file , _lowercase) elif not os.path.isfile(self.spm_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (str(_lowercase), str(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :List[str] , _lowercase :str = "en" , _lowercase :Optional[List[str]] = None , _lowercase :str = "ro" , **_lowercase :Tuple , ) -> BatchEncoding: UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase) def __a ( self :int , _lowercase :Dict , _lowercase :Optional[str] , _lowercase :Optional[str] , **_lowercase :List[str]) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_lowercase , add_special_tokens=_lowercase , **_lowercase) UpperCAmelCase_ = self.get_lang_id(_lowercase) UpperCAmelCase_ = tgt_lang_id return inputs def __a ( self :Optional[Any]) -> Optional[int]: self.set_src_lang_special_tokens(self.src_lang) def __a ( self :List[str]) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang) def __a ( self :Optional[Any] , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :str , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :Dict , _lowercase :str) -> str: return self.lang_code_to_token[lang] def __a ( self :Union[str, Any] , _lowercase :str) -> int: UpperCAmelCase_ = self.get_lang_token(_lowercase) return self.lang_token_to_id[lang_token] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def A ( __UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
352
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
0
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' UpperCAmelCase_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def A ( ) -> Any: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a_ ( _snake_case ): UpperCamelCase__ : Any ="Wav2Vec2FeatureExtractor" UpperCamelCase__ : Optional[Any] ="AutoTokenizer" def __init__( self :Dict , _lowercase :Any , _lowercase :Optional[Any]) -> Any: super().__init__(_lowercase , _lowercase) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def __a ( cls :List[str] , _lowercase :str , **_lowercase :List[str]) -> List[Any]: try: return super().from_pretrained(_lowercase , **_lowercase) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowercase , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase) return cls(feature_extractor=_lowercase , tokenizer=_lowercase) def __call__( self :Tuple , *_lowercase :Optional[Any] , **_lowercase :Optional[int]) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') UpperCAmelCase_ = kwargs.pop('''raw_speech''') else: UpperCAmelCase_ = kwargs.pop('''audio''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''text''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: UpperCAmelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase) if text is not None: UpperCAmelCase_ = self.tokenizer(_lowercase , **_lowercase) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings['''input_ids'''] return inputs def __a ( self :int , *_lowercase :Tuple , **_lowercase :int) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase) UpperCAmelCase_ = kwargs.pop('''input_features''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''labels''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(_lowercase , **_lowercase) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels['''input_ids'''] return input_features def __a ( self :Union[str, Any] , *_lowercase :Optional[int] , **_lowercase :List[Any]) -> Tuple: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __a ( self :Dict , *_lowercase :int , **_lowercase :Optional[Any]) -> Any: return self.tokenizer.decode(*_lowercase , **_lowercase) @contextmanager def __a ( self :Any) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase_ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class a_ ( _snake_case ): UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Dict =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] =PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Union[str, Any] =ElectraTokenizer def __init__( self :List[Any] , _lowercase :List[str]=None , _lowercase :Any=None , _lowercase :int=True , _lowercase :Dict="[UNK]" , _lowercase :Dict="[SEP]" , _lowercase :Tuple="[PAD]" , _lowercase :Optional[int]="[CLS]" , _lowercase :List[Any]="[MASK]" , _lowercase :List[Any]=True , _lowercase :Any=None , **_lowercase :Any , ) -> List[str]: super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , _lowercase) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(_lowercase , normalizer_state.pop('''type''')) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**_lowercase) UpperCAmelCase_ = do_lower_case def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Optional[int]=None) -> Union[str, Any]: UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self :List[str] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __a ( self :Optional[int] , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = self._tokenizer.model.save(_lowercase , name=_lowercase) return tuple(_lowercase)
355
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__UpperCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__UpperCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__UpperCAmelCase ) return parser.parse_args() def A ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parse_args() # Import training_script as a module. UpperCAmelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ = script_fpath.stem UpperCAmelCase_ = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv UpperCAmelCase_ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
UpperCamelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) order.append(__UpperCAmelCase ) return order def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return component def A ( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) * [False] UpperCAmelCase_ = {vert: [] for vert in range(len(__UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__UpperCAmelCase ) UpperCAmelCase_ = [] for i, was_visited in enumerate(__UpperCAmelCase ): if not was_visited: order += topology_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = [] UpperCAmelCase_ = len(__UpperCAmelCase ) * [False] for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = order[len(__UpperCAmelCase ) - i - 1] if not visited[vert]: UpperCAmelCase_ = find_components(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) components_list.append(__UpperCAmelCase ) return components_list
358
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =StableDiffusionInstructPixaPixPipeline UpperCamelCase__ : List[str] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase__ : int =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self :List[Any]) -> Any: torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_lowercase) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_lowercase) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __a ( self :Tuple , _lowercase :Optional[int] , _lowercase :int=0) -> Union[str, Any]: UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''') if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = '''french fries''' UpperCAmelCase_ = sd_pipe(**_lowercase , negative_prompt=_lowercase) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = [inputs['''prompt''']] * 2 UpperCAmelCase_ = np.array(inputs['''image''']).astype(np.floataa) / 255.0 UpperCAmelCase_ = torch.from_numpy(_lowercase).unsqueeze(0).to(_lowercase) UpperCAmelCase_ = image / 2 + 0.5 UpperCAmelCase_ = image.permute(0 , 3 , 1 , 2) UpperCAmelCase_ = image.repeat(2 , 1 , 1 , 1) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_ = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''') UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = sd_pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = [round(_lowercase , 4) for x in image_slice.flatten().tolist()] print(''','''.join([str(_lowercase) for x in slice])) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __a ( self :Dict) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3) def __a ( self :Dict) -> int: UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline(**_lowercase) UpperCAmelCase_ = VaeImageProcessor(do_resize=_lowercase , do_normalize=_lowercase) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = pipe(**self.get_dummy_inputs_by_type(_lowercase , input_image_type='''pt'''))[0] UpperCAmelCase_ = components['''vae'''] UpperCAmelCase_ = self.get_dummy_inputs_by_type(_lowercase , input_image_type='''pt''') for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_ = vae.encode(inputs[image_param]).latent_dist.mode() UpperCAmelCase_ = pipe(**_lowercase)[0] UpperCAmelCase_ = np.abs(out - out_latents_inputs).max() self.assertLess(_lowercase , 1E-4 , '''passing latents as image input generate different result from passing image''') @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :Optional[int]) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[str] , _lowercase :List[str]=0) -> Optional[Any]: UpperCAmelCase_ = torch.manual_seed(_lowercase) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''') UpperCAmelCase_ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Dict) -> str: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase) UpperCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def __a ( self :Tuple) -> str: UpperCAmelCase_ = 0 def callback_fn(_lowercase :int , _lowercase :int , _lowercase :torch.FloatTensor) -> None: UpperCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 UpperCAmelCase_ = False UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() pipe(**_lowercase , callback=_lowercase , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self :int) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_lowercase) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self :Any) -> Optional[int]: UpperCAmelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ = inputs['''image'''].resize((504, 504)) UpperCAmelCase_ = '''timbrooks/instruct-pix2pix''' UpperCAmelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , ) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) pipe.enable_attention_slicing() UpperCAmelCase_ = pipe(**_lowercase) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase_ = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3
359
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ = get_activation('''swish''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = get_activation('''silu''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :str) -> Any: UpperCAmelCase_ = get_activation('''mish''') self.assertIsInstance(_lowercase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = get_activation('''gelu''') self.assertIsInstance(_lowercase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( __UpperCAmelCase = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__UpperCAmelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) UpperCAmelCase_ = QuantumRegister(__UpperCAmelCase , '''qr''' ) UpperCAmelCase_ = ClassicalRegister(__UpperCAmelCase , '''cr''' ) UpperCAmelCase_ = QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = number_of_qubits for i in range(__UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __UpperCAmelCase , __UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCAmelCase , __UpperCAmelCase ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend('''qasm_simulator''' ) UpperCAmelCase_ = execute(__UpperCAmelCase , __UpperCAmelCase , shots=1_0000 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
361
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =XLNetTokenizer UpperCamelCase__ : List[str] =XLNetTokenizerFast UpperCamelCase__ : Tuple =True UpperCamelCase__ : Dict =True def __a ( self :List[str]) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLNetTokenizer(_lowercase , keep_accents=_lowercase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> Dict: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<eod>''') self.assertEqual(len(_lowercase) , 1006) def __a ( self :Union[str, Any]) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :int) -> List[str]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual(_lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __a ( self :Tuple) -> List[str]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , do_lower_case=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''▁he''', '''ll''', '''o''']) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , do_lower_case=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __a ( self :Any) -> str: UpperCAmelCase_ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __a ( self :str) -> int: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
362
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase_ = 4 UpperCamelCase_ = 3 class a_ ( _snake_case ): pass def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' for shard in shards: for i in range(__UpperCAmelCase ): yield {"i": i, "shard": shard} def A ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = int(os.environ['''RANK'''] ) UpperCAmelCase_ = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase_ = ArgumentParser() parser.add_argument('''--streaming''' , type=__UpperCAmelCase ) parser.add_argument('''--local_rank''' , type=__UpperCAmelCase ) parser.add_argument('''--num_workers''' , type=__UpperCAmelCase , default=0 ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.streaming UpperCAmelCase_ = args.num_workers UpperCAmelCase_ = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(__UpperCAmelCase )]} UpperCAmelCase_ = IterableDataset.from_generator(__UpperCAmelCase , gen_kwargs=__UpperCAmelCase ) if not streaming: UpperCAmelCase_ = Dataset.from_list(list(__UpperCAmelCase ) ) UpperCAmelCase_ = split_dataset_by_node(__UpperCAmelCase , rank=__UpperCAmelCase , world_size=__UpperCAmelCase ) UpperCAmelCase_ = torch.utils.data.DataLoader(__UpperCAmelCase , num_workers=__UpperCAmelCase ) UpperCAmelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
364
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : UpperCamelCase__ : int UpperCamelCase__ : int class a_ : def __init__( self :List[Any] , _lowercase :int) -> List[str]: UpperCAmelCase_ = [[] for _ in range(_lowercase)] UpperCAmelCase_ = size def __getitem__( self :Tuple , _lowercase :int) -> Iterator[Edge]: return iter(self._graph[vertex]) @property def __a ( self :int) -> Optional[int]: return self._size def __a ( self :Optional[int] , _lowercase :int , _lowercase :int , _lowercase :int) -> Optional[Any]: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''') self._graph[from_vertex].append(Edge(_lowercase , _lowercase)) def __a ( self :Any , _lowercase :int , _lowercase :int) -> int | None: UpperCAmelCase_ = deque([start_vertex]) UpperCAmelCase_ = [None] * self.size UpperCAmelCase_ = 0 while queue: UpperCAmelCase_ = queue.popleft() UpperCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase_ = current_distance + edge.weight UpperCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(_lowercase , _lowercase) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
365
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
0
import itertools import string from collections.abc import Generator, Iterable def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' UpperCAmelCase_ = iter(__UpperCAmelCase ) while True: UpperCAmelCase_ = tuple(itertools.islice(__UpperCAmelCase , __UpperCAmelCase ) ) if not chunk: return yield chunk def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCAmelCase_ = '''''' if len(__UpperCAmelCase ) < 2: return dirty for i in range(len(__UpperCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__UpperCAmelCase ) & 1: clean += "X" return clean def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCAmelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__UpperCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__UpperCAmelCase ) return table def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = generate_table(__UpperCAmelCase ) UpperCAmelCase_ = prepare_input(__UpperCAmelCase ) UpperCAmelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = generate_table(__UpperCAmelCase ) UpperCAmelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
366
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowerCAmelCase = None _lowerCAmelCase = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowerCAmelCase = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class a_ : UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="PIL.Image.Image" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Image" , init=_snake_case , repr=_snake_case ) def __call__( self :Optional[int]) -> Dict: return self.pa_type def __a ( self :str , _lowercase :Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = np.array(_lowercase) if isinstance(_lowercase , _lowercase): return {"path": value, "bytes": None} elif isinstance(_lowercase , _lowercase): return {"path": None, "bytes": value} elif isinstance(_lowercase , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(_lowercase) elif isinstance(_lowercase , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_lowercase) elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :List[Any] , _lowercase :dict , _lowercase :Any=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''') if token_per_repo_id is None: UpperCAmelCase_ = {} UpperCAmelCase_ , UpperCAmelCase_ = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") else: if is_local_path(_lowercase): UpperCAmelCase_ = PIL.Image.open(_lowercase) else: UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id.get(_lowercase) except ValueError: UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ = BytesIO(f.read()) UpperCAmelCase_ = PIL.Image.open(bytes_) else: UpperCAmelCase_ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __a ( self :str) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary'''), "path": Value('''string'''), } ) def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_list(storage.type): UpperCAmelCase_ = pa.array( [encode_np_array(np.array(_lowercase))['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :List[Any] , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :List[Any]): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type) def A ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def A ( __UpperCAmelCase ) -> bytes: '''simple docstring''' UpperCAmelCase_ = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ = image.format else: UpperCAmelCase_ = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(__UpperCAmelCase , format=__UpperCAmelCase ) return buffer.getvalue() def A ( __UpperCAmelCase ) -> dict: '''simple docstring''' if hasattr(__UpperCAmelCase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__UpperCAmelCase )} def A ( __UpperCAmelCase ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ = array.dtype UpperCAmelCase_ = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ = dtype.kind UpperCAmelCase_ = dtype.itemsize UpperCAmelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ = dtype_byteorder + dtype_kind + str(__UpperCAmelCase ) UpperCAmelCase_ = np.dtype(__UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) UpperCAmelCase_ = PIL.Image.fromarray(array.astype(__UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(__UpperCAmelCase )} def A ( __UpperCAmelCase ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_ , UpperCAmelCase_ = first_non_null_value(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__UpperCAmelCase , np.ndarray ): UpperCAmelCase_ = no_op_if_value_is_null(__UpperCAmelCase ) return [obj_to_image_dict_func(__UpperCAmelCase ) for obj in objs] elif isinstance(__UpperCAmelCase , PIL.Image.Image ): UpperCAmelCase_ = no_op_if_value_is_null(__UpperCAmelCase ) return [obj_to_image_dict_func(__UpperCAmelCase ) for obj in objs] else: return objs else: return objs
367
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): def __init__( self :Union[str, Any] , *_lowercase :str , **_lowercase :Any) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase)
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a_ ( _snake_case ): UpperCamelCase__ : Union[List[PIL.Image.Image], np.ndarray] UpperCamelCase__ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="unispeech" def __init__( self :Dict , _lowercase :Optional[int]=32 , _lowercase :List[Any]=768 , _lowercase :List[str]=12 , _lowercase :Tuple=12 , _lowercase :List[str]=3072 , _lowercase :Dict="gelu" , _lowercase :Any=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :Dict=0.1 , _lowercase :List[str]=0.0 , _lowercase :Dict=0.0 , _lowercase :List[Any]=0.1 , _lowercase :str=0.1 , _lowercase :Optional[Any]=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[Any]="group" , _lowercase :str="gelu" , _lowercase :Any=(512, 512, 512, 512, 512, 512, 512) , _lowercase :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , _lowercase :Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _lowercase :Dict=False , _lowercase :str=128 , _lowercase :List[str]=16 , _lowercase :Union[str, Any]=False , _lowercase :Union[str, Any]=True , _lowercase :Any=0.05 , _lowercase :List[Any]=10 , _lowercase :Optional[Any]=2 , _lowercase :Tuple=0.0 , _lowercase :Union[str, Any]=10 , _lowercase :Union[str, Any]=0 , _lowercase :List[Any]=320 , _lowercase :Union[str, Any]=2 , _lowercase :int=0.1 , _lowercase :int=100 , _lowercase :List[str]=256 , _lowercase :Tuple=256 , _lowercase :List[str]=0.1 , _lowercase :List[Any]="mean" , _lowercase :Any=False , _lowercase :Union[str, Any]=False , _lowercase :str=256 , _lowercase :int=80 , _lowercase :List[str]=0 , _lowercase :Union[str, Any]=1 , _lowercase :str=2 , _lowercase :Dict=0.5 , **_lowercase :List[Any] , ) -> Dict: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_norm UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = len(self.conv_dim) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layerdrop UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_ctc_classes UpperCAmelCase_ = vocab_size UpperCAmelCase_ = do_stable_layer_norm UpperCAmelCase_ = use_weighted_layer_sum UpperCAmelCase_ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = apply_spec_augment UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ = num_codevectors_per_group UpperCAmelCase_ = num_codevector_groups UpperCAmelCase_ = contrastive_logits_temperature UpperCAmelCase_ = feat_quantizer_dropout UpperCAmelCase_ = num_negatives UpperCAmelCase_ = codevector_dim UpperCAmelCase_ = proj_codevector_dim UpperCAmelCase_ = diversity_loss_weight # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # pretraining loss UpperCAmelCase_ = replace_prob @property def __a ( self :Dict) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
370
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase_ = sys.version_info >= (3, 10) def A ( __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : int UpperCamelCase__ : float UpperCamelCase__ : str UpperCamelCase__ : bool @dataclass class a_ : """simple docstring""" UpperCamelCase__ : int =42 UpperCamelCase__ : str =field(default="toto" , metadata={"help": "help message"} ) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[bool] =None class a_ ( _snake_case ): """simple docstring""" UpperCamelCase__ : Optional[Any] ="titi" UpperCamelCase__ : int ="toto" class a_ ( _snake_case ): """simple docstring""" UpperCamelCase__ : Dict ="titi" UpperCamelCase__ : Tuple ="toto" UpperCamelCase__ : Dict =42 @dataclass class a_ : """simple docstring""" UpperCamelCase__ : BasicEnum ="toto" def __a ( self :List[Any]) -> int: UpperCAmelCase_ = BasicEnum(self.foo) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : MixedTypeEnum ="toto" def __a ( self :Any) -> Optional[int]: UpperCAmelCase_ = MixedTypeEnum(self.foo) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Optional[float] =field(default=_snake_case , metadata={"help": "help message"} ) UpperCamelCase__ : Optional[str] =None UpperCamelCase__ : Optional[List[str]] =list_field(default=[] ) UpperCamelCase__ : Optional[List[int]] =list_field(default=[] ) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : List[int] =list_field(default=[] ) UpperCamelCase__ : List[int] =list_field(default=[1, 2, 3] ) UpperCamelCase__ : List[str] =list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCamelCase__ : List[float] =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : List[int] =field() UpperCamelCase__ : str =field() UpperCamelCase__ : BasicEnum =field() def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = BasicEnum(self.required_enum) @dataclass class a_ : """simple docstring""" UpperCamelCase__ : int UpperCamelCase__ : "BasicEnum" =field() UpperCamelCase__ : "Optional[bool]" =None UpperCamelCase__ : "str" =field(default="toto" , metadata={"help": "help message"} ) UpperCamelCase__ : "List[str]" =list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class a_ : """simple docstring""" UpperCamelCase__ : bool =False UpperCamelCase__ : bool =True UpperCamelCase__ : bool | None =None @dataclass class a_ : """simple docstring""" UpperCamelCase__ : int | None =None UpperCamelCase__ : float | None =field(default=_snake_case , metadata={"help": "help message"} ) UpperCamelCase__ : str | None =None UpperCamelCase__ : list[str] | None =list_field(default=[] ) UpperCamelCase__ : list[int] | None =list_field(default=[] ) class a_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[str] , _lowercase :argparse.ArgumentParser , _lowercase :argparse.ArgumentParser) -> Optional[int]: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): UpperCAmelCase_ = {k: v for k, v in vars(_lowercase).items() if k != '''container'''} UpperCAmelCase_ = {k: v for k, v in vars(_lowercase).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowercase) and yy.get('''choices''' , _lowercase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowercase) , yy['''type'''](_lowercase)) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase) expected.add_argument('''--bar''' , type=_lowercase , required=_lowercase) expected.add_argument('''--baz''' , type=_lowercase , required=_lowercase) expected.add_argument('''--flag''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((UpperCAmelCase_ ) , ) = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase) self.assertFalse(example.flag) def __a ( self :int) -> int: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowercase) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''') self.argparsersEqual(_lowercase , _lowercase) def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') expected.add_argument('''--baz''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowercase , dest='''baz''') expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase) UpperCAmelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase) for dataclass_type in dataclass_types: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''--no_baz''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''--baz''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False''']) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase)) def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCAmelCase_ = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) UpperCAmelCase_ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) UpperCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __a ( self :Optional[int]) -> Tuple: @dataclass class a_ : """simple docstring""" UpperCamelCase__ : Literal["titi", "toto", 42] ="toto" UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCAmelCase_ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCAmelCase_ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowercase) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowercase) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3]) , ) UpperCAmelCase_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split()) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7])) def __a ( self :Optional[Any]) -> List[Any]: UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowercase , type=_lowercase) expected.add_argument('''--bar''' , default=_lowercase , type=_lowercase , help='''help message''') expected.add_argument('''--baz''' , default=_lowercase , type=_lowercase) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowercase) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowercase) UpperCAmelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase) for dataclass_type in dataclass_types: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.argparsersEqual(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_args([]) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[])) UpperCAmelCase_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split()) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3])) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowercase , required=_lowercase) expected.add_argument('''--required_str''' , type=_lowercase , required=_lowercase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_lowercase , ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''') expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase) self.argparsersEqual(_lowercase , _lowercase) def __a ( self :Tuple) -> int: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } UpperCAmelCase_ = parser.parse_dict(_lowercase)[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase) def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_lowercase , '''temp_json''') os.mkdir(_lowercase) with open(temp_local_path + '''.json''' , '''w+''') as f: json.dump(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.json'''))[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = HfArgumentParser(_lowercase) UpperCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_lowercase , '''temp_yaml''') os.mkdir(_lowercase) with open(temp_local_path + '''.yaml''' , '''w+''') as f: yaml.dump(_lowercase , _lowercase) UpperCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml'''))[0] UpperCAmelCase_ = BasicExample(**_lowercase) self.assertEqual(_lowercase , _lowercase) def __a ( self :Optional[int]) -> List[str]: UpperCAmelCase_ = HfArgumentParser(_lowercase) self.assertIsNotNone(_lowercase)
371
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =GPTSwaTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Tuple =False def __a ( self :str) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_lowercase , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , _lowercase :int) -> str: UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def __a ( self :Optional[Any]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> int: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_lowercase) , 2000) def __a ( self :Union[str, Any]) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000) def __a ( self :Dict) -> str: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def __a ( self :str) -> Any: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowercase , _lowercase): self.assertListEqual(tokenizer.encode_fast(_lowercase) , _lowercase) # Test that decode_fast returns the input text for text, token_ids in zip(_lowercase , _lowercase): self.assertEqual(tokenizer.decode_fast(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_lowercase , )
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = args.log_outputs UpperCAmelCase_ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric UpperCAmelCase_ = load_metric('''wer''' ) UpperCAmelCase_ = load_metric('''cer''' ) # compute metrics UpperCAmelCase_ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) UpperCAmelCase_ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results UpperCAmelCase_ = f"WER: {wer_result}\nCER: {cer_result}" print(__UpperCAmelCase ) with open(f"{dataset_id}_eval_results.txt" , '''w''' ) as f: f.write(__UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase_ = f"log_{dataset_id}_predictions.txt" UpperCAmelCase_ = f"log_{dataset_id}_targets.txt" with open(__UpperCAmelCase , '''w''' ) as p, open(__UpperCAmelCase , '''w''' ) as t: # mapping function to write output def write_to_file(__UpperCAmelCase , __UpperCAmelCase ): p.write(f"{i}" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"{i}" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(__UpperCAmelCase , with_indices=__UpperCAmelCase ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase_ = re.sub(__UpperCAmelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase_ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: UpperCAmelCase_ = ''' '''.join(text.split(__UpperCAmelCase ) ) return text def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase_ = feature_extractor.sampling_rate # resample audio UpperCAmelCase_ = dataset.cast_column('''audio''' , Audio(sampling_rate=__UpperCAmelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase_ = 0 if torch.cuda.is_available() else -1 UpperCAmelCase_ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCAmelCase ): UpperCAmelCase_ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase_ = prediction['''text'''] UpperCAmelCase_ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples UpperCAmelCase_ = dataset.map(__UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCamelCase_ = parser.parse_args() main(args)
351
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
352
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
0
def A ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' UpperCAmelCase_ = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"{solution() = }")
353
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
0
UpperCamelCase_ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(__UpperCAmelCase )}" ) raise ValueError(__UpperCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
import warnings from functools import wraps from typing import Callable def A ( __UpperCAmelCase ) -> Callable: '''simple docstring''' @wraps(__UpperCAmelCase ) def _inner_fn(*__UpperCAmelCase , **__UpperCAmelCase ): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , __UpperCAmelCase , ) return fn(*__UpperCAmelCase , **__UpperCAmelCase ) return _inner_fn
355
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a_ ( unittest.TestCase ): @property def __a ( self :Optional[int]) -> Optional[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def __a ( self :Tuple) -> Union[str, Any]: UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''') UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''') # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = '''A red cat sitting on a park bench''' UpperCAmelCase_ = np.random.RandomState(0) UpperCAmelCase_ = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowercase , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :int) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Optional[int]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_euler''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe([prompt] , generator=_lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''') UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1 def __a ( self :List[str]) -> str: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''') UpperCAmelCase_ = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) sd_pipe.set_scheduler('''sample_dpmpp_2m''') UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_lowercase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase_ = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
0
from math import factorial def A ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' return sum(int(__UpperCAmelCase ) for x in str(factorial(__UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
359
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self :Dict , _lowercase :Tuple=2 , _lowercase :str=3 , _lowercase :Optional[Any]=64 , _lowercase :Optional[int]=None) -> List[str]: UpperCAmelCase_ = np.random.default_rng(_lowercase) UpperCAmelCase_ = length UpperCAmelCase_ = rng.normal(size=(length,)).astype(np.floataa) UpperCAmelCase_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self :Union[str, Any]) -> List[Any]: return self.length def __getitem__( self :int , _lowercase :Optional[int]) -> Union[str, Any]: return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self :Dict , _lowercase :str=0 , _lowercase :Optional[Any]=0 , _lowercase :Optional[int]=False) -> Optional[int]: super().__init__() UpperCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3]).float()) UpperCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3]).float()) UpperCAmelCase_ = True def __a ( self :Tuple , _lowercase :Tuple=None) -> str: if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") UpperCAmelCase_ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self :Union[str, Any] , _lowercase :int=0 , _lowercase :List[Any]=0 , _lowercase :Optional[Any]=False) -> Optional[int]: super().__init__() UpperCAmelCase_ = torch.nn.Parameter(torch.tensor(_lowercase).float()) UpperCAmelCase_ = torch.nn.Parameter(torch.tensor(_lowercase).float()) UpperCAmelCase_ = True def __a ( self :List[Any] , _lowercase :List[Any]=None) -> Dict: if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") UpperCAmelCase_ = False return x * self.a + self.b def A ( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> List[str]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ = load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCAmelCase_ = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) UpperCAmelCase_ = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = '''''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
362
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( _snake_case ): UpperCamelCase__ : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , _snake_case , _snake_case ): UpperCamelCase__ : int =32 UpperCamelCase__ : int =4 UpperCamelCase__ : int =4 UpperCamelCase__ : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCamelCase__ : Union[bool, Tuple[bool]] =False UpperCamelCase__ : Tuple[int] =(3_20, 6_40, 12_80, 12_80) UpperCamelCase__ : int =2 UpperCamelCase__ : Union[int, Tuple[int]] =8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] =None UpperCamelCase__ : int =12_80 UpperCamelCase__ : float =0.0 UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =False def __a ( self :int , _lowercase :jax.random.KeyArray) -> FrozenDict: # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(_lowercase , dtype=jnp.floataa) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(_lowercase) UpperCAmelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase)["params"] def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) UpperCAmelCase_ = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype) UpperCAmelCase_ = self.only_cross_attention if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types) # down UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase) UpperCAmelCase_ = down_blocks # mid UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ = [] UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = reversed_block_out_channels[min(i + 1 , len(_lowercase) - 1)] UpperCAmelCase_ = i == len(_lowercase) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel UpperCAmelCase_ = up_blocks # out UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5) UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , _lowercase :Optional[int] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :List[str]=None , _lowercase :Union[str, Any]=None , _lowercase :bool = True , _lowercase :bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowercase , jnp.ndarray): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(_lowercase , jnp.ndarray) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa) UpperCAmelCase_ = jnp.expand_dims(_lowercase , 0) UpperCAmelCase_ = self.time_proj(_lowercase) UpperCAmelCase_ = self.time_embedding(_lowercase) # 2. pre-process UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 2, 3, 1)) UpperCAmelCase_ = self.conv_in(_lowercase) # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase): UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = new_down_block_res_samples # 4. mid UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: UpperCAmelCase_ = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train) # 6. post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = nn.silu(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase)
363
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self :List[str] , _lowercase :List[Any] , _lowercase :List[Any]=3 , _lowercase :Any=32 , _lowercase :int=3 , _lowercase :List[Any]=10 , _lowercase :Any=[10, 20, 30, 40] , _lowercase :Tuple=[1, 1, 2, 1] , _lowercase :Tuple=True , _lowercase :Tuple=True , _lowercase :Optional[Any]="relu" , _lowercase :str=3 , _lowercase :Optional[Any]=None , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_lowercase) def __a ( self :Tuple) -> Optional[Any]: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self :Optional[Any]) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self :Dict , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :Dict) -> Dict: UpperCAmelCase_ = TFRegNetModel(config=_lowercase) UpperCAmelCase_ = model(_lowercase , training=_lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self :Union[str, Any] , _lowercase :int , _lowercase :List[str] , _lowercase :int) -> Union[str, Any]: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFRegNetForImageClassification(_lowercase) UpperCAmelCase_ = model(_lowercase , labels=_lowercase , training=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Tuple) -> Optional[Any]: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase__ : str =( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : str =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : str =False def __a ( self :Any) -> List[str]: UpperCAmelCase_ = TFRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase) def __a ( self :Optional[int]) -> int: return @unittest.skip(reason='''RegNet does not use inputs_embeds''') def __a ( self :Union[str, Any]) -> List[str]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''')) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __a ( self :List[str]) -> int: super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''') def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Union[str, Any]) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :int) -> Optional[int]: def check_hidden_states_output(_lowercase :List[str] , _lowercase :Tuple , _lowercase :Tuple): UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase) , training=_lowercase) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_lowercase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ = layer_type UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowercase :Union[str, Any] , _lowercase :str , _lowercase :int , _lowercase :Any={}): UpperCAmelCase_ = model(_lowercase , return_dict=_lowercase , **_lowercase) UpperCAmelCase_ = model(_lowercase , return_dict=_lowercase , **_lowercase).to_tuple() def recursive_check(_lowercase :Dict , _lowercase :Union[str, Any]): if isinstance(_lowercase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase): recursive_check(_lowercase , _lowercase) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowercase , _lowercase)) , msg=( '''Tuple and dict output are not equal. Difference:''' f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ) , ) recursive_check(_lowercase , _lowercase) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) check_equivalence(_lowercase , _lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) check_equivalence(_lowercase , _lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True}) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True}) def __a ( self :Any) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase) @slow def __a ( self :Optional[int]) -> List[str]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFRegNetModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def __a ( self :Optional[int]) -> Any: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __a ( self :int) -> Union[str, Any]: UpperCAmelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''tf''') # forward pass UpperCAmelCase_ = model(**_lowercase , training=_lowercase) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = tf.constant([-0.4_180, -1.5_051, -3.4_836]) tf.debugging.assert_near(outputs.logits[0, :3] , _lowercase , atol=1E-4)
364
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
0
import sys def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] for chain_length in range(2 , __UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if i == j: print('''A''' + str(__UpperCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__UpperCAmelCase , __UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCAmelCase , optimal_solution[i][j] + 1 , __UpperCAmelCase ) print(''')''' , end=''' ''' ) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__UpperCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
366
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures/dummy-config.json") class a_ ( unittest.TestCase ): def __a ( self :Tuple) -> str: UpperCAmelCase_ = 0 def __a ( self :Union[str, Any]) -> Optional[int]: self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''')) def __a ( self :str) -> int: UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-uncased''') self.assertIsInstance(_lowercase , _lowercase) def __a ( self :List[str]) -> Optional[Any]: UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = AutoConfig.for_model('''roberta''') self.assertIsInstance(_lowercase , _lowercase) def __a ( self :Any) -> int: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase_ = os.path.join(_lowercase , '''fake-roberta''') os.makedirs(_lowercase , exist_ok=_lowercase) with open(os.path.join(_lowercase , '''config.json''') , '''w''') as f: f.write(json.dumps({})) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertEqual(type(_lowercase) , _lowercase) def __a ( self :Any) -> Any: try: AutoConfig.register('''custom''' , _lowercase) # Wrong model type will raise an error with self.assertRaises(_lowercase): AutoConfig.register('''model''' , _lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase): AutoConfig.register('''bert''' , _lowercase) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __a ( self :Any) -> Optional[Any]: with self.assertRaisesRegex( _lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base''') def __a ( self :Optional[int]) -> int: with self.assertRaisesRegex( _lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase , revision='''aaaaaa''') def __a ( self :str) -> Optional[int]: with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''') def __a ( self :Tuple) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase): UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase) UpperCAmelCase_ = AutoConfig.from_pretrained(_lowercase , trust_remote_code=_lowercase) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''') def __a ( self :Any) -> Optional[Any]: class a_ ( _snake_case ): UpperCamelCase__ : Any ="new-model" try: AutoConfig.register('''new-model''' , _lowercase) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
367
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : int ="encoder-decoder" UpperCamelCase__ : List[Any] =True def __init__( self :str , **_lowercase :Any) -> List[Any]: super().__init__(**_lowercase) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ = kwargs.pop('''encoder''') UpperCAmelCase_ = encoder_config.pop('''model_type''') UpperCAmelCase_ = kwargs.pop('''decoder''') UpperCAmelCase_ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = True @classmethod def __a ( cls :int , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , **_lowercase :str) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
import math def A ( __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 ) -> list: '''simple docstring''' UpperCAmelCase_ = end or len(__UpperCAmelCase ) for i in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = i UpperCAmelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ = temp_index_value return array def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: # Max Heap '''simple docstring''' UpperCAmelCase_ = index UpperCAmelCase_ = 2 * index + 1 # Left Node UpperCAmelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index] heapify(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase ) -> list: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i] heapify(__UpperCAmelCase , 0 , __UpperCAmelCase ) return array def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = low UpperCAmelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i] i += 1 def A ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return array UpperCAmelCase_ = 2 * math.ceil(math.loga(len(__UpperCAmelCase ) ) ) UpperCAmelCase_ = 16 return intro_sort(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(__UpperCAmelCase ) max_depth -= 1 UpperCAmelCase_ = median_of_a(__UpperCAmelCase , __UpperCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase_ = partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) intro_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = p return insertion_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input("Enter numbers separated by a comma : ").strip() UpperCamelCase_ = [float(item) for item in user_input.split(",")] print(sort(unsorted))
370
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = SwinvaConfig() UpperCAmelCase_ = swinva_name.split('''_''' ) UpperCAmelCase_ = name_split[1] if "to" in name_split[3]: UpperCAmelCase_ = int(name_split[3][-3:] ) else: UpperCAmelCase_ = int(name_split[3] ) if "to" in name_split[2]: UpperCAmelCase_ = int(name_split[2][-2:] ) else: UpperCAmelCase_ = int(name_split[2][6:] ) if model_size == "tiny": UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 6, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif model_size == "small": UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif model_size == "base": UpperCAmelCase_ = 128 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (4, 8, 16, 32) else: UpperCAmelCase_ = 192 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (6, 12, 24, 48) if "to" in swinva_name: UpperCAmelCase_ = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCAmelCase_ = 2_1841 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-22k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ = 1000 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = img_size UpperCAmelCase_ = num_classes UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size return config def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase_ = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: UpperCAmelCase_ = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: UpperCAmelCase_ = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: UpperCAmelCase_ = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: UpperCAmelCase_ = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": UpperCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ = '''layernorm.bias''' if "head" in name: UpperCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase_ = '''swinv2.''' + name return name def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__UpperCAmelCase ) if "mask" in key: continue elif "qkv" in key: UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = val return orig_state_dict def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() UpperCAmelCase_ = get_swinva_config(__UpperCAmelCase ) UpperCAmelCase_ = SwinvaForImageClassification(__UpperCAmelCase ) model.eval() UpperCAmelCase_ = convert_state_dict(timm_model.state_dict() , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) UpperCAmelCase_ = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase_ = timm_model(inputs['''pixel_values'''] ) UpperCAmelCase_ = model(**__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase_ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
371
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self :Tuple , _lowercase :Dict , _lowercase :Union[str, Any]=13 , _lowercase :Optional[Any]=7 , _lowercase :List[Any]=True , _lowercase :Dict=True , _lowercase :Optional[Any]=True , _lowercase :str=True , _lowercase :str=99 , _lowercase :Optional[Any]=16 , _lowercase :List[Any]=36 , _lowercase :Dict=6 , _lowercase :Tuple=6 , _lowercase :Optional[int]=6 , _lowercase :int=37 , _lowercase :str="gelu" , _lowercase :List[Any]=0.1 , _lowercase :int=0.1 , _lowercase :Any=512 , _lowercase :str=16 , _lowercase :Optional[Any]=2 , _lowercase :str=0.02 , _lowercase :Tuple=3 , _lowercase :List[Any]=4 , _lowercase :str=None , ) -> List[str]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_hidden_groups UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def __a ( self :int) -> Optional[Any]: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self :int) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self :Optional[int] , _lowercase :Tuple , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Tuple , _lowercase :Optional[int] , _lowercase :Dict , _lowercase :List[Any]) -> List[Any]: UpperCAmelCase_ = AlbertModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase) UpperCAmelCase_ = model(_lowercase , token_type_ids=_lowercase) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __a ( self :Any , _lowercase :str , _lowercase :str , _lowercase :str , _lowercase :List[str] , _lowercase :str , _lowercase :Any , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = AlbertForPreTraining(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def __a ( self :Union[str, Any] , _lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :str , _lowercase :Dict , _lowercase :int , _lowercase :Tuple , _lowercase :Dict) -> Any: UpperCAmelCase_ = AlbertForMaskedLM(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :Dict , _lowercase :Union[str, Any] , _lowercase :Dict , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :int , _lowercase :int , _lowercase :str) -> str: UpperCAmelCase_ = AlbertForQuestionAnswering(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __a ( self :Tuple , _lowercase :List[str] , _lowercase :Any , _lowercase :Dict , _lowercase :List[Any] , _lowercase :Optional[Any] , _lowercase :Dict , _lowercase :Tuple) -> int: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Union[str, Any] , _lowercase :Optional[int] , _lowercase :str , _lowercase :Optional[int] , _lowercase :int , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :List[str]) -> Any: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForTokenClassification(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :Tuple , _lowercase :List[str] , _lowercase :Union[str, Any] , _lowercase :List[str] , _lowercase :int , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = AlbertForMultipleChoice(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : Tuple =( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : List[str] =True def __a ( self :Optional[int] , _lowercase :str , _lowercase :Tuple , _lowercase :Dict=False) -> Dict: UpperCAmelCase_ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if return_labels: if model_class in get_values(_lowercase): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase) return inputs_dict def __a ( self :Any) -> List[str]: UpperCAmelCase_ = AlbertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37) def __a ( self :int) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase) def __a ( self :Dict) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase) def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase) def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase) def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase) def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_lowercase) @slow def __a ( self :Optional[Any]) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AlbertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :str) -> List[str]: UpperCAmelCase_ = AlbertModel.from_pretrained('''albert-base-v2''') UpperCAmelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase)[0] UpperCAmelCase_ = torch.Size((1, 11, 768)) self.assertEqual(output.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4))
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a_ ( unittest.TestCase ): def __init__( self :int , _lowercase :Union[str, Any] , _lowercase :str=7 , _lowercase :str=3 , _lowercase :List[str]=18 , _lowercase :List[str]=30 , _lowercase :List[Any]=400 , _lowercase :Optional[Any]=True , _lowercase :Dict=None , _lowercase :str=True , _lowercase :str=None , _lowercase :List[str]=True , _lowercase :Any=[0.5, 0.5, 0.5] , _lowercase :int=[0.5, 0.5, 0.5] , _lowercase :Dict=False , ) -> Optional[Any]: UpperCAmelCase_ = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_reduce_labels def __a ( self :Dict) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ = Image.open(dataset[1]['''file'''] ) return image, map def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =BeitImageProcessor if is_vision_available() else None def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = BeitImageProcessingTester(self) @property def __a ( self :str) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :List[Any]) -> List[str]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''do_center_crop''')) self.assertTrue(hasattr(_lowercase , '''center_crop''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) def __a ( self :Tuple) -> Dict: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) self.assertEqual(image_processor.do_reduce_labels , _lowercase) UpperCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowercase) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) self.assertEqual(image_processor.do_reduce_labels , _lowercase) def __a ( self :int) -> List[str]: pass def __a ( self :Union[str, Any]) -> Any: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self :int) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self :Optional[int]) -> Tuple: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self :Tuple) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) UpperCAmelCase_ = [] for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test batched UpperCAmelCase_ = image_processing(_lowercase , _lowercase , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ = prepare_semantic_single_inputs() UpperCAmelCase_ = image_processing(_lowercase , _lowercase , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ = prepare_semantic_batch_inputs() UpperCAmelCase_ = image_processing(_lowercase , _lowercase , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) def __a ( self :Union[str, Any]) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ = prepare_semantic_single_inputs() UpperCAmelCase_ = image_processing(_lowercase , _lowercase , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 150) UpperCAmelCase_ = True UpperCAmelCase_ = image_processing(_lowercase , _lowercase , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255)
351
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class a_ ( _snake_case ): UpperCamelCase__ : Any ="distilbert" UpperCamelCase__ : int ={ "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self :int , _lowercase :Tuple=30522 , _lowercase :Tuple=512 , _lowercase :Optional[Any]=False , _lowercase :int=6 , _lowercase :int=12 , _lowercase :Tuple=768 , _lowercase :Dict=4 * 768 , _lowercase :Tuple=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict="gelu" , _lowercase :List[Any]=0.02 , _lowercase :str=0.1 , _lowercase :Optional[Any]=0.2 , _lowercase :Tuple=0 , **_lowercase :Union[str, Any] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = sinusoidal_pos_embds UpperCAmelCase_ = n_layers UpperCAmelCase_ = n_heads UpperCAmelCase_ = dim UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation UpperCAmelCase_ = initializer_range UpperCAmelCase_ = qa_dropout UpperCAmelCase_ = seq_classif_dropout super().__init__(**_lowercase , pad_token_id=_lowercase) class a_ ( _snake_case ): @property def __a ( self :Union[str, Any]) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
352
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
0
UpperCamelCase_ = {} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase_ = _calculate(days - 1 , __UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase_ = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase_ = _calculate(days - 1 , __UpperCAmelCase , 0 ) UpperCAmelCase_ = state_late + state_absent + state_ontime UpperCAmelCase_ = prizestrings return prizestrings def A ( __UpperCAmelCase = 30 ) -> int: '''simple docstring''' return _calculate(__UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
353
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
0
import math class a_ : def __init__( self :Dict , _lowercase :Union[str, Any]=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ = n UpperCAmelCase_ = [ [math.inf for j in range(0 , _lowercase)] for i in range(0 , _lowercase) ] # adjacency matrix for weight UpperCAmelCase_ = [ [math.inf for j in range(0 , _lowercase)] for i in range(0 , _lowercase) ] # dp[i][j] stores minimum distance from i to j def __a ( self :Any , _lowercase :List[str] , _lowercase :List[str] , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = w def __a ( self :str) -> Optional[Any]: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def __a ( self :int , _lowercase :Tuple , _lowercase :Optional[int]) -> List[str]: return self.dp[u][v] if __name__ == "__main__": UpperCamelCase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCamelCase_ = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCamelCase_ = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" UpperCamelCase_ = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :Any) -> List[str]: if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __a ( self :Dict , _lowercase :Tuple , _lowercase :str , _lowercase :int = CHRF.CHAR_ORDER , _lowercase :int = CHRF.WORD_ORDER , _lowercase :int = CHRF.BETA , _lowercase :bool = False , _lowercase :bool = False , _lowercase :bool = False , ) -> Any: UpperCAmelCase_ = len(references[0]) if any(len(_lowercase) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_lowercase)] UpperCAmelCase_ = CHRF(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) UpperCAmelCase_ = sb_chrf.corpus_score(_lowercase , _lowercase) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
355
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Tuple ="rwkv" UpperCamelCase__ : str ={"max_position_embeddings": "context_length"} def __init__( self :List[Any] , _lowercase :Optional[int]=50277 , _lowercase :Optional[Any]=1024 , _lowercase :int=4096 , _lowercase :Union[str, Any]=32 , _lowercase :Tuple=None , _lowercase :Tuple=None , _lowercase :Optional[int]=1E-5 , _lowercase :Optional[Any]=0 , _lowercase :int=0 , _lowercase :int=6 , _lowercase :Optional[int]=False , _lowercase :Optional[Any]=True , **_lowercase :Union[str, Any] , ) -> List[str]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = context_length UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = rescale_every UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( tie_word_embeddings=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase)
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase_ = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def A ( __UpperCAmelCase = 1777 , __UpperCAmelCase = 1855 , __UpperCAmelCase = 8 ) -> int: '''simple docstring''' UpperCAmelCase_ = base for _ in range(1 , __UpperCAmelCase ): UpperCAmelCase_ = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(f"{solution() = }")
358
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
0
def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
359
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( _snake_case ): UpperCamelCase__ : List[Any] ="van" def __init__( self :Any , _lowercase :Union[str, Any]=224 , _lowercase :int=3 , _lowercase :List[Any]=[7, 3, 3, 3] , _lowercase :Optional[Any]=[4, 2, 2, 2] , _lowercase :Optional[int]=[64, 128, 320, 512] , _lowercase :Optional[Any]=[3, 3, 12, 3] , _lowercase :Dict=[8, 8, 4, 4] , _lowercase :Optional[int]="gelu" , _lowercase :str=0.02 , _lowercase :Optional[int]=1E-6 , _lowercase :Optional[Any]=1E-2 , _lowercase :Union[str, Any]=0.0 , _lowercase :Tuple=0.0 , **_lowercase :List[Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_sizes UpperCAmelCase_ = strides UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = mlp_ratios UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = layer_scale_init_value UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = dropout_rate
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(__UpperCAmelCase ): UpperCAmelCase_ = time.time() locka.acquire(__UpperCAmelCase ) assert time.time() - _start > timeout def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = '''a''' * 1000 + '''.lock''' UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCAmelCase ): locka.acquire(0 )
361
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a_ ( unittest.TestCase ): UpperCamelCase__ : Dict =JukeboxTokenizer UpperCamelCase__ : Dict ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __a ( self :Dict) -> Tuple: import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''') UpperCAmelCase_ = tokenizer(**self.metas)['''input_ids'''] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1069, 11]]), torch.tensor([[0, 0, 0, 1069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def __a ( self :List[Any]) -> str: import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''') UpperCAmelCase_ = tokenizer(**self.metas)['''input_ids'''] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
362
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a_ ( _snake_case ): UpperCamelCase__ : str ="megatron-bert" def __init__( self :List[Any] , _lowercase :List[str]=29056 , _lowercase :List[str]=1024 , _lowercase :List[str]=24 , _lowercase :Tuple=16 , _lowercase :Optional[int]=4096 , _lowercase :str="gelu" , _lowercase :Optional[Any]=0.1 , _lowercase :List[Any]=0.1 , _lowercase :Tuple=512 , _lowercase :str=2 , _lowercase :str=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :List[Any]=0 , _lowercase :Tuple="absolute" , _lowercase :Union[str, Any]=True , **_lowercase :str , ) -> Any: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache
363
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :Union[str, Any] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :List[str]) -> bool: raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :Optional[int] = None) -> List[Any]: UpperCAmelCase_ = max_length UpperCAmelCase_ = max_position_embeddings @add_start_docstrings(_lowercase) def __call__( self :Dict , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Any) -> bool: UpperCAmelCase_ = input_ids.shape[-1] UpperCAmelCase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''') return is_done class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int) -> str: warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , _lowercase , ) UpperCAmelCase_ = start_length UpperCAmelCase_ = max_new_tokens UpperCAmelCase_ = start_length + max_new_tokens @add_start_docstrings(_lowercase) def __call__( self :Any , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return input_ids.shape[-1] >= self.max_length class a_ ( _snake_case ): def __init__( self :Any , _lowercase :float , _lowercase :Optional[float] = None) -> Union[str, Any]: UpperCAmelCase_ = max_time UpperCAmelCase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowercase) def __call__( self :List[str] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return time.time() - self.initial_timestamp > self.max_time class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :int , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Optional[Any]) -> bool: return any(criteria(_lowercase , _lowercase) for criteria in self) @property def __a ( self :Any) -> Optional[int]: for stopping_criterium in self: if isinstance(_lowercase , _lowercase): return stopping_criterium.max_length elif isinstance(_lowercase , _lowercase): return stopping_criterium.max_length return None def A ( __UpperCAmelCase , __UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' UpperCAmelCase_ = stopping_criteria.max_length UpperCAmelCase_ = deepcopy(__UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__UpperCAmelCase ) ) return new_stopping_criteria
364
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["ViTFeatureExtractor"] UpperCamelCase_ = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a_ ( _snake_case ): def __init__( self :int , _lowercase :int , _lowercase :Dict=13 , _lowercase :List[Any]=7 , _lowercase :Optional[int]=True , _lowercase :Tuple=True , _lowercase :List[Any]=False , _lowercase :Any=True , _lowercase :Dict=99 , _lowercase :List[str]=32 , _lowercase :Tuple=5 , _lowercase :Optional[Any]=4 , _lowercase :List[str]=37 , _lowercase :Optional[int]="gelu" , _lowercase :List[str]=0.1 , _lowercase :Dict=0.1 , _lowercase :Optional[int]=512 , _lowercase :Tuple=16 , _lowercase :Any=2 , _lowercase :List[str]=0.02 , _lowercase :int=3 , _lowercase :Union[str, Any]=4 , _lowercase :Tuple=None , ) -> Dict: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def __a ( self :str) -> Union[str, Any]: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self :Any) -> Dict: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __a ( self :Any , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :int , _lowercase :List[Any] , _lowercase :Tuple , _lowercase :Tuple) -> Optional[Any]: UpperCAmelCase_ = DistilBertModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :List[str] , _lowercase :Dict , _lowercase :List[str] , _lowercase :Dict , _lowercase :Union[str, Any] , _lowercase :Any , _lowercase :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = DistilBertForMaskedLM(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :Any , _lowercase :List[Any] , _lowercase :Optional[int] , _lowercase :List[str] , _lowercase :Optional[Any]) -> Dict: UpperCAmelCase_ = DistilBertForQuestionAnswering(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __a ( self :Any , _lowercase :Optional[int] , _lowercase :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any] , _lowercase :List[Any] , _lowercase :Union[str, Any]) -> str: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DistilBertForSequenceClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :Dict , _lowercase :List[str] , _lowercase :List[Any] , _lowercase :Optional[Any] , _lowercase :int , _lowercase :List[str] , _lowercase :Union[str, Any]) -> Tuple: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = DistilBertForTokenClassification(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Optional[int] , _lowercase :Any , _lowercase :Dict , _lowercase :Dict , _lowercase :int , _lowercase :Dict , _lowercase :Optional[int]) -> Any: UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = DistilBertForMultipleChoice(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __a ( self :List[str]) -> Optional[Any]: UpperCAmelCase_ = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ : List[Any] =( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : Dict =True def __a ( self :Any) -> Tuple: UpperCAmelCase_ = DistilBertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , dim=37) def __a ( self :Optional[Any]) -> List[Any]: self.config_tester.run_common_tests() def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase) def __a ( self :Tuple) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase) def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase) def __a ( self :Any) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase) @slow def __a ( self :Tuple) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = DistilBertModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @slow @require_torch_gpu def __a ( self :List[Any]) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCAmelCase_ = True UpperCAmelCase_ = model_class(config=_lowercase) UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase) UpperCAmelCase_ = torch.jit.trace( _lowercase , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , '''traced_model.pt''')) UpperCAmelCase_ = torch.jit.load(os.path.join(_lowercase , '''traced_model.pt''') , map_location=_lowercase) loaded(inputs_dict['''input_ids'''].to(_lowercase) , inputs_dict['''attention_mask'''].to(_lowercase)) @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :List[Any]) -> str: UpperCAmelCase_ = DistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCAmelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase)[0] UpperCAmelCase_ = torch.Size((1, 11, 768)) self.assertEqual(output.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4))
366
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
367
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
def A ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list: '''simple docstring''' UpperCAmelCase_ = length or len(__UpperCAmelCase ) UpperCAmelCase_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase_ , UpperCAmelCase_ = list_data[i + 1], list_data[i] UpperCAmelCase_ = True return list_data if not swapped else bubble_sort(__UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
import string from math import logaa def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) UpperCAmelCase_ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' UpperCAmelCase_ = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase_ = corpus_without_punctuation.split('''\n''' ) UpperCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__UpperCAmelCase )) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return round(tf * idf , 3 )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
from math import sqrt def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__UpperCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"{solution() = }")
370
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( _snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : List[Any] =BioGptTokenizer UpperCamelCase__ : str =False def __a ( self :int) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(_lowercase , range(len(_lowercase)))) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(_lowercase)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(_lowercase)) def __a ( self :Optional[int] , _lowercase :Union[str, Any]) -> Optional[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
371
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
import math def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while num > 0: UpperCAmelCase_ = num % 8 UpperCAmelCase_ = octal + (remainder * math.floor(math.pow(10 , __UpperCAmelCase ) )) counter += 1 UpperCAmelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(__UpperCAmelCase )}" def A ( ) -> None: '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): def __init__( self :Union[str, Any] , *_lowercase :Any , **_lowercase :List[Any]) -> None: warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase)
351
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self :Any , _lowercase :Union[str, Any] , _lowercase :List[str]=13 , _lowercase :Tuple=30 , _lowercase :Optional[Any]=2 , _lowercase :List[Any]=3 , _lowercase :int=True , _lowercase :Optional[int]=True , _lowercase :Any=32 , _lowercase :Optional[Any]=5 , _lowercase :List[Any]=4 , _lowercase :Any=37 , _lowercase :List[str]="gelu" , _lowercase :List[str]=0.1 , _lowercase :Any=0.1 , _lowercase :List[str]=10 , _lowercase :Optional[Any]=0.02 , _lowercase :List[Any]=3 , _lowercase :List[Any]=None , _lowercase :Optional[Any]=2 , ) -> str: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 2 def __a ( self :str) -> Tuple: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self :Any) -> Union[str, Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self :List[str] , _lowercase :List[str] , _lowercase :List[str] , _lowercase :Tuple) -> Optional[int]: UpperCAmelCase_ = DeiTModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :Tuple , _lowercase :str , _lowercase :List[Any] , _lowercase :Optional[Any]) -> str: UpperCAmelCase_ = DeiTForMaskedImageModeling(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = DeiTForMaskedImageModeling(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def __a ( self :Any , _lowercase :List[Any] , _lowercase :int , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = DeiTForImageClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = DeiTForImageClassification(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ = model(_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __a ( self :Any) -> int: UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase__ : List[Any] =( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Union[str, Any] =False UpperCamelCase__ : List[str] =False def __a ( self :Union[str, Any]) -> Tuple: UpperCAmelCase_ = DeiTModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37) def __a ( self :Union[str, Any]) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''') def __a ( self :List[str]) -> Dict: pass def __a ( self :int) -> Any: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase) def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase) def __a ( self :Dict , _lowercase :List[Any] , _lowercase :int , _lowercase :Union[str, Any]=False) -> List[str]: UpperCAmelCase_ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __a ( self :int) -> List[str]: if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowercase) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.train() UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = model(**_lowercase).loss loss.backward() def __a ( self :Dict) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_lowercase) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_lowercase) model.gradient_checkpointing_enable() model.to(_lowercase) model.train() UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = model(**_lowercase).loss loss.backward() def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowercase), *get_values(_lowercase), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): UpperCAmelCase_ = problem_type['''title'''] UpperCAmelCase_ = problem_type['''num_labels'''] UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.train() UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) UpperCAmelCase_ = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowercase) as warning_list: UpperCAmelCase_ = model(**_lowercase).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def __a ( self :Dict) -> Any: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = DeiTModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def __a ( self :Tuple) -> List[Any]: return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''') if is_vision_available() else None ) @slow def __a ( self :Optional[int]) -> int: UpperCAmelCase_ = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''').to( _lowercase) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''pt''').to(_lowercase) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_lowercase) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''pt''') UpperCAmelCase_ = inputs.pixel_values.to(_lowercase) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ = model(_lowercase)
352
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A ( __UpperCAmelCase ) -> List[str]: # picklable for multiprocessing '''simple docstring''' return x.sum() def A ( __UpperCAmelCase ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class a_ : UpperCamelCase__ : int UpperCamelCase__ : str class a_ ( _snake_case ): def __a ( self :Dict) -> Dict: UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 1 UpperCAmelCase_ = [1, 2] UpperCAmelCase_ = {'''a''': 1, '''b''': 2} UpperCAmelCase_ = {'''a''': [1, 2], '''b''': [3, 4]} UpperCAmelCase_ = {'''a''': {'''1''': 1}, '''b''': 2} UpperCAmelCase_ = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = [2, 3] UpperCAmelCase_ = {'''a''': 2, '''b''': 3} UpperCAmelCase_ = {'''a''': [2, 3], '''b''': [4, 5]} UpperCAmelCase_ = {'''a''': {'''1''': 2}, '''b''': 3} UpperCAmelCase_ = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase) , _lowercase) UpperCAmelCase_ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase) , _lowercase) UpperCAmelCase_ = {'''a''': np.eye(2), '''b''': np.zeros(3), '''c''': np.ones(2)} UpperCAmelCase_ = {'''a''': 2, '''b''': 0, '''c''': 2} UpperCAmelCase_ = { '''a''': np.eye(2).astype(_lowercase), '''b''': np.zeros(3).astype(_lowercase), '''c''': np.ones(2).astype(_lowercase), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase) , _lowercase) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase) , _lowercase) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase): # can't pickle a local lambda map_nested(lambda _lowercase: x + 1 , _lowercase , num_proc=_lowercase) def __a ( self :Tuple) -> Any: UpperCAmelCase_ = {'''a''': 1, '''b''': 2} UpperCAmelCase_ = {'''a''': 3, '''b''': 4} UpperCAmelCase_ = {'''a''': 5, '''b''': 6} UpperCAmelCase_ = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))]) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase)) , _lowercase) def __a ( self :Tuple) -> int: class a_ : UpperCamelCase__ : Tuple ="bar" UpperCAmelCase_ = Foo() self.assertEqual(foo.my_attr , '''bar''') with temporary_assignment(_lowercase , '''my_attr''' , '''BAR'''): self.assertEqual(foo.my_attr , '''BAR''') self.assertEqual(foo.my_attr , '''bar''') @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: UpperCAmelCase_ = {f"{i}": i for i in range(__UpperCAmelCase )} UpperCAmelCase_ = map_nested(lambda __UpperCAmelCase : x + 10 , __UpperCAmelCase , num_proc=__UpperCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( _snake_case ): @require_tf def __a ( self :List[Any]) -> List[Any]: import tensorflow as tf from tensorflow.keras import layers UpperCAmelCase_ = layers.Dense(2) def gen_random_output(): UpperCAmelCase_ = tf.random.uniform((1, 3)) return model(_lowercase).numpy() with temp_seed(42 , set_tensorflow=_lowercase): UpperCAmelCase_ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase) self.assertGreater(np.abs(outa - outa).sum() , 0) @require_torch def __a ( self :str) -> Optional[Any]: import torch def gen_random_output(): UpperCAmelCase_ = torch.nn.Linear(3 , 2) UpperCAmelCase_ = torch.rand(1 , 3) return model(_lowercase).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase): UpperCAmelCase_ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase) self.assertGreater(np.abs(outa - outa).sum() , 0) def __a ( self :Any) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3) with temp_seed(42): UpperCAmelCase_ = gen_random_output() with temp_seed(42): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase) self.assertGreater(np.abs(outa - outa).sum() , 0) @pytest.mark.parametrize('''input_data''' , [{}] ) def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = NestedDataStructure(__UpperCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = NestedDataStructure(__UpperCAmelCase ).flatten() assert output == expected_output def A ( ) -> str: '''simple docstring''' UpperCAmelCase_ = A(x=1 , y='''foobar''' ) UpperCAmelCase_ = {'''x''': 1, '''y''': '''foobar'''} assert asdict(__UpperCAmelCase ) == expected_output UpperCAmelCase_ = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} UpperCAmelCase_ = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(__UpperCAmelCase ) == expected_output with pytest.raises(__UpperCAmelCase ): asdict([1, A(x=10 , y='''foo''' )] ) def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' return text.split() def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A ( ) -> List[str]: '''simple docstring''' with Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(__UpperCAmelCase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__UpperCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(__UpperCAmelCase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(__UpperCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCAmelCase_ = [] for yield_time, content in iflatmap_unordered( __UpperCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCAmelCase ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(__UpperCAmelCase ) == 4
353
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "▁" UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase_ = { "google/reformer-crime-and-punishment": 524_288, } class a_ ( _snake_case ): UpperCamelCase__ : Tuple =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any =["input_ids", "attention_mask"] def __init__( self :List[str] , _lowercase :List[str] , _lowercase :List[Any]="</s>" , _lowercase :List[str]="<unk>" , _lowercase :Dict=[] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Optional[int] , ) -> None: UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowercase , unk_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :Any) -> List[Any]: return self.sp_model.get_piece_size() def __a ( self :Any) -> Dict[str, int]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :List[str]) -> int: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :str) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase) def __a ( self :Tuple , _lowercase :Tuple) -> Tuple: return self.sp_model.piece_to_id(_lowercase) def __a ( self :Optional[Any] , _lowercase :Tuple) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase_ = self.sp_model.IdToPiece(_lowercase) return token def __a ( self :Any , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_lowercase) out_string += self.sp_model.decode(_lowercase) return out_string.strip() def __a ( self :Optional[Any] , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_snake_case ) class a_ ( _snake_case ): UpperCamelCase__ : str =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase__ : ClassVar[Features] =Features({"image": Image()} ) UpperCamelCase__ : ClassVar[Features] =Features({"labels": ClassLabel} ) UpperCamelCase__ : str ="image" UpperCamelCase__ : str ="labels" def __a ( self :Union[str, Any] , _lowercase :Any) -> Optional[int]: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column] , _lowercase): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def __a ( self :Union[str, Any]) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
355
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
0
from collections import deque from .hash_table import HashTable class a_ ( _snake_case ): def __init__( self :Union[str, Any] , *_lowercase :Optional[int] , **_lowercase :List[str]) -> int: super().__init__(*_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Optional[Any]) -> List[str]: UpperCAmelCase_ = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowercase) UpperCAmelCase_ = self.values[key] def __a ( self :Optional[Any]) -> List[Any]: return ( sum(self.charge_factor - len(_lowercase) for slot in self.values) / self.size_table * self.charge_factor ) def __a ( self :Any , _lowercase :Union[str, Any] , _lowercase :int=None) -> Tuple: if not ( len(self.values[key]) == self.charge_factor and self.values.count(_lowercase) == 0 ): return key return super()._collision_resolution(_lowercase , _lowercase)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="mctct" def __init__( self :Optional[Any] , _lowercase :int=8065 , _lowercase :str=1536 , _lowercase :Any=36 , _lowercase :Union[str, Any]=6144 , _lowercase :Optional[Any]=4 , _lowercase :str=384 , _lowercase :List[str]=920 , _lowercase :Optional[Any]=1E-5 , _lowercase :Tuple=0.3 , _lowercase :str="relu" , _lowercase :Any=0.02 , _lowercase :Optional[int]=0.3 , _lowercase :Dict=0.3 , _lowercase :List[str]=1 , _lowercase :str=0 , _lowercase :List[str]=2 , _lowercase :str=1 , _lowercase :Dict=0.3 , _lowercase :Optional[Any]=1 , _lowercase :Optional[Any]=(7,) , _lowercase :List[str]=(3,) , _lowercase :Tuple=80 , _lowercase :Any=1 , _lowercase :Dict=None , _lowercase :Optional[int]="sum" , _lowercase :List[str]=False , **_lowercase :Optional[int] , ) -> Optional[Any]: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = layerdrop UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = conv_glu_dim UpperCAmelCase_ = conv_dropout UpperCAmelCase_ = num_conv_layers UpperCAmelCase_ = input_feat_per_channel UpperCAmelCase_ = input_channels UpperCAmelCase_ = conv_channels UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase_ = list(_lowercase) UpperCAmelCase_ = list(_lowercase) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`.")
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class a_ ( datasets.BuilderConfig ): UpperCamelCase__ : Optional[datasets.Features] =None class a_ ( datasets.ArrowBasedBuilder ): UpperCamelCase__ : Optional[int] =PandasConfig def __a ( self :int) -> int: return datasets.DatasetInfo(features=self.config.features) def __a ( self :List[str] , _lowercase :Dict) -> Tuple: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(_lowercase , (str, list, tuple)): UpperCAmelCase_ = data_files if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(_lowercase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(_lowercase) for file in files] splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={'''files''': files})) return splits def __a ( self :Optional[Any] , _lowercase :pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(_lowercase , self.config.features.arrow_schema) return pa_table def __a ( self :List[Any] , _lowercase :Union[str, Any]) -> Any: for i, file in enumerate(itertools.chain.from_iterable(_lowercase)): with open(_lowercase , '''rb''') as f: UpperCAmelCase_ = pa.Table.from_pandas(pd.read_pickle(_lowercase)) yield i, self._cast_table(_lowercase)
358
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Tuple =["pixel_values"] def __init__( self :List[str] , _lowercase :bool = True , _lowercase :Optional[Dict[str, int]] = None , _lowercase :PILImageResampling = PILImageResampling.BILINEAR , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , **_lowercase :Tuple , ) -> None: super().__init__(**_lowercase) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self :Any , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :PILImageResampling = PILImageResampling.BICUBIC , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") UpperCAmelCase_ = get_resize_output_image_size(_lowercase , size=size['''shortest_edge'''] , default_to_square=_lowercase) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :np.ndarray , _lowercase :Dict[str, int] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Union[str, Any] , ) -> np.ndarray: UpperCAmelCase_ = get_size_dict(_lowercase) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase) def __a ( self :List[str] , _lowercase :np.ndarray , _lowercase :float , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :Optional[Any]) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Union[str, Any] , _lowercase :np.ndarray , _lowercase :Union[float, List[float]] , _lowercase :Union[float, List[float]] , _lowercase :Optional[Union[str, ChannelDimension]] = None , **_lowercase :int , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase) def __a ( self :Optional[int] , _lowercase :ImageInput , _lowercase :Optional[bool] = None , _lowercase :Dict[str, int] = None , _lowercase :PILImageResampling = None , _lowercase :bool = None , _lowercase :Dict[str, int] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[float] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[float, List[float]]] = None , _lowercase :Optional[Union[str, TensorType]] = None , _lowercase :Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase :Dict , ) -> int: UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_lowercase , param_name='''crop_size''') UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(_lowercase) if not valid_images(_lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_lowercase) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=_lowercase , size=_lowercase) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_lowercase , scale=_lowercase) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_lowercase , _lowercase) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase) def __a ( self :Tuple , _lowercase :Optional[Any] , _lowercase :List[Tuple] = None) -> List[Any]: UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase) != len(_lowercase): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_lowercase): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_lowercase)): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase) UpperCAmelCase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_lowercase) else: UpperCAmelCase_ = logits.argmax(dim=1) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
359
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :Any) -> Any: UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_lowercase)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3)) @slow def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_lowercase)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3))
361
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
0
import datasets from .evaluate import evaluate UpperCamelCase_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCamelCase_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCamelCase_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def __a ( self :Optional[int]) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string'''), '''prediction_text''': datasets.Value('''string''')}, '''references''': { '''id''': datasets.Value('''string'''), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string'''), '''answer_start''': datasets.Value('''int32'''), }), }, }) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __a ( self :str , _lowercase :Dict , _lowercase :Optional[int]) -> Dict: UpperCAmelCase_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCAmelCase_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCAmelCase_ = evaluate(dataset=_lowercase , predictions=_lowercase) return score
362
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} UpperCAmelCase_ = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase_ = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() UpperCAmelCase_ = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCAmelCase_ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): UpperCAmelCase_ = requests.get(url + f"&page={i + 2}" , headers=__UpperCAmelCase ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} UpperCAmelCase_ = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" UpperCAmelCase_ = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() UpperCAmelCase_ = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) UpperCAmelCase_ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): UpperCAmelCase_ = requests.get(url + f"&page={i + 2}" , headers=__UpperCAmelCase ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} UpperCAmelCase_ = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase , allow_redirects=__UpperCAmelCase ) UpperCAmelCase_ = result.headers['''Location'''] UpperCAmelCase_ = requests.get(__UpperCAmelCase , allow_redirects=__UpperCAmelCase ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , f"{artifact_name}.zip" ) with open(__UpperCAmelCase , '''wb''' ) as fp: fp.write(response.content ) def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = None with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__UpperCAmelCase ) as f: for line in f: UpperCAmelCase_ = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase_ = line[: line.index(''': ''' )] UpperCAmelCase_ = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed UpperCAmelCase_ = line[len('''FAILED ''' ) :] failed_tests.append(__UpperCAmelCase ) elif filename == "job_name.txt": UpperCAmelCase_ = line if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__UpperCAmelCase )} for `errors` " f"and {len(__UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" ''' problem.''' ) UpperCAmelCase_ = None if job_name and job_links: UpperCAmelCase_ = job_links.get(__UpperCAmelCase , __UpperCAmelCase ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase_ = [x + [y] + [job_link] for x, y in zip(__UpperCAmelCase , __UpperCAmelCase )] return result def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [os.path.join(__UpperCAmelCase , __UpperCAmelCase ) for p in os.listdir(__UpperCAmelCase ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(__UpperCAmelCase , job_links=__UpperCAmelCase ) ) return errors def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> str: '''simple docstring''' UpperCAmelCase_ = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase_ = counter.most_common() UpperCAmelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase_ = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase_ = dict(sorted(r.items() , key=lambda __UpperCAmelCase : item[1]["count"] , reverse=__UpperCAmelCase ) ) return r def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): UpperCAmelCase_ = test.split('''/''' )[2] else: UpperCAmelCase_ = None return test def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> int: '''simple docstring''' UpperCAmelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase_ = [x for x in logs if x[2] is not None] UpperCAmelCase_ = {x[2] for x in logs} UpperCAmelCase_ = {} for test in tests: UpperCAmelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase_ = counter.most_common() UpperCAmelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase_ = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase_ = {'''count''': n_errors, '''errors''': error_counts} UpperCAmelCase_ = dict(sorted(r.items() , key=lambda __UpperCAmelCase : item[1]["count"] , reverse=__UpperCAmelCase ) ) return r def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = '''| no. | error | status |''' UpperCAmelCase_ = '''|-:|:-|:-|''' UpperCAmelCase_ = [header, sep] for error in reduced_by_error: UpperCAmelCase_ = reduced_by_error[error]['''count'''] UpperCAmelCase_ = f"| {count} | {error[:100]} | |" lines.append(__UpperCAmelCase ) return "\n".join(__UpperCAmelCase ) def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' UpperCAmelCase_ = '''| model | no. of errors | major error | count |''' UpperCAmelCase_ = '''|-:|-:|-:|-:|''' UpperCAmelCase_ = [header, sep] for model in reduced_by_model: UpperCAmelCase_ = reduced_by_model[model]['''count'''] UpperCAmelCase_ , UpperCAmelCase_ = list(reduced_by_model[model]['''errors'''].items() )[0] UpperCAmelCase_ = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__UpperCAmelCase ) return "\n".join(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCamelCase_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase_ = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase_ = k.find(" / ") UpperCamelCase_ = k[index + len(" / ") :] UpperCamelCase_ = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase_ = reduce_by_error(errors) UpperCamelCase_ = reduce_by_model(errors) UpperCamelCase_ = make_github_table(reduced_by_error) UpperCamelCase_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
363
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
0
from maths.prime_check import is_prime def A ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = f"Input value of [number={number}] must be an integer" raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
364
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
0
import gc import threading import time import psutil import torch class a_ : def __init__( self :Tuple) -> Union[str, Any]: UpperCAmelCase_ = psutil.Process() UpperCAmelCase_ = False def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = -1 while True: UpperCAmelCase_ = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __a ( self :str) -> Dict: UpperCAmelCase_ = True UpperCAmelCase_ = threading.Thread(target=self.peak_monitor) UpperCAmelCase_ = True self.thread.start() def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = False self.thread.join() return self.cpu_memory_peak UpperCamelCase_ = PeakCPUMemory() def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = torch.cuda.memory_allocated(__UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 UpperCAmelCase_ = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = (torch.cuda.memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 UpperCAmelCase_ = (torch.cuda.max_memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 return measures def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__UpperCAmelCase )]:.2f}MiB" ) UpperCAmelCase_ = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
365
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class a_ ( unittest.TestCase ): def __a ( self :Union[str, Any]) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=_lowercase , ) assert hasattr(self , '''env''') def __a ( self :Tuple , _lowercase :Tuple=1) -> Dict: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def __a ( self :Union[str, Any] , _lowercase :Any) -> List[Any]: TrainingJobAnalytics(_lowercase).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") def __a ( self :int) -> str: # create estimator UpperCAmelCase_ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowercase)
366
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
367
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self :List[str] , _lowercase :List[str] , _lowercase :Optional[int]=7 , _lowercase :Optional[Any]=3 , _lowercase :str=18 , _lowercase :Optional[Any]=30 , _lowercase :Union[str, Any]=400 , _lowercase :Any=True , _lowercase :List[str]=None , _lowercase :Optional[Any]=True , ) -> Union[str, Any]: UpperCAmelCase_ = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = apply_ocr def __a ( self :Union[str, Any]) -> Union[str, Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =LayoutLMvaImageProcessor if is_pytesseract_available() else None def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = LayoutLMvaImageProcessingTester(self) @property def __a ( self :str) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''apply_ocr''')) def __a ( self :str) -> Dict: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) def __a ( self :Any) -> List[str]: pass def __a ( self :List[str]) -> List[str]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowercase) self.assertIsInstance(encoding.boxes , _lowercase) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :Dict) -> Tuple: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __a ( self :List[Any]) -> List[Any]: # with apply_OCR = True UpperCAmelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''') UpperCAmelCase_ = Image.open(ds[0]['''file''']).convert('''RGB''') UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCAmelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase) self.assertListEqual(encoding.boxes , _lowercase) # with apply_OCR = False UpperCAmelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase) UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
368
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
370
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
0
def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) UpperCAmelCase_ = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": UpperCamelCase_ = input("Enter a string ").strip() UpperCamelCase_ = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
371
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] ) -> Dict: """simple docstring""" a : str = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a : Dict = 128 elif "12-12" in model_name: a : List[Any] = 12 a : Tuple = 12 elif "14-14" in model_name: a : Any = 14 a : str = 14 elif "16-16" in model_name: a : int = 16 a : Any = 16 else: raise ValueError('Model not supported' ) a : Optional[int] = 'huggingface/label-files' if "speech-commands" in model_name: a : int = 35 a : List[str] = 'speech-commands-v2-id2label.json' else: a : Optional[int] = 527 a : int = 'audioset-id2label.json' a : Tuple = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Tuple = {int(snake_case ): v for k, v in idalabel.items()} a : Union[str, Any] = idalabel a : Optional[int] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> Dict: """simple docstring""" if "module.v" in name: a : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: a : Tuple = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: a : Tuple = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: a : Dict = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: a : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: a : List[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: a : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a : Optional[int] = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: a : List[str] = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: a : int = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : List[Any] ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): a : str = orig_state_dict.pop(snake_case ) if "qkv" in key: a : Union[str, Any] = key.split('.' ) a : Dict = int(key_split[3] ) a : Optional[int] = config.hidden_size if "weight" in key: a : int = val[:dim, :] a : Tuple = val[dim : dim * 2, :] a : Optional[int] = val[-dim:, :] else: a : Dict = val[:dim] a : List[Any] = val[dim : dim * 2] a : str = val[-dim:] else: a : Any = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> str: """simple docstring""" a : List[str] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Optional[int] , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : Optional[int] = get_audio_spectrogram_transformer_config(snake_case ) a : int = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict a : Union[str, Any] = model_name_to_url[model_name] a : Dict = torch.hub.load_state_dict_from_url(snake_case , map_location='cpu' ) # remove some keys remove_keys(snake_case ) # rename some keys a : Optional[int] = convert_state_dict(snake_case , snake_case ) # load 🤗 model a : Dict = ASTForAudioClassification(snake_case ) model.eval() model.load_state_dict(snake_case ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a : Optional[int] = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 a : Dict = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 a : str = 1_024 if 'speech-commands' not in model_name else 128 a : Dict = ASTFeatureExtractor(mean=snake_case , std=snake_case , max_length=snake_case ) if "speech-commands" in model_name: a : List[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' ) a : str = dataset[0]['audio']['array'] else: a : List[str] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) a , a : Union[str, Any] = torchaudio.load(snake_case ) a : Union[str, Any] = waveform.squeeze().numpy() a : Union[str, Any] = feature_extractor(snake_case , sampling_rate=16_000 , return_tensors='pt' ) # forward pass a : List[Any] = model(**snake_case ) a : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a : Any = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a : Any = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a : Optional[Any] = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a : Optional[Any] = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a : Union[str, Any] = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a : int = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a : int = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": a : Tuple = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , snake_case , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(snake_case ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F"""MIT/{model_name}""" ) feature_extractor.push_to_hub(F"""MIT/{model_name}""" ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase : int = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
345
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) def SCREAMING_SNAKE_CASE__ ( *snake_case : str , **snake_case : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : List[Any] ) -> str: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : Dict ) -> Any: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : int ) -> List[Any]: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[Any] , **snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[Any] , **snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(snake_case , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Any , **snake_case : List[str] ) -> str: """simple docstring""" requires_backends(snake_case , ['torch'] ) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Any): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : int = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[int] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Any = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Dict = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Tuple = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Union[str, Any] = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[Any] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : str = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : List[str] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any]): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch']) class UpperCamelCase ( metaclass=a_ ): """simple docstring""" A : Optional[Any] = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple): """simple docstring""" requires_backends(cls , ['torch'])
345
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int | float] , snake_case : int , snake_case : int ) -> int | float: """simple docstring""" if len(snake_case ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case ) or left < -len(snake_case ) or right >= len(snake_case ) or right < -len(snake_case ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a : Union[str, Any] = (left + right) >> 1 # the middle a : List[str] = find_max(snake_case , snake_case , snake_case ) # find max in range[left, mid] a : Dict = find_max(snake_case , mid + 1 , snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
345
1
'''simple docstring''' import random def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> bool: """simple docstring""" a : Optional[int] = num - 1 a : List[str] = 0 while s % 2 == 0: a : Optional[Any] = s // 2 t += 1 for _ in range(5 ): a : Any = random.randrange(2 , num - 1 ) a : Any = pow(snake_case , snake_case , snake_case ) if v != 1: a : List[Any] = 0 while v != (num - 1): if i == t - 1: return False else: a : List[Any] = i + 1 a : List[Any] = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> bool: """simple docstring""" if num < 2: return False a : List[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1_024 ) -> int: """simple docstring""" while True: a : Optional[int] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case ): return num if __name__ == "__main__": UpperCamelCase : Any = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
345
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase : int = """true""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int=82 , snake_case : Tuple=16 ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) a : List[str] = RegressionModel() a : Union[str, Any] = deepcopy(snake_case ) a : Dict = RegressionDataset(length=snake_case ) a : Dict = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) a , a : Optional[int] = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" a : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) a : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case : int ): a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): a : Dict = dataset.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case : Optional[Any] ): if use_longest: return tokenizer.pad(snake_case , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a : int = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) a : List[str] = get_dataloader(snake_case , not dispatch_batches ) a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case ) a , a : Optional[Any] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" a : Dict = [] for batch in dataloader: a , a : Any = batch.values() with torch.no_grad(): a : Tuple = model(snake_case ) a , a : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a , a : List[str] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) a , a : Any = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : Dict=82 , snake_case : str=False , snake_case : List[str]=False , snake_case : List[Any]=16 ) -> Optional[int]: """simple docstring""" a , a , a : int = get_basic_setup(snake_case , snake_case , snake_case ) a , a : int = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}""" def SCREAMING_SNAKE_CASE__ ( snake_case : bool = False , snake_case : bool = False ) -> List[str]: """simple docstring""" a : int = evaluate.load('glue' , 'mrpc' ) a , a : Tuple = get_mrpc_setup(snake_case , snake_case ) # First do baseline a , a , a : Tuple = setup['no'] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): a : List[Any] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch['labels'] ) a : Tuple = metric.compute() # Then do distributed a , a , a : Tuple = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): a : List[str] = model(**snake_case ) a : Optional[Any] = outputs.logits.argmax(dim=-1 ) a : Optional[int] = batch['labels'] a , a : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) a : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" a : Dict = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a : List[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) a : Optional[Any] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
345
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : str = PegasusTokenizer A : Dict = PegasusTokenizerFast A : str = True A : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a : Any = PegasusTokenizer(UpperCAmelCase_) tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large') def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Tuple): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : int): """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = '</s>' a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '</s>') self.assertEqual(vocab_keys[-1] , 'v') self.assertEqual(len(UpperCAmelCase_) , 1_1_0_3) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a : int = self.tokenizer_class.from_pretrained(self.tmpdirname) a : Tuple = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) a : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] a : Dict = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[int] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a : str = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' a : Tuple = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a : str = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 a : List[str] = 'To ensure a smooth flow of bank resolutions.' a : Any = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Any = ['This is going to be way too long.' * 1_5_0, 'short example'] a : str = ['not super long but more than 5 tokens', 'tiny'] a : int = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') a : Tuple = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = PegasusTokenizer A : Any = PegasusTokenizerFast A : List[str] = True A : str = True def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a : Union[str, Any] = PegasusTokenizer(UpperCAmelCase_ , offset=0 , mask_token_sent=UpperCAmelCase_ , mask_token='[MASK]') tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[Any]): """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname) a : Any = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) a : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] a : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : str = ['This is going to be way too long.' * 1_0_0_0, 'short example'] a : int = ['not super long but more than 5 tokens', 'tiny'] a : List[Any] = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') a : Tuple = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) a : Dict = self._large_tokenizer(UpperCAmelCase_).input_ids self.assertListEqual( UpperCAmelCase_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
345
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Union[str, Any]=False ) -> List[str]: """simple docstring""" a : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[str]=False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a : Union[str, Any] = '' else: a : int = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : Optional[int] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a : str = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a : str = in_proj_weight[ : config.hidden_size, : ] a : int = in_proj_bias[: config.hidden_size] a : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : Any = in_proj_weight[ -config.hidden_size :, : ] a : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : List[Any] , snake_case : int ) -> Optional[Any]: """simple docstring""" a : Tuple = dct.pop(snake_case ) a : List[Any] = val def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Optional[Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : int ) -> int: """simple docstring""" a : List[Any] = DeiTConfig() # all deit models have fine-tuned heads a : Any = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a : Union[str, Any] = 1_000 a : List[Any] = 'huggingface/label-files' a : int = 'imagenet-1k-id2label.json' a : List[Any] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : int = {int(snake_case ): v for k, v in idalabel.items()} a : Optional[int] = idalabel a : Union[str, Any] = {v: k for k, v in idalabel.items()} a : str = int(deit_name[-6:-4] ) a : List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): a : int = 192 a : Dict = 768 a : Optional[Any] = 12 a : List[Any] = 3 elif deit_name[9:].startswith('small' ): a : str = 384 a : Optional[Any] = 1_536 a : List[str] = 12 a : Optional[Any] = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): a : Dict = 1_024 a : Optional[Any] = 4_096 a : Any = 24 a : str = 16 # load original model from timm a : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys a : List[Any] = timm_model.state_dict() a : Tuple = create_rename_keys(snake_case , snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model a : Union[str, Any] = DeiTForImageClassificationWithTeacher(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by DeiTImageProcessor a : Optional[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a : List[str] = DeiTImageProcessor(size=snake_case , crop_size=config.image_size ) a : Dict = image_processor(images=prepare_img() , return_tensors='pt' ) a : Dict = encoding['pixel_values'] a : Optional[int] = model(snake_case ) a : List[str] = timm_model(snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCamelCase : List[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
345
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( a_ ): """simple docstring""" A : List[str] = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A : List[Any] = "CIDAS/clipseg-rd64-refined" A : Optional[Any] = "image_segmenter" A : List[Any] = CLIPSegForImageSegmentation A : Tuple = ["image", "text"] A : Optional[int] = ["image"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): """simple docstring""" requires_backends(self , ['vision']) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors='pt') def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : str): """simple docstring""" with torch.no_grad(): a : Union[str, Any] = self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : int): """simple docstring""" a : int = outputs.cpu().detach().numpy() a : str = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
345
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list ) -> float: """simple docstring""" if not nums: raise ValueError('List is empty' ) return sum(snake_case ) / len(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : str , snake_case : List[Any] ) -> Optional[int]: """simple docstring""" # Load configuration defined in the metadata file with open(snake_case ) as metadata_file: a : Union[str, Any] = json.load(snake_case ) a : List[Any] = LukeConfig(use_entity_aware_attention=snake_case , **metadata['model_config'] ) # Load in the weights from the checkpoint_path a : List[Any] = torch.load(snake_case , map_location='cpu' )['module'] # Load the entity vocab file a : Tuple = load_original_entity_vocab(snake_case ) # add an entry for [MASK2] a : List[Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a : List[str] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks a : List[str] = AddedToken('<ent>' , lstrip=snake_case , rstrip=snake_case ) a : Union[str, Any] = AddedToken('<ent2>' , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , 'tokenizer_config.json' ) , 'r' ) as f: a : Tuple = json.load(snake_case ) a : Optional[Any] = 'MLukeTokenizer' with open(os.path.join(snake_case , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(snake_case , snake_case ) a : Dict = MLukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens a : List[Any] = tokenizer.convert_tokens_to_ids(['@'] )[0] a : Dict = tokenizer.convert_tokens_to_ids(['#'] )[0] a : Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] a : int = word_emb[ent_init_index].unsqueeze(0 ) a : str = word_emb[enta_init_index].unsqueeze(0 ) a : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a : Any = state_dict[bias_name] a : str = decoder_bias[ent_init_index].unsqueeze(0 ) a : Dict = decoder_bias[enta_init_index].unsqueeze(0 ) a : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a : Any = F"""encoder.layer.{layer_index}.attention.self.""" a : Dict = state_dict[prefix + matrix_name] a : Union[str, Any] = state_dict[prefix + matrix_name] a : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a : Optional[Any] = state_dict['entity_embeddings.entity_embeddings.weight'] a : List[Any] = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) a : List[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a : List[str] = state_dict['entity_predictions.bias'] a : Optional[int] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) a : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) a : Any = LukeForMaskedLM(config=snake_case ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) a : Dict = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): a : Union[str, Any] = state_dict[key] else: a : Optional[int] = state_dict[key] a , a : Union[str, Any] = model.load_state_dict(snake_case , strict=snake_case ) if set(snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a : Any = MLukeTokenizer.from_pretrained(snake_case , task='entity_classification' ) a : Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' a : List[Any] = (0, 9) a : Optional[int] = tokenizer(snake_case , entity_spans=[span] , return_tensors='pt' ) a : Dict = model(**snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a : List[str] = torch.Size((1, 33, 768) ) a : List[Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a : Tuple = torch.Size((1, 1, 768) ) a : Dict = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction a : Tuple = MLukeTokenizer.from_pretrained(snake_case ) a : Optional[Any] = 'Tokyo is the capital of <mask>.' a : Optional[Any] = (24, 30) a : Optional[Any] = tokenizer(snake_case , entity_spans=[span] , return_tensors='pt' ) a : Dict = model(**snake_case ) a : Union[str, Any] = encoding['input_ids'][0].tolist() a : List[str] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) a : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case ) a : Dict = outputs.entity_logits[0][0].argmax().item() a : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(snake_case ) ) model.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ) -> Optional[int]: """simple docstring""" a : Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] a : List[str] = [json.loads(snake_case ) for line in open(snake_case )] a : int = {} for entry in data: a : str = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a : Tuple = entity_id break a : List[Any] = F"""{language}:{entity_name}""" a : List[Any] = entity_id return new_mapping if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) UpperCamelCase : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
345
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
1