repo_name
stringclasses
10 values
file_path
stringlengths
29
222
content
stringlengths
24
926k
extention
stringclasses
5 values
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/histogram-slm-256.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <cstdint> #include <iostream> #include <random> #include <vector> int main() { constexpr int N = 4096 * 4096; std::vector<unsigned long> input(N); srand(2009); for (int i = 0; i < N; ++i) { input[i] = (long)rand() % 256; input[i] |= ((long)rand() % 256) << 8; input[i] |= ((long)rand() % 256) << 16; input[i] |= ((long)rand() % 256) << 24; input[i] |= ((long)rand() % 256) << 32; input[i] |= ((long)rand() % 256) << 40; input[i] |= ((long)rand() % 256) << 48; input[i] |= ((long)rand() % 256) << 56; } sycl::queue q{sycl::gpu_selector_v, sycl::property::queue::enable_profiling{}}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Snippet begin constexpr int NUM_BINS = 256; constexpr int BLOCK_SIZE = 256; std::vector<unsigned long> hist(NUM_BINS, 0); sycl::buffer<unsigned long, 1> mbuf(input.data(), N); sycl::buffer<unsigned long, 1> hbuf(hist.data(), NUM_BINS); auto e = q.submit([&](auto &h) { sycl::accessor macc(mbuf, h, sycl::read_only); sycl::accessor hacc(hbuf, h, sycl::read_write); sycl::local_accessor<unsigned int> local_histogram(sycl::range(NUM_BINS), h); h.parallel_for( sycl::nd_range(sycl::range{N / BLOCK_SIZE}, sycl::range{64}), [=](sycl::nd_item<1> it) { int group = it.get_group()[0]; int gSize = it.get_local_range()[0]; auto sg = it.get_sub_group(); int sgSize = sg.get_local_range()[0]; int sgGroup = sg.get_group_id()[0]; int factor = NUM_BINS / gSize; int local_id = it.get_local_id()[0]; if ((factor <= 1) && (local_id < NUM_BINS)) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[local_id]); local_bin.store(0); } else { for (int k = 0; k < factor; k++) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[gSize * k + local_id]); local_bin.store(0); } } it.barrier(sycl::access::fence_space::local_space); for (int k = 0; k < BLOCK_SIZE; k++) { unsigned long x = sg.load(macc.get_pointer() + group * gSize * BLOCK_SIZE + sgGroup * sgSize * BLOCK_SIZE + sgSize * k); #pragma unroll for (std::uint8_t shift : {0, 8, 16, 24, 32, 40, 48, 56}) { constexpr unsigned long mask = 0xFFU; sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[(x >> shift) & mask]); local_bin += 1; } } it.barrier(sycl::access::fence_space::local_space); if ((factor <= 1) && (local_id < NUM_BINS)) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[local_id]); sycl::atomic_ref<unsigned long, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space> global_bin(hacc[local_id]); global_bin += local_bin.load(); } else { for (int k = 0; k < factor; k++) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[gSize * k + local_id]); sycl::atomic_ref<unsigned long, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space> global_bin(hacc[gSize * k + local_id]); global_bin += local_bin.load(); } } }); }); // Snippet end q.wait(); size_t kernel_ns = (e.template get_profiling_info< sycl::info::event_profiling::command_end>() - e.template get_profiling_info< sycl::info::event_profiling::command_start>()); std::cout << "Kernel Execution Time Average: total = " << kernel_ns * 1e-6 << " msec" << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/slm-bank-s1.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <iostream> int main() { sycl::queue q{sycl::gpu_selector_v, sycl::property::queue::enable_profiling{}}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << std::endl; // Snippet begin constexpr int N = 32; int *data = sycl::malloc_shared<int>(N, q); auto e = q.submit([&](auto &h) { sycl::local_accessor<int, 1> slm(sycl::range(32 * 64), h); h.parallel_for(sycl::nd_range(sycl::range{N}, sycl::range{32}), [=](sycl::nd_item<1> it) { int i = it.get_global_linear_id(); int j = it.get_local_linear_id(); slm[j] = 0; it.barrier(sycl::access::fence_space::local_space); for (int m = 0; m < 1024 * 1024; m++) { slm[j] += i * m; it.barrier(sycl::access::fence_space::local_space); } data[i] = slm[j]; }); }); // Snippet end q.wait(); std::cout << "Kernel time = " << (e.template get_profiling_info< sycl::info::event_profiling::command_end>() - e.template get_profiling_info< sycl::info::event_profiling::command_start>()) << " ns" << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/slm-size.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <iostream> int main(void) { sycl::queue q{sycl::gpu_selector_v}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << std::endl; // Snippet begin std::cout << "Local Memory Size: " << q.get_device().get_info<sycl::info::device::local_mem_size>() << std::endl; // Snippet end return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/convolution-global.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <iostream> #include <random> #include <vector> int main() { constexpr size_t N = 8192 * 8192; constexpr size_t M = 257; std::vector<int> input(N); std::vector<int> output(N); std::vector<int> kernel(M); srand(2009); for (size_t i = 0; i < N; ++i) { input[i] = rand(); } for (size_t i = 0; i < M; ++i) { kernel[i] = rand(); } sycl::queue q{sycl::gpu_selector_v, sycl::property::queue::enable_profiling{}}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; { // Snippet begin sycl::buffer<int> ibuf(input.data(), N); sycl::buffer<int> obuf(output.data(), N); sycl::buffer<int> kbuf(kernel.data(), M); auto e = q.submit([&](auto &h) { sycl::accessor iacc(ibuf, h, sycl::read_only); sycl::accessor oacc(obuf, h); sycl::accessor kacc(kbuf, h, sycl::read_only); h.parallel_for(sycl::nd_range<1>(sycl::range{N}, sycl::range{256}), [=](sycl::nd_item<1> it) { int i = it.get_global_linear_id(); int group = it.get_group()[0]; int gSize = it.get_local_range()[0]; int t = 0; int _M = static_cast<int>(M); int _N = static_cast<int>(N); if ((group == 0) || (group == _N / gSize - 1)) { if (i < _M / 2) { for (int j = _M / 2 - i, k = 0; j < _M; ++j, ++k) { t += iacc[k] * kacc[j]; } } else { if (i + _M / 2 >= _N) { for (int j = 0, k = i - _M / 2; j < _M / 2 + _N - i; ++j, ++k) { t += iacc[k] * kacc[j]; } } else { for (int j = 0, k = i - _M / 2; j < _M; ++j, ++k) { t += iacc[k] * kacc[j]; } } } } else { for (int j = 0, k = i - _M / 2; j < _M; ++j, ++k) { t += iacc[k] * kacc[j]; } } oacc[i] = t; }); }); // Snippet end q.wait(); size_t kernel_ns = (e.template get_profiling_info< sycl::info::event_profiling::command_end>() - e.template get_profiling_info< sycl::info::event_profiling::command_start>()); std::cout << "Kernel Execution Time Average: total = " << kernel_ns * 1e-6 << " msec" << std::endl; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/slm-bank-s16.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <iostream> int main() { sycl::queue q{sycl::gpu_selector_v, sycl::property::queue::enable_profiling{}}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << std::endl; // Snippet begin constexpr int N = 32; int *data = sycl::malloc_shared<int>(N, q); auto e = q.submit([&](auto &h) { sycl::local_accessor<int, 1> slm(sycl::range(32 * 64), h); h.parallel_for(sycl::nd_range(sycl::range{N}, sycl::range{32}), [=](sycl::nd_item<1> it) { int i = it.get_global_linear_id(); int j = it.get_local_linear_id(); slm[j * 16] = 0; it.barrier(sycl::access::fence_space::local_space); for (int m = 0; m < 1024 * 1024; m++) { slm[j * 16] += i * m; it.barrier(sycl::access::fence_space::local_space); } data[i] = slm[j * 16]; }); }); // Snippet end q.wait(); std::cout << "Kernel time = " << (e.template get_profiling_info< sycl::info::event_profiling::command_end>() - e.template get_profiling_info< sycl::info::event_profiling::command_start>()) << " ns" << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/slm/histogram-slm-1024.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <iostream> #include <random> #include <vector> int main() { constexpr int N = 4096 * 4096; std::vector<unsigned long> input(N); srand(2009); for (int i = 0; i < N; ++i) { input[i] = (long)rand() % 1024; input[i] |= ((long)rand() % 1024) << 16; input[i] |= ((long)rand() % 1024) << 32; input[i] |= ((long)rand() % 1024) << 48; } sycl::queue q{sycl::gpu_selector_v, sycl::property::queue::enable_profiling{}}; std::cout << "Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Snippet begin constexpr int NUM_BINS = 1024; constexpr int BLOCK_SIZE = 256; std::vector<unsigned long> hist(NUM_BINS, 0); sycl::buffer<unsigned long, 1> mbuf(input.data(), N); sycl::buffer<unsigned long, 1> hbuf(hist.data(), NUM_BINS); auto e = q.submit([&](auto &h) { sycl::accessor macc(mbuf, h, sycl::read_only); sycl::accessor hacc(hbuf, h, sycl::read_write); sycl::local_accessor<unsigned int, 1> local_histogram(sycl::range(NUM_BINS), h); h.parallel_for( sycl::nd_range(sycl::range{N / BLOCK_SIZE}, sycl::range{64}), [=](sycl::nd_item<1> it) { int group = it.get_group()[0]; int gSize = it.get_local_range()[0]; auto sg = it.get_sub_group(); int sgSize = sg.get_local_range()[0]; int sgGroup = sg.get_group_id()[0]; int factor = NUM_BINS / gSize; int local_id = it.get_local_id()[0]; if ((factor <= 1) && (local_id < NUM_BINS)) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[local_id]); local_bin.store(0); } else { for (int k = 0; k < factor; k++) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[gSize * k + local_id]); local_bin.store(0); } } it.barrier(sycl::access::fence_space::local_space); for (int k = 0; k < BLOCK_SIZE; k++) { unsigned long x = sg.load(macc.get_pointer() + group * gSize * BLOCK_SIZE + sgGroup * sgSize * BLOCK_SIZE + sgSize * k); #pragma unroll for (std::uint8_t shift : {0, 16, 32, 48}) { constexpr unsigned long mask = 0x3FFU; sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[(x >> shift) & mask]); local_bin += 1; } } it.barrier(sycl::access::fence_space::local_space); if ((factor <= 1) && (local_id < NUM_BINS)) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[local_id]); sycl::atomic_ref<unsigned long, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space> global_bin(hacc[local_id]); global_bin += local_bin.load(); } else { for (int k = 0; k < factor; k++) { sycl::atomic_ref<unsigned int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::local_space> local_bin(local_histogram[gSize * k + local_id]); sycl::atomic_ref<unsigned long, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space> global_bin(hacc[gSize * k + local_id]); global_bin += local_bin.load(); } } }); }); // Snippet end q.wait(); size_t kernel_ns = (e.template get_profiling_info< sycl::info::event_profiling::command_end>() - e.template get_profiling_info< sycl::info::event_profiling::command_start>()); std::cout << "Kernel Execution Time Average: total = " << kernel_ns * 1e-6 << " msec" << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/memory-sharing-with-media/memory-sharing-vaapi.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // SYCL #include <CL/sycl.hpp> // SYCL oneAPI extension #include <sycl/ext/oneapi/backend/level_zero.hpp> // Level-zero #include <level_zero/ze_api.h> // VA-API #include <va/va_drm.h> #include <va/va_drmcommon.h> #include <cstdio> #include <fcntl.h> #include <unistd.h> #include <vector> #define OUTPUT_FILE "output.bgra" #define VAAPI_DEVICE "/dev/dri/renderD128" #define FRAME_WIDTH 320 #define FRAME_HEIGHT 240 #define RECT_WIDTH 160 #define RECT_HEIGHT 160 #define RECT_Y (FRAME_HEIGHT - RECT_HEIGHT) / 2 #define NUM_FRAMES (FRAME_WIDTH - RECT_WIDTH) #define VA_FORMAT VA_FOURCC_BGRA #define RED 0xffff0000 #define GREEN 0xff00ff00 #define BLUE 0xff0000ff #define CHECK_STS(_FUNC) \ { \ auto _sts = _FUNC; \ if (_sts != 0) { \ printf("Error %d calling " #_FUNC, (int)_sts); \ return -1; \ } \ } VASurfaceID alloc_va_surface(VADisplay va_display, int width, int height) { VASurfaceID va_surface; VASurfaceAttrib surface_attrib{}; surface_attrib.type = VASurfaceAttribPixelFormat; surface_attrib.flags = VA_SURFACE_ATTRIB_SETTABLE; surface_attrib.value.type = VAGenericValueTypeInteger; surface_attrib.value.value.i = VA_FORMAT; vaCreateSurfaces(va_display, VA_RT_FORMAT_RGB32, width, height, &va_surface, 1, &surface_attrib, 1); return va_surface; } int main() { // Create SYCL queue on GPU device and Level-zero backend, and query // Level-zero context and device sycl::queue sycl_queue{sycl::ext::oneapi::filter_selector( "level_zero")}; // { sycl::gpu_selector() } auto ze_context = sycl::get_native<sycl::backend::ext_oneapi_level_zero>( sycl_queue.get_context()); auto ze_device = sycl::get_native<sycl::backend::ext_oneapi_level_zero>( sycl_queue.get_device()); // Create VA-API context (VADisplay) VADisplay va_display = vaGetDisplayDRM(open(VAAPI_DEVICE, O_RDWR)); if (!va_display) { printf("Error creating VADisplay on device %s\n", VAAPI_DEVICE); return -1; } int major = 0, minor = 0; CHECK_STS(vaInitialize(va_display, &major, &minor)); // Create VA-API surfaces VASurfaceID surfaces[NUM_FRAMES]; for (int i = 0; i < NUM_FRAMES; i++) { surfaces[i] = alloc_va_surface(va_display, FRAME_WIDTH, FRAME_HEIGHT); } // Convert each VA-API surface into USM device pointer (zero-copy buffer // sharing between VA-API and Level-zero) void *device_ptr[NUM_FRAMES]; size_t stride; for (int i = 0; i < NUM_FRAMES; i++) { // Export DMA-FD from VASurface VADRMPRIMESurfaceDescriptor prime_desc{}; CHECK_STS(vaExportSurfaceHandle(va_display, surfaces[i], VA_SURFACE_ATTRIB_MEM_TYPE_DRM_PRIME_2, VA_EXPORT_SURFACE_READ_WRITE, &prime_desc)); auto dma_fd = prime_desc.objects->fd; auto dma_size = prime_desc.objects->size; stride = prime_desc.layers[0].pitch[0] / sizeof(uint32_t); // Import DMA-FD into Level-zero device pointer ze_external_memory_import_fd_t import_fd = { ZE_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMPORT_FD, nullptr, // pNext ZE_EXTERNAL_MEMORY_TYPE_FLAG_DMA_BUF, dma_fd}; ze_device_mem_alloc_desc_t alloc_desc = {}; alloc_desc.stype = ZE_STRUCTURE_TYPE_DEVICE_MEM_ALLOC_DESC; alloc_desc.pNext = &import_fd; CHECK_STS(zeMemAllocDevice(ze_context, &alloc_desc, dma_size, 1, ze_device, &device_ptr[i])); // Close DMA-FD close(dma_fd); } // Create VA-API surface with size 1x1 and write GREEN pixel VASurfaceID surface1x1 = alloc_va_surface(va_display, 1, 1); VAImage va_image; void *data = nullptr; CHECK_STS(vaDeriveImage(va_display, surface1x1, &va_image)); CHECK_STS(vaMapBuffer(va_display, va_image.buf, &data)); *(uint32_t *)data = GREEN; CHECK_STS(vaUnmapBuffer(va_display, va_image.buf)); CHECK_STS(vaDestroyImage(va_display, va_image.image_id)); // VA-API call to fill background with BLUE color and upscale 1x1 surface into // moving GREEN rectangle VAConfigID va_config_id; VAContextID va_context_id; CHECK_STS(vaCreateConfig(va_display, VAProfileNone, VAEntrypointVideoProc, nullptr, 0, &va_config_id)); CHECK_STS(vaCreateContext(va_display, va_config_id, 0, 0, VA_PROGRESSIVE, nullptr, 0, &va_context_id)); for (int i = 0; i < NUM_FRAMES; i++) { VAProcPipelineParameterBuffer param{}; param.output_background_color = BLUE; param.surface = surface1x1; VARectangle output_region = {int16_t(i), RECT_Y, RECT_WIDTH, RECT_HEIGHT}; param.output_region = &output_region; VABufferID param_buf; CHECK_STS(vaCreateBuffer(va_display, va_context_id, VAProcPipelineParameterBufferType, sizeof(param), 1, &param, &param_buf)); CHECK_STS(vaBeginPicture(va_display, va_context_id, surfaces[i])); CHECK_STS(vaRenderPicture(va_display, va_context_id, &param_buf, 1)); CHECK_STS(vaEndPicture(va_display, va_context_id)); CHECK_STS(vaDestroyBuffer(va_display, param_buf)); } #if 0 // Synchronization is optional on Linux OS as i915 KMD driver synchronizes // write/read commands submitted from Intel media and compute drivers for (int i = 0; i < NUM_FRAMES; i++) { CHECK_STS(vaSyncSurface(va_display, surfaces[i])); } #endif // Submit SYCL kernels to write RED sub-rectangle inside GREEN rectangle std::vector<sycl::event> sycl_events(NUM_FRAMES); for (int i = 0; i < NUM_FRAMES; i++) { uint32_t *ptr = (uint32_t *)device_ptr[i] + (RECT_Y + RECT_HEIGHT / 4) * stride + (i + RECT_WIDTH / 4); sycl_events[i] = sycl_queue.parallel_for( sycl::range<2>(RECT_HEIGHT / 2, RECT_WIDTH / 2), [=](sycl::id<2> idx) { auto y = idx.get(0); auto x = idx.get(1); ptr[y * stride + x] = RED; }); } // Synchronize all SYCL kernels sycl::event::wait(sycl_events); // Map VA-API surface to system memory and write to file FILE *file = fopen(OUTPUT_FILE, "wb"); if (!file) { printf("Error creating file %s\n", OUTPUT_FILE); return -1; } for (int i = 0; i < NUM_FRAMES; i++) { CHECK_STS(vaDeriveImage(va_display, surfaces[i], &va_image)); CHECK_STS(vaMapBuffer(va_display, va_image.buf, &data)); fwrite(data, 1, FRAME_HEIGHT * FRAME_WIDTH * 4, file); CHECK_STS(vaUnmapBuffer(va_display, va_image.buf)); CHECK_STS(vaDestroyImage(va_display, va_image.image_id)); } fclose(file); printf("Created file %s\n", OUTPUT_FILE); // Free device pointers and VA-API surfaces for (int i = 0; i < NUM_FRAMES; i++) zeMemFree(ze_context, device_ptr[i]); vaDestroySurfaces(va_display, surfaces, NUM_FRAMES); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/fp-computations/test_log_omp.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off #include <iostream> #include <assert.h> #include <chrono> #include <cmath> #if FP_SIZE == 32 typedef float FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-3; #elif FP_SIZE == 64 typedef double FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-6; #endif template<typename T> void do_work (unsigned NELEMENTS, unsigned NREPETITIONS, T initial_value, T *res) { #pragma omp target teams distribute parallel for map(present,alloc:res[0:NELEMENTS]) for (unsigned j = 0; j < NELEMENTS; j++) { T tmp = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) tmp += std::log(tmp); res[j] = tmp; } } int main (int argc, char *argv[]) { static constexpr unsigned NELEMENTS = 64*1024*1024; static constexpr unsigned NREPETITIONS = 1024; #pragma omp target { } FP_TYPE initial_value = 2; FP_TYPE ref_res = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) ref_res += std::log(ref_res); std::cout << "reference result = " << ref_res << std::endl; { FP_TYPE * std_res = new FP_TYPE[NELEMENTS]; assert (std_res != nullptr); std::chrono::duration<float, std::micro> elapsed; #pragma omp target data map(std_res[0:NELEMENTS]) { auto tbegin = std::chrono::system_clock::now(); do_work<FP_TYPE> (NELEMENTS, NREPETITIONS, initial_value, std_res); auto tend = std::chrono::system_clock::now(); elapsed = tend - tbegin; } std::cout << "std::log result[0] = " << std_res[0] << std::endl; bool allequal = true; for (auto i = 1; i < NELEMENTS; ++i) allequal = allequal and std_res[0] == std_res[i]; if (allequal) { if (std::abs(ref_res - std_res[0])/std::abs(ref_res) < std::abs(VALIDATION_THRESHOLD)) std::cout << "std::log validates. Total execution time is " << elapsed.count() << " us." << std::endl; else std::cout << "std::log does not validate (ref=" << ref_res << " std_res=" << std_res[0] << " mix=" << std::abs(ref_res - std_res[0])/std::abs(ref_res) << ")" << std::endl; } else std::cout << "std::log does not validate, results are not equal." << std::endl; delete [] std_res; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/fp-computations/test_log_omp_f.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off #include <iostream> #include <assert.h> #include <chrono> #include <cmath> #if FP_SIZE == 32 typedef float FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-3; extern "C" void log_real_sp (int, int, FP_TYPE, FP_TYPE *); #elif FP_SIZE == 64 typedef double FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-6; extern "C" void log_real_dp (int, int, FP_TYPE, FP_TYPE *); #endif int main (int argc, char *argv[]) { static constexpr unsigned NELEMENTS = 64*1024*1024; static constexpr int NREPETITIONS = 1024; #pragma omp target { } FP_TYPE initial_value = 2; FP_TYPE ref_res = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) ref_res += std::log(ref_res); std::cout << "reference result = " << ref_res << std::endl; { FP_TYPE * std_res = new FP_TYPE[NELEMENTS]; assert (std_res != nullptr); std::chrono::duration<float, std::micro> elapsed; #pragma omp target data map(std_res[0:NELEMENTS]) { auto tbegin = std::chrono::system_clock::now(); { # if FP_SIZE == 32 log_real_sp (NELEMENTS, NREPETITIONS, initial_value, std_res); # elif FP_SIZE == 64 log_real_dp (NELEMENTS, NREPETITIONS, initial_value, std_res); # endif } auto tend = std::chrono::system_clock::now(); elapsed = tend - tbegin; } std::cout << "std::log result[0] = " << std_res[0] << std::endl; bool allequal = true; for (auto i = 1; i < NELEMENTS; ++i) allequal = allequal and std_res[0] == std_res[i]; if (allequal) { if (std::abs(ref_res - std_res[0])/std::abs(ref_res) < std::abs(VALIDATION_THRESHOLD)) std::cout << "std::log validates. Total execution time is " << elapsed.count() << " us." << std::endl; else std::cout << "std::log does not validate (ref=" << ref_res << " std_res=" << std_res[0] << " mix=" << std::abs(ref_res - std_res[0])/std::abs(ref_res) << ")" << std::endl; } else std::cout << "std::log does not validate, results are not equal." << std::endl; delete [] std_res; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/fp-computations/test_log_sycl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off #include <CL/sycl.hpp> #include <iostream> #include <assert.h> #include <chrono> #include <cmath> #if FP_SIZE == 32 typedef float FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-3; #elif FP_SIZE == 64 typedef double FP_TYPE; static constexpr FP_TYPE VALIDATION_THRESHOLD = 1e-6; #endif template<typename T> void do_work_std (sycl::queue &q, unsigned NELEMENTS, unsigned NREPETITIONS, T initial_value, T *res) { q.submit([&](sycl::handler& h) { h.parallel_for(NELEMENTS, [=] (auto j) { FP_TYPE tmp = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) tmp += std::log(tmp); res[j] = tmp; }); }).wait(); } template<typename T> void do_work_sycl (sycl::queue &q, unsigned NELEMENTS, unsigned NREPETITIONS, T initial_value, T *res) { q.submit([&](sycl::handler& h) { h.parallel_for(NELEMENTS, [=] (auto j) { FP_TYPE tmp = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) tmp += sycl::log(tmp); res[j] = tmp; }); }).wait(); } # if FP_SIZE == 32 template<typename T> void do_work_sycl_native (sycl::queue &q, unsigned NELEMENTS, unsigned NREPETITIONS, T initial_value, T *res) { q.submit([&](sycl::handler& h) { h.parallel_for(NELEMENTS, [=] (auto j) { FP_TYPE tmp = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) tmp += sycl::native::log(tmp); res[j] = tmp; }); }).wait(); } # endif int main (int argc, char *argv[]) { static constexpr unsigned NELEMENTS = 64*1024*1024; static constexpr unsigned NREPETITIONS = 1024; sycl::device d (sycl::gpu_selector_v); sycl::queue q (d); q.submit([&](sycl::handler& h) { h.single_task ([=]() { }); }).wait(); FP_TYPE initial_value = 2; FP_TYPE ref_res = initial_value; for (unsigned i = 0; i < NREPETITIONS; ++i) ref_res += std::log(ref_res); std::cout << "reference result = " << ref_res << std::endl; { FP_TYPE * std_res = new FP_TYPE[NELEMENTS]; assert (std_res != nullptr); std::chrono::duration<float, std::micro> elapsed; { auto * res = sycl::malloc_device<FP_TYPE>(NELEMENTS, q); auto tbegin = std::chrono::system_clock::now(); do_work_std<FP_TYPE>(q, NELEMENTS, NREPETITIONS, initial_value, res); auto tend = std::chrono::system_clock::now(); elapsed = tend - tbegin; q.memcpy (std_res, res, NELEMENTS*sizeof(FP_TYPE)).wait(); sycl::free (res, q); } std::cout << "std::log result[0] = " << std_res[0] << std::endl; bool allequal = true; for (auto i = 1; i < NELEMENTS; ++i) allequal = allequal and std_res[0] == std_res[i]; if (allequal) { if (std::abs(ref_res - std_res[0])/std::abs(ref_res) < std::abs(VALIDATION_THRESHOLD)) std::cout << "std::log validates. Total execution time is " << elapsed.count() << " us." << std::endl; else std::cout << "std::log does not validate (ref=" << ref_res << " std_res=" << std_res[0] << " mix=" << std::abs(ref_res - std_res[0])/std::abs(ref_res) << ")" << std::endl; } else std::cout << "std::log does not validate, results are not equal." << std::endl; delete [] std_res; } { FP_TYPE * sycl_res = new FP_TYPE[NELEMENTS]; assert (sycl_res != nullptr); std::chrono::duration<float, std::micro> elapsed; { auto * res = sycl::malloc_device<FP_TYPE>(NELEMENTS, q); auto tbegin = std::chrono::system_clock::now(); do_work_sycl<FP_TYPE>(q, NELEMENTS, NREPETITIONS, initial_value, res); auto tend = std::chrono::system_clock::now(); elapsed = tend - tbegin; q.memcpy (sycl_res, res, NELEMENTS*sizeof(FP_TYPE)).wait(); sycl::free (res, q); } std::cout << "sycl::log result[0] = " << sycl_res[0] << std::endl; bool allequal = true; for (auto i = 1; i < NELEMENTS; ++i) allequal = allequal and sycl_res[0] == sycl_res[i]; if (allequal) { if (std::abs(ref_res - sycl_res[0])/std::abs(ref_res) < std::abs(VALIDATION_THRESHOLD)) std::cout << "sycl::log validates. Total execution time is " << elapsed.count() << " us." << std::endl; else std::cout << "sycl::log does not validate (ref=" << ref_res << " sycl_res=" << sycl_res[0] << " mix=" << std::abs(ref_res - sycl_res[0])/std::abs(ref_res) << ")" << std::endl; } else std::cout << "sycl::log does not validate, results are not equal." << std::endl; delete [] sycl_res; } # if FP_SIZE == 32 { FP_TYPE * sycl_native_res = new FP_TYPE[NELEMENTS]; assert (sycl_native_res != nullptr); std::chrono::duration<float, std::micro> elapsed; { auto * res = sycl::malloc_device<FP_TYPE>(NELEMENTS, q); auto tbegin = std::chrono::system_clock::now(); do_work_sycl_native<FP_TYPE>(q, NELEMENTS, NREPETITIONS, initial_value, res); auto tend = std::chrono::system_clock::now(); elapsed = tend - tbegin; q.memcpy (sycl_native_res, res, NELEMENTS*sizeof(FP_TYPE)).wait(); sycl::free (res, q); } std::cout << "sycl::native::log result[0] = " << sycl_native_res[0] << std::endl; bool allequal = true; for (auto i = 1; i < NELEMENTS; ++i) allequal = allequal and sycl_native_res[0] == sycl_native_res[i]; if (allequal) { if (std::abs(ref_res - sycl_native_res[0])/std::abs(ref_res) < std::abs(VALIDATION_THRESHOLD)) std::cout << "sycl::native::log validates. Total execution time is " << elapsed.count() << " us." << std::endl; else std::cout << "sycl::native::log does not validate (ref=" << ref_res << " sycl_native_res=" << sycl_native_res[0] << " mix=" << std::abs(ref_res - sycl_native_res[0])/std::abs(ref_res) << ")" << std::endl; } else std::cout << "sycl::native::log does not validate, results are not equal." << std::endl; delete [] sycl_native_res; } # endif // FP_SIZE == 32 return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/redundant-queues/queues.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <unistd.h> #include <vector> // Summation of 256k 'one' values constexpr size_t N = 1024 * 1024; // Number of repetitions constexpr int repetitions = 10000; // expected vlaue of sum int sum_expected = N; static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; int reductionSingleQ(std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; int work_group_size = 512; int num_work_groups = 1; int num_work_items = work_group_size; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); sycl::queue q{sycl::default_selector_v, exception_handler}; std::cout << q.get_device().get_info<sycl::info::device::name>() << "\n"; // initialize data on the device q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); double elapsed = 0; for (int i = 0; i < iter; i++) { // reductionIntBarrier main begin Timer timer; q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) { size_t loc_id = item.get_local_id(0); int sum = 0; for (int i = loc_id; i < data_size; i += num_work_items) sum += buf_acc[i]; scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < i) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) sum_acc[0] = scratch[0]; }); }); // reductionSingleQ main end q.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time reductionSingleQ = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: reductionSingleQ Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end reductionSingleQ int reductionMultipleQMultipleC(std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; int work_group_size = 512; int num_work_groups = 1; int num_work_items = work_group_size; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); sycl::queue q1{sycl::default_selector_v, exception_handler}; // initialize data on the device q1.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); double elapsed = 0; for (int i = 0; i < iter; i++) { sycl::queue q2{sycl::default_selector_v, exception_handler}; if (i == 0) std::cout << q2.get_device().get_info<sycl::info::device::name>() << "\n"; // reductionMultipleQMultipleC main begin Timer timer; q2.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) { size_t loc_id = item.get_local_id(0); int sum = 0; for (int i = loc_id; i < data_size; i += num_work_items) sum += buf_acc[i]; scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < i) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) sum_acc[0] = scratch[0]; }); }); // reductionMultipleQMultipleC main end q2.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time reductionMultipleQMultipleC = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: reductionMultipleQMultipleC Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end reductionMultipleQMultipleC int reductionMultipleQSingleC(std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; int work_group_size = 512; int num_work_groups = 1; int num_work_items = work_group_size; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); sycl::queue q1{sycl::default_selector_v, exception_handler}; // initialize data on the device q1.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); double elapsed = 0; for (int i = 0; i < iter; i++) { sycl::queue q2{q1.get_context(), sycl::default_selector_v, exception_handler}; if (i == 0) std::cout << q2.get_device().get_info<sycl::info::device::name>() << "\n"; // reductionMultipleQSingleC main begin Timer timer; q2.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) { size_t loc_id = item.get_local_id(0); int sum = 0; for (int i = loc_id; i < data_size; i += num_work_items) sum += buf_acc[i]; scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < i) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) sum_acc[0] = scratch[0]; }); }); // reductionMultipleQSingleC main end q2.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time reductionMultipleQSingleContext = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: reductionMultipleQSingleContext Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end reductionMultipleQSingleC int main(int argc, char *argv[]) { std::vector<int> data(N, 1); reductionSingleQ(data, 100); reductionMultipleQMultipleC(data, 100); reductionMultipleQSingleC(data, 100); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/joint-matrix/joint-matrix.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> #include <sycl/sycl.hpp> using use = sycl::ext::oneapi::experimental::matrix::use; using layout = sycl::ext::oneapi::experimental::matrix::layout; using bfloat16 = sycl::ext::oneapi::bfloat16; constexpr size_t SG_SZ = 16; constexpr size_t TM = 8; constexpr size_t TN = SG_SZ; constexpr size_t TK = 16; constexpr float ALPHA = 2.0; constexpr float BF16_EPSILON = 0.00781250; template <typename T, size_t NUM_ROWS, size_t NUM_COLS> struct big_matrix { private: T *mat; public: T *get_data() { return mat; } void set_data(T *data) { mat = data; } big_matrix(T *data) : mat(data) {} }; template <typename T1, typename T2, size_t M, size_t N, size_t K> void matrix_multiply(big_matrix<T1, M, N> &C, big_matrix<T2, M, K> &A, big_matrix<T2, K / 2, N * 2> &B) { // kernel begin size_t NDRangeM = M / TM; size_t NDRangeN = N / TN; sycl::buffer<bfloat16, 2> bufA(A.get_data(), sycl::range<2>(M, K)); sycl::buffer<bfloat16, 2> bufB(B.get_data(), sycl::range<2>(K, N)); sycl::buffer<float, 2> bufC((float *)C.get_data(), sycl::range<2>(M, N)); sycl::queue q; q.submit([&](sycl::handler &cgh) { sycl::accessor accC(bufC, cgh, sycl::read_write); sycl::accessor accA(bufA, cgh, sycl::read_only); sycl::accessor accB(bufB, cgh, sycl::read_only); cgh.parallel_for( sycl::nd_range<2>({NDRangeM, NDRangeN * SG_SZ}, {1, 1 * SG_SZ}), [=](sycl::nd_item<2> spmd_item) [[intel::reqd_sub_group_size(SG_SZ)]] { // The joint matrix API has to be accessed by all the workitems in a // subgroup these functions will be called once by the subgroup no // code divergence between the workitems const auto global_idx = spmd_item.get_global_id(0); const auto global_idy = spmd_item.get_global_id(1); const auto sg_startx = global_idx - spmd_item.get_local_id(0); const auto sg_starty = global_idy - spmd_item.get_local_id(1); sycl::sub_group sg = spmd_item.get_sub_group(); sycl::ext::oneapi::experimental::matrix::joint_matrix< sycl::sub_group, bfloat16, use::a, TM, TK, layout::row_major> sub_a; // For B, we assume B has been already VNNIed. sycl::ext::oneapi::experimental::matrix::joint_matrix< sycl::sub_group, bfloat16, use::b, TK, TN, layout::ext_intel_packed> sub_b; sycl::ext::oneapi::experimental::matrix::joint_matrix< sycl::sub_group, float, use::accumulator, TM, TN> sub_c; joint_matrix_fill(sg, sub_c, 1.0); for (int k = 0; k < K / TK; k += 1) { joint_matrix_load( sg, sub_a, accA.template get_multi_ptr<sycl::access::decorated::no>() + (sg_startx * TM) * K + k * TK, K); joint_matrix_load( sg, sub_b, accB.template get_multi_ptr<sycl::access::decorated::no>() + (k * TK / 2) * (N * 2) + sg_starty / SG_SZ * TN * 2, N * 2); joint_matrix_mad(sg, sub_c, sub_a, sub_b, sub_c); } joint_matrix_apply(sg, sub_c, [=](float &x) { x *= ALPHA; }); joint_matrix_store( sg, sub_c, accC.template get_multi_ptr<sycl::access::decorated::no>() + (sg_startx * TM) * N + sg_starty / SG_SZ * TN, N, layout::row_major); }); // parallel for }).wait(); // kernel end } static constexpr size_t MATRIX_M = TM * 2; static constexpr size_t MATRIX_N = TN * 2; static constexpr size_t MATRIX_K = TK * 2; bfloat16 A[MATRIX_M][MATRIX_K]; bfloat16 B[MATRIX_K / 2][MATRIX_N * 2]; float C[MATRIX_M][MATRIX_N]; float D[MATRIX_M][MATRIX_N]; float make_fp32(bfloat16 x) { unsigned int y = *((int *)&x); y = y << 16; float *res = reinterpret_cast<float *>(&y); return *res; } void matrix_multiply_ref(int *A_mem, int *B_mem, int *C_mem, int M, int N, int K) { for (int m = 0; m < M; m++) for (int n = 0; n < N; n++) { for (int k = 0; k < K; k++) { // Because B was assumed VNNIed bfloat16 *va = (bfloat16 *)(A_mem + m * K + k); bfloat16 *vb = (bfloat16 *)(B_mem + k * N + n); float acc = *((float *)(C_mem + m * N + n)); for (int i = 0; i < 2; i++) { acc += (make_fp32(va[i]) * make_fp32(vb[i])); } *((float *)(C_mem + m * N + n)) = acc; } *((float *)(C_mem + m * N + n)) *= ALPHA; } } int main() { for (int i = 0; i < MATRIX_M; i++) { for (int j = 0; j < MATRIX_K; j++) { A[i][j] = bfloat16(1.0f * (i + j)); } } for (int i = 0; i < MATRIX_K / 2; i++) { for (int j = 0; j < MATRIX_N * 2; j++) { B[i][j] = bfloat16(2.0f * i + 3.0f * j); } } for (int i = 0; i < MATRIX_M; i++) { for (int j = 0; j < MATRIX_N; j++) { C[i][j] = 1.0; D[i][j] = 1.0; } } big_matrix<float, MATRIX_M, MATRIX_N> MC((float *)&C); big_matrix<float, MATRIX_M, MATRIX_N> MD((float *)&D); big_matrix<bfloat16, MATRIX_M, MATRIX_K> MA((bfloat16 *)&A); big_matrix<bfloat16, MATRIX_K / 2, MATRIX_N * 2> MB((bfloat16 *)&B); matrix_multiply(MC, MA, MB); matrix_multiply_ref((int32_t *)A, (int32_t *)B, (int32_t *)D, MATRIX_M, MATRIX_N, MATRIX_K / 2); bool res = true; for (int i = 0; i < MATRIX_M; i++) { for (int j = 0; j < MATRIX_N; j++) { if ((fabs(C[i][j] - D[i][j])) > BF16_EPSILON) res = false; } } std::cout << (res ? "passed" : "failed") << std::endl; return !res; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-stdlib/rng_test.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <iostream> #include <oneapi/dpl/random> #include <oneapi/mkl/rng.hpp> int main(int argc, char **argv) { unsigned int N = (argc == 1) ? 20 : std::stoi(argv[1]); if (N < 20) N = 20; // Generate sequences of random numbers between [0.0, 1.0] using oneDPL and // oneMKL sycl::queue Q(sycl::gpu_selector_v); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; auto test1 = sycl::malloc_shared<float>(N, Q.get_device(), Q.get_context()); auto test2 = sycl::malloc_shared<float>(N, Q.get_device(), Q.get_context()); std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value // oneDPL random number generator on GPU device clock_t start_time = clock(); // Start timer Q.parallel_for(N, [=](auto idx) { oneapi::dpl::minstd_rand rng_engine(seed, idx); // Initialize RNG engine oneapi::dpl::uniform_real_distribution<float> rng_distribution; // Set RNG distribution test1[idx] = rng_distribution(rng_engine); // Generate RNG sequence }).wait(); clock_t end_time = clock(); // Stop timer std::cout << "oneDPL took " << float(end_time - start_time) / CLOCKS_PER_SEC << " seconds to generate " << N << " uniformly distributed random numbers." << std::endl; // oneMKL random number generator on GPU device start_time = clock(); // Start timer oneapi::mkl::rng::mcg31m1 engine( Q, seed); // Initialize RNG engine, set RNG distribution oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard> rng_distribution(0.0, 1.0); oneapi::mkl::rng::generate(rng_distribution, engine, N, test2) .wait(); // Generate RNG sequence end_time = clock(); // Stop timer std::cout << "oneMKL took " << float(end_time - start_time) / CLOCKS_PER_SEC << " seconds to generate " << N << " uniformly distributed random numbers." << std::endl; // Show first ten random numbers from each method std::cout << std::endl << "oneDPL" << "\t" << "oneMKL" << std::endl; for (int i = 0; i < 10; i++) std::cout << test1[i] << " " << test2[i] << std::endl; // Show last ten random numbers from each method std::cout << "..." << std::endl; for (size_t i = N - 10; i < N; i++) std::cout << test1[i] << " " << test2[i] << std::endl; // Cleanup sycl::free(test1, Q.get_context()); sycl::free(test2, Q.get_context()); } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-stdlib/external_rand.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Compile: // dpcpp -D{HOST|CPU|GPU} -std=c++17 -fsycl external_rand.cpp -o external_rand // Snippet begin #include <CL/sycl.hpp> #include <iostream> #include <random> constexpr int N = 5; extern SYCL_EXTERNAL int rand(void); int main(void) { #if defined CPU sycl::queue Q(sycl::cpu_selector_v); #elif defined GPU sycl::queue Q(sycl::gpu_selector_v); #else sycl::queue Q(sycl::default_selector_v); #endif std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Attempt to use rand() inside a DPC++ kernel auto test1 = sycl::malloc_shared<float>(N, Q.get_device(), Q.get_context()); srand((unsigned)time(NULL)); Q.parallel_for(N, [=](auto idx) { test1[idx] = (float)rand() / (float)RAND_MAX; }).wait(); // Show the random number sequence for (int i = 0; i < N; i++) std::cout << test1[i] << std::endl; // Cleanup sycl::free(test1, Q.get_context()); } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/stream-triad-modified-spec-const.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <algorithm> #include <cassert> #include <cfloat> #include <iostream> #include <string> #ifndef NTIMES #define NTIMES 10 #endif class specialized_kernel; constexpr int num_runs = NTIMES; constexpr size_t scalar = 3; constexpr sycl::specialization_id<size_t> trip_sc; cl_ulong triad(size_t array_size, size_t inner_loop_size) { cl_ulong min_time_ns0 = DBL_MAX; sycl::queue q = sycl::queue(sycl::property::queue::enable_profiling{}); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Setup arrays double *A0 = sycl::malloc_shared<double>(array_size / 2, q); double *B0 = sycl::malloc_shared<double>(array_size / 2, q); double *C0 = sycl::malloc_shared<double>(array_size / 2, q); for (size_t i = 0; i < array_size / 2; i++) { A0[i] = 1.0; B0[i] = 2.0; C0[i] = 0.0; } // Run main computation <num_runs> times & record best time for (int i = 0; i < num_runs; i++) { auto q0_event = q.submit([&](sycl::handler &h) { // set specialization constant using runtime variable h.set_specialization_constant<trip_sc>(inner_loop_size); h.parallel_for<specialized_kernel>( array_size / 2, [=](auto idx, sycl::kernel_handler kh) { // set trip count to the now known specialization constant auto runtime_trip_count_const = kh.get_specialization_constant<trip_sc>(); auto accum = 0; for (size_t j = 0; j < runtime_trip_count_const; j++) { auto multiplier = scalar * j; accum = accum + A0[idx] + B0[idx] * multiplier; } C0[idx] = accum; }); }); q.wait(); cl_ulong exec_time_ns0 = q0_event .get_profiling_info<sycl::info::event_profiling::command_end>() - q0_event .get_profiling_info<sycl::info::event_profiling::command_start>(); std::cout << "Execution time (iteration " << i << ") [sec]: " << (double)exec_time_ns0 * 1.0E-9 << "\n"; min_time_ns0 = std::min(min_time_ns0, exec_time_ns0); } // Check correctness bool error = false; for (size_t vi = 0; vi < array_size / 2; vi++) { // Compute test result auto vaccum = 0; auto vruntime_trip_count_const = inner_loop_size; for (size_t vj = 0; vj < vruntime_trip_count_const; vj++) { auto vmultiplier = scalar * vj; vaccum = vaccum + A0[vi] + B0[vi] * vmultiplier; } // Verify correctness of C0 for current index if (C0[vi] != vaccum) { std::cout << "\nResult incorrect (element " << vi << " is " << C0[vi] << ")!\n"; error = true; } } // Release resources sycl::free(A0, q); sycl::free(B0, q); sycl::free(C0, q); if (error) return -1; std::cout << "Results are correct!\n\n"; return min_time_ns0; } int main(int argc, char *argv[]) { // Input & program info display size_t array_size; size_t inner_loop_size; if (argc > 2) { array_size = std::stoi(argv[1]); inner_loop_size = std::stoi(argv[2]); } else { std::cout << "Run as ./<progname> <arraysize in elements> <inner loop size>\n"; return 1; } std::cout << "Running with stream size of " << array_size << " elements (" << (array_size * sizeof(double)) / (double)1024 / 1024 << "MB)\n"; std::cout << "Running with inner trip count of " << inner_loop_size << "\n"; // Compute triad cl_ulong min_time = triad(array_size, inner_loop_size); size_t min_cmp = -1; if (min_time == min_cmp) return 1; size_t triad_bytes = 3 * sizeof(double) * array_size; std::cout << "Triad Bytes: " << triad_bytes << "\n"; std::cout << "Time in sec (fastest run): " << min_time * 1.0E-9 << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/spec-const2.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <chrono> #include <vector> class specialized_kernel; class literal_kernel; // const static identifier of specialization constant const static sycl::specialization_id<float> value_id; // Fetch a value at runtime. float get_value() { return 10; }; int main() { sycl::queue queue; // Get kernel ID from kernel class qualifier sycl::kernel_id specialized_kernel_id = sycl::get_kernel_id<specialized_kernel>(); // Construct kernel bundle with only specialized_kernel in the input state sycl::kernel_bundle kb_src = sycl::get_kernel_bundle<sycl::bundle_state::input>( queue.get_context(), {specialized_kernel_id}); // set specialization constant value kb_src.set_specialization_constant<value_id>(get_value()); auto start = std::chrono::steady_clock::now(); // build the kernel bundle for the set value sycl::kernel_bundle kb_exe = sycl::build(kb_src); auto end = std::chrono::steady_clock::now(); std::cout << "specialization took - " << (end - start).count() << " nano-secs\n"; std::vector<float> vec{0, 0, 0, 0, 0}; sycl::buffer<float> buffer1(vec.data(), vec.size()); sycl::buffer<float> buffer2(vec.data(), vec.size()); start = std::chrono::steady_clock::now(); { queue.submit([&](auto &cgh) { sycl::accessor acc(buffer1, cgh, sycl::write_only, sycl::no_init); // use the precompiled kernel bundle in the executable state cgh.use_kernel_bundle(kb_exe); cgh.template single_task<specialized_kernel>( [=](sycl::kernel_handler kh) { float v = kh.get_specialization_constant<value_id>(); acc[0] = v; }); }); queue.wait_and_throw(); } end = std::chrono::steady_clock::now(); { sycl::host_accessor host_acc(buffer1, sycl::read_only); std::cout << "result1 (c): " << host_acc[0] << " " << host_acc[1] << " " << host_acc[2] << " " << host_acc[3] << " " << host_acc[4] << std::endl; } std::cout << "execution took : " << (end - start).count() << " nano-secs\n"; start = std::chrono::steady_clock::now(); { queue.submit([&](auto &cgh) { sycl::accessor acc(buffer2, cgh, sycl::write_only, sycl::no_init); cgh.template single_task<literal_kernel>([=]() { acc[0] = 20; }); }); queue.wait_and_throw(); } end = std::chrono::steady_clock::now(); { sycl::host_accessor host_acc(buffer2, sycl::read_only); std::cout << "result2 (c): " << host_acc[0] << " " << host_acc[1] << " " << host_acc[2] << " " << host_acc[3] << " " << host_acc[4] << std::endl; } std::cout << "execution took - " << (end - start).count() << " nano-secs\n"; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/spec-const3.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> class SpecializedKernel; // Identify the specialization constant. constexpr sycl::specialization_id<int> nx_sc; int main() { sycl::queue queue; std::cout << "Running on " << queue.get_device().get_info<sycl::info::device::name>() << "\n"; std::vector<float> vec(1); { sycl::buffer<float> buf(vec.data(), vec.size()); // Application execution stops here asking for input from user int Nx; std::cout << "Enter input number ..." << std::endl; std::cin >> Nx; queue.submit([&](sycl::handler &h) { sycl::accessor acc(buf, h, sycl::write_only, sycl::no_init); // set specialization constant with runtime variable h.set_specialization_constant<nx_sc>(Nx); h.single_task<SpecializedKernel>([=](sycl::kernel_handler kh) { // nx_sc value here will be input value provided at runtime and // can be optimized because JIT compiler now treats it as a constant. int runtime_const_trip_count = kh.get_specialization_constant<nx_sc>(); int accum = 0; for (int i = 0; i < runtime_const_trip_count; i++) { accum = accum + i; } acc[0] = accum; }); }); } std::cout << vec[0] << std::endl; return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/stream-triad-modified-constant.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <algorithm> #include <cassert> #include <cfloat> #include <iostream> #include <string> #ifndef NTIMES #define NTIMES 10 #endif class regular_constant_kernel; constexpr int num_runs = NTIMES; constexpr size_t scalar = 3; cl_ulong triad(size_t array_size, size_t inner_loop_size) { cl_ulong min_time_ns0 = DBL_MAX; sycl::queue q = sycl::queue(sycl::property::queue::enable_profiling{}); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Setup arrays double *A0 = sycl::malloc_shared<double>(array_size / 2, q); double *B0 = sycl::malloc_shared<double>(array_size / 2, q); double *C0 = sycl::malloc_shared<double>(array_size / 2, q); for (size_t i = 0; i < array_size / 2; i++) { A0[i] = 1.0; B0[i] = 2.0; C0[i] = 0.0; } // Run main computation <num_runs> times & record best time for (size_t i = 0; i < num_runs; i++) { auto q0_event = q.submit([&](sycl::handler &h) { h.parallel_for<regular_constant_kernel>(array_size / 2, [=](auto idx) { // set trip count to known regular constant size_t runtime_trip_count_const = 10; auto accum = 0; for (size_t j = 0; j < runtime_trip_count_const; j++) { auto multiplier = scalar * j; accum = accum + A0[idx] + B0[idx] * multiplier; } C0[idx] = accum; }); }); q.wait(); cl_ulong exec_time_ns0 = q0_event .get_profiling_info<sycl::info::event_profiling::command_end>() - q0_event .get_profiling_info<sycl::info::event_profiling::command_start>(); std::cout << "Execution time (iteration " << i << ") [sec]: " << (double)exec_time_ns0 * 1.0E-9 << "\n"; min_time_ns0 = std::min(min_time_ns0, exec_time_ns0); } // Check correctness bool error = false; for (size_t vi = 0; vi < array_size / 2; vi++) { // Compute test result auto vaccum = 0; auto vruntime_trip_count_const = inner_loop_size; for (size_t vj = 0; vj < vruntime_trip_count_const; vj++) { auto vmultiplier = scalar * vj; vaccum = vaccum + A0[vi] + B0[vi] * vmultiplier; } // Verify correctness of C0 for current index if (C0[vi] != vaccum) { std::cout << "\nResult incorrect (element " << vi << " is " << C0[vi] << ")!\n"; error = true; } } // Release resources sycl::free(A0, q); sycl::free(B0, q); sycl::free(C0, q); if (error) return -1; std::cout << "Results are correct!\n\n"; return min_time_ns0; } int main(int argc, char *argv[]) { // Input & program info display size_t array_size; size_t inner_loop_size; if (argc > 2) { array_size = std::stoi(argv[1]); inner_loop_size = std::stoi(argv[2]); } else { std::cout << "Run as ./<progname> <arraysize in elements> <inner loop size>\n"; return 1; } std::cout << "Running with stream size of " << array_size << " elements (" << (array_size * sizeof(double)) / (double)1024 / 1024 << "MB)\n"; std::cout << "Running with inner trip count of " << inner_loop_size << "\n"; // Compute triad cl_ulong min_time = triad(array_size, inner_loop_size); size_t min_cmp = -1; if (min_time == min_cmp) return 1; size_t triad_bytes = 3 * sizeof(double) * array_size; std::cout << "Triad Bytes: " << triad_bytes << "\n"; std::cout << "Time in sec (fastest run): " << min_time * 1.0E-9 << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/spec-const1.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <vector> class specialized_kernel; // const static identifier of specialization constant const static sycl::specialization_id<float> value_id; // Fetch a value at runtime. float get_value() { return 10; }; int main() { sycl::queue queue; std::vector<float> vec(1); { sycl::buffer<float> buffer(vec.data(), vec.size()); queue.submit([&](auto &cgh) { sycl::accessor acc(buffer, cgh, sycl::write_only, sycl::no_init); // Set value of specialization constant. cgh.template set_specialization_constant<value_id>(get_value()); // Runtime builds the kernel with specialization constant // replaced by the literal value provided in the preceding // call of `set_specialization_constant<value_id>` cgh.template single_task<specialized_kernel>( [=](sycl::kernel_handler kh) { const float val = kh.get_specialization_constant<value_id>(); acc[0] = val; }); }); } queue.wait_and_throw(); std::cout << vec[0] << std::endl; return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/stream-triad-modified-runtime-var.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <algorithm> #include <cassert> #include <cfloat> #include <iostream> #include <string> #ifndef NTIMES #define NTIMES 10 #endif class non_specialized_kernel; constexpr int num_runs = NTIMES; constexpr size_t scalar = 3; cl_ulong triad(size_t array_size, size_t inner_loop_size) { cl_ulong min_time_ns0 = DBL_MAX; sycl::queue q = sycl::queue(sycl::property::queue::enable_profiling{}); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Setup arrays double *A0 = sycl::malloc_shared<double>(array_size / 2, q); double *B0 = sycl::malloc_shared<double>(array_size / 2, q); double *C0 = sycl::malloc_shared<double>(array_size / 2, q); for (size_t i = 0; i < array_size / 2; i++) { A0[i] = 1.0; B0[i] = 2.0; C0[i] = 0.0; } // Run main computation <num_runs> times & record best time for (size_t i = 0; i < num_runs; i++) { auto q0_event = q.submit([&](sycl::handler &h) { h.parallel_for<non_specialized_kernel>(array_size / 2, [=](auto idx) { // set trip count to runtime variable auto runtime_trip_count_const = inner_loop_size; auto accum = 0; for (size_t j = 0; j < runtime_trip_count_const; j++) { auto multiplier = scalar * j; accum = accum + A0[idx] + B0[idx] * multiplier; } C0[idx] = accum; }); }); q.wait(); cl_ulong exec_time_ns0 = q0_event .get_profiling_info<sycl::info::event_profiling::command_end>() - q0_event .get_profiling_info<sycl::info::event_profiling::command_start>(); std::cout << "Execution time (iteration " << i << ") [sec]: " << (double)exec_time_ns0 * 1.0E-9 << "\n"; min_time_ns0 = std::min(min_time_ns0, exec_time_ns0); } // Check correctness bool error = false; for (size_t vi = 0; vi < array_size / 2; vi++) { // Compute test result auto vaccum = 0; auto vruntime_trip_count_const = inner_loop_size; for (size_t vj = 0; vj < vruntime_trip_count_const; vj++) { auto vmultiplier = scalar * vj; vaccum = vaccum + A0[vi] + B0[vi] * vmultiplier; } // Verify correctness of C0 for current index if (C0[vi] != vaccum) { std::cout << "\nResult incorrect (element " << vi << " is " << C0[vi] << ")!\n"; error = true; } } // Release resources sycl::free(A0, q); sycl::free(B0, q); sycl::free(C0, q); if (error) return -1; std::cout << "Results are correct!\n\n"; return min_time_ns0; } int main(int argc, char *argv[]) { // Input & program info display size_t array_size; size_t inner_loop_size; if (argc > 2) { array_size = std::stoi(argv[1]); inner_loop_size = std::stoi(argv[2]); } else { std::cout << "Run as ./<progname> <arraysize in elements> <inner loop size>\n"; return 1; } std::cout << "Running with stream size of " << array_size << " elements (" << (array_size * sizeof(double)) / (double)1024 / 1024 << "MB)\n"; std::cout << "Running with inner trip count of " << inner_loop_size << "\n"; // Compute triad cl_ulong min_time = triad(array_size, inner_loop_size); size_t min_cmp = -1; if (min_time == min_cmp) return 1; size_t triad_bytes = 3 * sizeof(double) * array_size; std::cout << "Triad Bytes: " << triad_bytes << "\n"; std::cout << "Time in sec (fastest run): " << min_time * 1.0E-9 << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/jitting/jit.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <array> #include <chrono> #include <iostream> // Array type and data size for this example. constexpr size_t array_size = (1 << 16); typedef std::array<int, array_size> IntArray; void VectorAdd1(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); auto e = q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_items, [=](auto i) { sum_acc[i] = a_acc[i] + b_acc[i]; }); }); q.wait(); } void VectorAdd2(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); auto e = q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_items, [=](auto i) { sum_acc[i] = a_acc[i] + b_acc[i]; }); }); q.wait(); } void InitializeArray(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = i; } int main() { IntArray a, b, sum; InitializeArray(a); InitializeArray(b); sycl::queue q(sycl::default_selector_v, sycl::property::queue::enable_profiling{}); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::cout << "Vector size: " << a.size() << "\n"; auto start = std::chrono::steady_clock::now(); VectorAdd1(q, a, b, sum); auto end = std::chrono::steady_clock::now(); std::cout << "Initial Vector add1 successfully completed on device - took " << (end - start).count() << " nano-secs\n"; start = std::chrono::steady_clock::now(); VectorAdd1(q, a, b, sum); end = std::chrono::steady_clock::now(); std::cout << "Second Vector add1 successfully completed on device - took " << (end - start).count() << " nano-secs\n"; start = std::chrono::steady_clock::now(); VectorAdd2(q, a, b, sum); end = std::chrono::steady_clock::now(); std::cout << "Initial Vector add2 successfully completed on device - took " << (end - start).count() << " nano-secs\n"; start = std::chrono::steady_clock::now(); VectorAdd2(q, a, b, sum); end = std::chrono::steady_clock::now(); std::cout << "Second Vector add2 successfully completed on device - took " << (end - start).count() << " nano-secs\n"; return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/grf-mode-selection/perf/large/ax-static-large.cpp
#include <omp.h> #include <stdio.h> #define ELEM 32000 #define NX1 12 #define ZDIM 6 #define I2(i, j) (j * NX1 + i) #define I3(i, j, k) (k * NX1 * NX1 + j * NX1 + i) #define I4(i, j, k, e) (e * NX1 * NX1 * NX1 + k * NX1 * NX1 + j * NX1 + i) int c_ax_v80_static(int nelt, int nx, double *w, double *u, double *g, double *D) { int innerub = ZDIM * nx * nx; // start OpenMP offload region #pragma omp target teams distribute thread_limit(ZDIM *NX1 *NX1) for (int e = 0; e < nelt; e++) { double s_u[NX1 * NX1 * NX1]; double s_D[NX1 * NX1]; // SLM used for the three arrays here double s_ur[NX1 * NX1 * NX1]; double s_us[NX1 * NX1 * NX1]; double s_ut[NX1 * NX1 * NX1]; #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; if (k == 0) s_D[I2(i, j)] = D[I2(i, j)]; for (; k < NX1; k += ZDIM) { s_u[I3(i, j, k)] = u[I4(i, j, k, e)]; } } #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; double r_G00, r_G01, r_G02, r_G11, r_G12, r_G22; for (; k < NX1; k += ZDIM) { double r_ur, r_us, r_ut; r_ur = r_us = r_ut = 0; #ifdef FORCE_UNROLL #pragma unroll NX1 #endif for (int m = 0; m < NX1; m++) { r_ur += s_D[I2(i, m)] * s_u[I3(m, j, k)]; r_us += s_D[I2(j, m)] * s_u[I3(i, m, k)]; r_ut += s_D[I2(k, m)] * s_u[I3(i, j, m)]; } const unsigned gbase = 6 * I4(i, j, k, e); r_G00 = g[gbase + 0]; r_G01 = g[gbase + 1]; r_G02 = g[gbase + 2]; s_ur[I3(i, j, k)] = r_G00 * r_ur + r_G01 * r_us + r_G02 * r_ut; r_G11 = g[gbase + 3]; r_G12 = g[gbase + 4]; s_us[I3(i, j, k)] = r_G01 * r_ur + r_G11 * r_us + r_G12 * r_ut; r_G22 = g[gbase + 5]; s_ut[I3(i, j, k)] = r_G02 * r_ur + r_G12 * r_us + r_G22 * r_ut; } } #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; for (; k < NX1; k += ZDIM) { double wr = 0.0; for (int m = 0; m < NX1; m++) { double s_D_i = s_D[I2(m, i)]; double s_D_j = s_D[I2(m, j)]; double s_D_k = s_D[I2(m, k)]; wr += s_D_i * s_ur[I3(m, j, k)] + s_D_j * s_us[I3(i, m, k)] + s_D_k * s_ut[I3(i, j, m)]; } w[I4(i, j, k, e)] = wr; } } } // end OpenMP offload region return 0; } int main(void) { #define ASIZE (ELEM * NX1 * NX1 * NX1) static double w[ASIZE], u[ASIZE], g[6 * ASIZE], D[NX1 * NX1]; int nelt = ELEM; int nx = NX1; omp_set_default_device(0); for (int i = 0; i < nx * nx; i++) D[i] = 1.0; for (size_t i = 0; i < ASIZE; i++) { w[i] = 0.0; u[i] = 1.0; for (int j = 0; j < 6; j++) g[i * 6 + j] = 1.0; } #pragma omp target enter data map(alloc \ : w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) #pragma omp target update to(w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) for (int i = 0; i < 100; i++) c_ax_v80_static(nelt, nx, w, u, g, D); #pragma omp target exit data map(delete \ : w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/grf-mode-selection/perf/small/ax-static-small.cpp
#include <omp.h> #include <stdio.h> #define ELEM 32000 #define NX1 12 #define ZDIM 6 #define I2(i, j) (j * NX1 + i) #define I3(i, j, k) (k * NX1 * NX1 + j * NX1 + i) #define I4(i, j, k, e) (e * NX1 * NX1 * NX1 + k * NX1 * NX1 + j * NX1 + i) int c_ax_v80_static(int nelt, int nx, double *w, double *u, double *g, double *D) { int innerub = ZDIM * nx * nx; // start OpenMP offload region #pragma omp target teams distribute thread_limit(ZDIM *NX1 *NX1) for (int e = 0; e < nelt; e++) { double s_u[NX1 * NX1 * NX1]; double s_D[NX1 * NX1]; // SLM used for the three arrays here double s_ur[NX1 * NX1 * NX1]; double s_us[NX1 * NX1 * NX1]; double s_ut[NX1 * NX1 * NX1]; #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; if (k == 0) s_D[I2(i, j)] = D[I2(i, j)]; for (; k < NX1; k += ZDIM) { s_u[I3(i, j, k)] = u[I4(i, j, k, e)]; } } #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; double r_G00, r_G01, r_G02, r_G11, r_G12, r_G22; for (; k < NX1; k += ZDIM) { double r_ur, r_us, r_ut; r_ur = r_us = r_ut = 0; #ifdef FORCE_UNROLL #pragma unroll NX1 #endif for (int m = 0; m < NX1; m++) { r_ur += s_D[I2(i, m)] * s_u[I3(m, j, k)]; r_us += s_D[I2(j, m)] * s_u[I3(i, m, k)]; r_ut += s_D[I2(k, m)] * s_u[I3(i, j, m)]; } const unsigned gbase = 6 * I4(i, j, k, e); r_G00 = g[gbase + 0]; r_G01 = g[gbase + 1]; r_G02 = g[gbase + 2]; s_ur[I3(i, j, k)] = r_G00 * r_ur + r_G01 * r_us + r_G02 * r_ut; r_G11 = g[gbase + 3]; r_G12 = g[gbase + 4]; s_us[I3(i, j, k)] = r_G01 * r_ur + r_G11 * r_us + r_G12 * r_ut; r_G22 = g[gbase + 5]; s_ut[I3(i, j, k)] = r_G02 * r_ur + r_G12 * r_us + r_G22 * r_ut; } } #pragma omp parallel for for (int inner = 0; inner < innerub; inner++) { int k = inner / (NX1 * NX1); int j = (inner - k * NX1 * NX1) / NX1; int i = inner - k * NX1 * NX1 - j * NX1; for (; k < NX1; k += ZDIM) { double wr = 0.0; for (int m = 0; m < NX1; m++) { double s_D_i = s_D[I2(m, i)]; double s_D_j = s_D[I2(m, j)]; double s_D_k = s_D[I2(m, k)]; wr += s_D_i * s_ur[I3(m, j, k)] + s_D_j * s_us[I3(i, m, k)] + s_D_k * s_ut[I3(i, j, m)]; } w[I4(i, j, k, e)] = wr; } } } // end OpenMP offload region return 0; } int main(void) { #define ASIZE (ELEM * NX1 * NX1 * NX1) static double w[ASIZE], u[ASIZE], g[6 * ASIZE], D[NX1 * NX1]; int nelt = ELEM; int nx = NX1; omp_set_default_device(0); for (int i = 0; i < nx * nx; i++) D[i] = 1.0; for (size_t i = 0; i < ASIZE; i++) { w[i] = 0.0; u[i] = 1.0; for (int j = 0; j < 6; j++) g[i * 6 + j] = 1.0; } #pragma omp target enter data map(alloc \ : w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) #pragma omp target update to(w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) for (int i = 0; i < 100; i++) c_ax_v80_static(nelt, nx, w, u, g, D); #pragma omp target exit data map(delete \ : w [0:ASIZE], u [0:ASIZE], g [0:6 * ASIZE], \ D [0:NX1 * NX1]) return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/grf-mode-selection/openmp/grf-mode-selection-omp.cpp
int main(void) { #pragma omp target { /* empty body */ } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/grf-mode-selection/sycl/grf-mode-selection-sycl.cpp
#include <CL/sycl.hpp> #include <sycl/ext/intel/experimental/kernel_properties.hpp> int main() { // Creating buffer of 4 ints to be used inside the kernel code std::vector<int> input(4); sycl::buffer<int> buf(input.data(), 4); // Creating SYCL queue sycl::queue Queue; sycl::range num_items{input.size()}; // Submitting command group(work) to queue Queue.submit([&](sycl::handler &cgh) { // Getting write only access to the buffer on a device sycl::accessor buf_acc(buf, cgh, sycl::write_only, sycl::no_init); cgh.parallel_for(num_items, [=](auto i) { sycl::ext::intel::experimental::set_kernel_properties( sycl::ext::intel::experimental::kernel_properties::use_large_grf); // Fill buffer with indexes buf_acc[i] = i; }); }); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/02_mem_partitioning/simple_example.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin int *a = (int *)omp_target_alloc(sizeof(int) * N, device_id); #pragma omp target teams distribute parallel for simd for (int i = 0; i < N; ++i) { a[i] = i; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/02_mem_partitioning/simple_example_sycl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin int *a = sycl::malloc_device<int>(N, q); q.parallel_for(N, [=](auto i) { a[i] = i; }); // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/06_cross_stack/cross_stack_01.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin #pragma omp target teams distribute parallel for simd for (int i = N - 1; i <= 0; --i) { c[i] = a[i] + b[i]; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/01_wg_partitioning/wg_partitioning_3D.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin #pragma omp target teams distribute parallel for simd collapse(3) for (int z = 0; z < nz; ++z) { for (int y = 0; y < ny; ++y) { for (int x = 0; x < nx; ++x) { // } } } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/01_wg_partitioning/wg_partitioning_3D_sycl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin range<3> global{nz, ny, nx}; range<3> local{1, 1, 16}; cgh.parallel_for(nd_range<3>(global, local), [=](nd_item<3> item) { // }); // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/01_wg_partitioning/wg_partitioning_1D_sycl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin q.parallel_for(N, [=](auto i) { // }); // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/01_wg_partitioning/wg_partitioning_1D.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin #pragma omp target teams distribute parallel for simd for (int i = 0; i < N; ++i) { // } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/05_stream_cross_tile/stream_cross_tile.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Code for cross tile stream #include <iostream> #include <omp.h> // compile via: // icpx -O2 -fiopenmp -fopenmp-targets=spir64 ./stream_cross_tile.cpp // run via: // EnableWalkerPartition=1 ZE_AFFINITY_MASK=0 ./a.out int main() { constexpr int64_t N = 256 * 1e6; constexpr int64_t bytes = N * sizeof(int); // vary n_th from 1 to 8 to change cross-tile traffice constexpr int n_th = 4; std::cout << "array size = " << bytes * 1e-9 << " GB" << std::endl; int *a = static_cast<int *>(malloc(bytes)); int *b = static_cast<int *>(malloc(bytes)); int *c = static_cast<int *>(malloc(bytes)); #pragma omp target enter data map(alloc:a[0:N]) #pragma omp target enter data map(alloc:b[0:N]) #pragma omp target enter data map(alloc:c[0:N]) for (int i = 0; i < N; ++i) { a[i] = i + 1; b[i] = i - 1; } #pragma omp target update to(a[0:N]) #pragma omp target update to(b[0:N]) const int no_max_rep = 100; double time; for (int irep = 0; irep < no_max_rep + 10; ++irep) { if (irep == 10) time = omp_get_wtime(); #pragma omp target teams distribute parallel for \ simd simdlen(32) thread_limit(256) for (int j = 0; j < N; ++j) { const int cache_line_id = j / 16; int i; if ((cache_line_id % n_th) == 0) { i = (j + N / 2) % N; } else { i = j; } c[i] = a[i] + b[i]; } } time = omp_get_wtime() - time; time = time / no_max_rep; #pragma omp target update from(c[0:N]) for (int i = 0; i < N; ++i) { if (c[i] != 2 * i) { std::cout << "wrong results at i " << i << std::endl; exit(1); } } const int64_t streamed_bytes = 3 * N * sizeof(int); std::cout << "bandwidth = " << (streamed_bytes / time) * 1E-9 << " GB/s" << std::endl; std::cout << "cross-tile traffic = " << (1 / (double)n_th) * 100 << "%" << std::endl; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/04_stream_3D/stream_3D.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Code for 3D STREAM #include <iostream> #include <omp.h> #include <cassert> // compile via: // icpx -O2 -fiopenmp -fopenmp-targets=spir64 ./stream_3D.cpp int main(int argc, char **argv) { const int device_id = omp_get_default_device(); const int desired_total_size = 32 * 512 * 16384; const std::size_t bytes = desired_total_size * sizeof(int64_t); std::cout << "memory footprint = " << 3 * bytes * 1E-9 << " GB" << std::endl; int64_t *a = static_cast<int64_t*>(omp_target_alloc_device(bytes, device_id)); int64_t *b = static_cast<int64_t*>(omp_target_alloc_device(bytes, device_id)); int64_t *c = static_cast<int64_t*>(omp_target_alloc_device(bytes, device_id)); const int min = 64; const int max = 32768; for (int lx = min; lx < max; lx *= 2) { for (int ly = min; ly < max; ly *= 2) { for (int lz = min; lz < max; lz *= 2) { const int total_size = lx * ly * lz; if (total_size != desired_total_size) continue; std::cout << "lx=" << lx << " ly=" << ly << " lz=" << lz << ", "; #pragma omp target teams distribute parallel for simd for (int i = 0; i < total_size; ++i) { a[i] = i + 1; b[i] = i - 1; c[i] = 0; } const int no_max_rep = 40; const int warmup = 10; double time; for (int irep = 0; irep < no_max_rep + warmup; ++irep) { if (irep == warmup) time = omp_get_wtime(); #pragma omp target teams distribute parallel for simd collapse(3) for (int iz = 0; iz < lz; ++iz) { for (int iy = 0; iy < ly; ++iy) { for (int ix = 0; ix < lx; ++ix) { const int index = ix + iy * lx + iz * lx * ly; c[index] = a[index] + b[index]; } } } } time = omp_get_wtime() - time; time = time / no_max_rep; const int64_t streamed_bytes = 3 * total_size * sizeof(int64_t); std::cout << "bandwidth = " << (streamed_bytes / time) * 1E-9 << " GB/s" << std::endl; #pragma omp target teams distribute parallel for simd for (int i = 0; i < total_size; ++i) { assert(c[i] == 2 * i); } } } } omp_target_free(a, device_id); omp_target_free(b, device_id); omp_target_free(c, device_id); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/06_cross_tile/cross_tile_01.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Snippet begin #pragma omp target teams distribute parallel for simd for (int i = N - 1; i <= 0; --i) { c[i] = a[i] + b[i]; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/05_stream_cross_stack/stream_cross_stack.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Code for cross stack stream #include <iostream> #include <omp.h> // compile via: // icpx -O2 -fiopenmp -fopenmp-targets=spir64 ./stream_cross_stack.cpp // run via: // EnableWalkerPartition=1 ZE_AFFINITY_MASK=0 ./a.out template <int cross_stack_fraction> void cross_stack_stream() { constexpr int64_t size = 256*1e6; constexpr int64_t bytes = size * sizeof(int64_t); int64_t *a = static_cast<int64_t*>(malloc( bytes )); int64_t *b = static_cast<int64_t*>(malloc( bytes )); int64_t *c = static_cast<int64_t*>(malloc( bytes )); #pragma omp target enter data map( alloc:a[0:size] ) #pragma omp target enter data map( alloc:b[0:size] ) #pragma omp target enter data map( alloc:c[0:size] ) for ( int i = 0; i < size; ++i ) { a[i] = i + 1; b[i] = i - 1; c[i] = 0; } #pragma omp target update to( a[0:size] ) #pragma omp target update to( b[0:size] ) #pragma omp target update to( c[0:size] ) const int num_max_rep = 100; double time; for ( int irep = 0; irep < num_max_rep+10; ++irep ) { if ( irep == 10 ) time = omp_get_wtime(); #pragma omp target teams distribute parallel for simd for ( int j = 0; j < size; ++j ) { const int cache_line_id = j / 16; int i; if ( (cache_line_id%cross_stack_fraction) == 0 ) { i = (j+size/2)%size; } else { i = j; } c[i] = a[i] + b[i]; } } time = omp_get_wtime() - time; time = time/num_max_rep; #pragma omp target update from( c[0:size] ) for ( int i = 0; i < size; ++i ) { if ( c[i] != 2*i ) { std::cout << "wrong results!" << std::endl; exit(1); } } const int64_t streamed_bytes = 3 * size * sizeof(int64_t); std::cout << "cross_stack_percent = " << (1/(double)cross_stack_fraction)*100 << "%, bandwidth = " << (streamed_bytes/time) * 1E-9 << " GB/s" << std::endl; } int main() { cross_stack_stream< 1>(); cross_stack_stream< 2>(); cross_stack_stream< 4>(); cross_stack_stream< 8>(); cross_stack_stream<16>(); cross_stack_stream<32>(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/implicit-scaling/03_stream/stream.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // clang-format off // Code for STREAM: #include <iostream> #include <omp.h> #include <cstdint> // compile via: // icpx -O2 -fiopenmp -fopenmp-targets=spir64 ./stream.cpp int main() { constexpr int64_t N = 256 * 1e6; constexpr int64_t bytes = N * sizeof(int64_t); int64_t *a = static_cast<int64_t *>(malloc(bytes)); int64_t *b = static_cast<int64_t *>(malloc(bytes)); int64_t *c = static_cast<int64_t *>(malloc(bytes)); #pragma omp target enter data map(alloc:a[0:N]) #pragma omp target enter data map(alloc:b[0:N]) #pragma omp target enter data map(alloc:c[0:N]) for (int i = 0; i < N; ++i) { a[i] = i + 1; b[i] = i - 1; } #pragma omp target update to(a[0:N]) #pragma omp target update to(b[0:N]) const int no_max_rep = 100; double time; for (int irep = 0; irep < no_max_rep + 10; ++irep) { if (irep == 10) time = omp_get_wtime(); #pragma omp target teams distribute parallel for simd for (int i = 0; i < N; ++i) { c[i] = a[i] + b[i]; } } time = omp_get_wtime() - time; time = time / no_max_rep; #pragma omp target update from(c[0:N]) for (int i = 0; i < N; ++i) { if (c[i] != 2 * i) { std::cout << "wrong results!" << std::endl; exit(1); } } const int64_t streamed_bytes = 3 * N * sizeof(int64_t); std::cout << "bandwidth = " << (streamed_bytes / time) * 1E-9 << " GB/s" << std::endl; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffer-accessors/kern1.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 100; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; // Kernel1 { // Create 3 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); sycl::buffer<int> CBuf(&CData[0], N); Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); sycl::accessor aC(CBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 11; aB[i] = 22; aC[i] = 0; }); }); } // end Kernel1 // Kernel2 { // Create 3 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); sycl::buffer<int> CBuf(&CData[0], N); Q.submit([&](auto &h) { // Create device accessors sycl::accessor aA(ABuf, h, sycl::read_only); sycl::accessor aB(BBuf, h, sycl::read_only); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] += aA[i] + aB[i]; }); }); } // end Kernel2 // Buffers are destroyed and so CData is updated and can be accessed for (int i = 0; i < N; i++) { printf("%d\n", CData[i]); } return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffer-accessors/kern3.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 100; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; { // Create 3 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); sycl::buffer<int> CBuf(&CData[0], N); // Kernel1 Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); sycl::accessor aC(CBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 11; aB[i] = 22; aC[i] = 0; }); }); // Kernel2 Q.submit([&](auto &h) { // Create device accessors sycl::accessor aA(ABuf, h, sycl::read_only); sycl::accessor aB(BBuf, h, sycl::read_only); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] += aA[i] + aB[i]; }); }); } // Since the buffers are going out of scope, they will have to be // copied back from device to host and this will require a wait for // all the kernels to finish and so no explicit wait is needed for (int i = 0; i < N; i++) { printf("%d\n", CData[i]); } return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffer-accessors/kern2.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 100; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; // Create 3 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); sycl::buffer<int> CBuf(&CData[0], N); // Kernel1 Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); sycl::accessor aC(CBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 11; aB[i] = 22; aC[i] = 0; }); }); // Kernel2 Q.submit([&](auto &h) { // Create device sycl::accessors sycl::accessor aA(ABuf, h, sycl::read_only); sycl::accessor aB(BBuf, h, sycl::read_only); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] += aA[i] + aB[i]; }); }); // The host accessor creation will ensure that a wait for kernel to finish // is triggered and data from device to host is copied sycl::host_accessor h_acc(CBuf); for (int i = 0; i < N; i++) { printf("%d\n", h_acc[i]); } return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffer-accessors/kern5.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 100; constexpr int iters = 100; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; sycl::buffer<int> CBuf(&CData[0], N); { // Create 2 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); // Kernel1 Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); sycl::accessor aC(CBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 11; aB[i] = 22; aC[i] = 0; }); }); } sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); for (int it = 0; it < iters; it++) { // Kernel2 Q.submit([&](auto &h) { // Create device accessors sycl::accessor aA(ABuf, h, sycl::read_only); sycl::accessor aB(BBuf, h, sycl::read_only); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] += aA[i] + aB[i]; }); }); } sycl::host_accessor h_acc(CBuf); for (int i = 0; i < N; i++) { printf("%d\n", h_acc[i]); } return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffer-accessors/kern4.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 100; constexpr int iters = 100; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; sycl::buffer<int> CBuf(&CData[0], N); { // Create 2 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); // Kernel1 Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); sycl::accessor aC(CBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 11; aB[i] = 22; aC[i] = 0; }); }); } for (int it = 0; it < iters; it++) { // Kernel2 Q.submit([&](auto &h) { // Create device accessors sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] += AData[i] + BData[i]; }); }); } sycl::host_accessor h_acc(CBuf); for (int i = 0; i < N; i++) { printf("%d\n", h_acc[i]); } return 0; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/io-kernel/out.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> void out1() { constexpr int N = 16; sycl::queue q; q.submit([&](auto &cgh) { sycl::stream str(8192, 1024, cgh); cgh.parallel_for(N, [=](sycl::item<1> it) { int id = it[0]; /* Send the identifier to a stream to be printed on the console */ str << "ID=" << id << sycl::endl; }); }).wait(); } // end out1 void out2() { sycl::queue q; q.submit([&](auto &cgh) { sycl::stream str(8192, 4, cgh); cgh.parallel_for(1, [=](sycl::item<1>) { str << "ABC" << sycl::endl; // Print statement 1 str << "ABCDEFG" << sycl::endl; // Print statement 2 }); }).wait(); } // end out2 void out3() { sycl::queue q; q.submit([&](auto &cgh) { sycl::stream str(8192, 10, cgh); cgh.parallel_for(1, [=](sycl::item<1>) { str << "ABC" << sycl::endl; // Print statement 1 str << "ABCDEFG" << sycl::endl; // Print statement 2 }); }).wait(); } // end out3 void out4() { sycl::queue q; q.submit([&](auto &cgh) { sycl::stream str(8192, 1024, cgh); cgh.parallel_for(sycl::nd_range<1>(32, 4), [=](sycl::nd_item<1> it) { int id = it.get_global_id(); str << "ID=" << id << sycl::endl; }); }).wait(); } // end out4 void out5() { int *m = NULL; sycl::queue q; q.submit([&](auto &cgh) { sycl::stream str(8192, 1024, cgh); cgh.parallel_for(sycl::nd_range<1>(32, 4), [=](sycl::nd_item<1> it) { int id = it.get_global_id(); str << "ID=" << id << sycl::endl; if (id == 31) *m = id; }); }).wait(); } // end out5 int main() { out1(); out2(); out3(); out4(); out5(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/multiple-kernel-execution/kernels.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <array> #include <chrono> #include <iostream> #include <unistd.h> // Array type and data size for this example. constexpr size_t array_size = (1 << 15); typedef std::array<int, array_size> IntArray; #define iter 10 int multi_queue(sycl::queue &q, const IntArray &a, const IntArray &b) { IntArray s1, s2, s3; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf1(s1); sycl::buffer sum_buf2(s2); sycl::buffer sum_buf3(s3); size_t num_groups = 1; size_t wg_size = 256; auto start = std::chrono::steady_clock::now(); for (int i = 0; i < iter; i++) { q.submit([&](sycl::handler &h) { sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf1, h, sycl::write_only, sycl::no_init); h.parallel_for(sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) { size_t loc_id = index.get_local_id(); sum_acc[loc_id] = 0; for (int j = 0; j < 1000; j++) for (size_t i = loc_id; i < array_size; i += wg_size) { sum_acc[loc_id] += a_acc[i] + b_acc[i]; } }); }); q.submit([&](sycl::handler &h) { sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf2, h, sycl::write_only, sycl::no_init); h.parallel_for(sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) { size_t loc_id = index.get_local_id(); sum_acc[loc_id] = 0; for (int j = 0; j < 1000; j++) for (size_t i = loc_id; i < array_size; i += wg_size) { sum_acc[loc_id] += a_acc[i] + b_acc[i]; } }); }); q.submit([&](sycl::handler &h) { sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf3, h, sycl::write_only, sycl::no_init); h.parallel_for(sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) { size_t loc_id = index.get_local_id(); sum_acc[loc_id] = 0; for (int j = 0; j < 1000; j++) for (size_t i = loc_id; i < array_size; i += wg_size) { sum_acc[loc_id] += a_acc[i] + b_acc[i]; } }); }); } q.wait(); auto end = std::chrono::steady_clock::now(); std::cout << "multi_queue completed on device - took " << (end - start).count() << " u-secs\n"; // check results return ((end - start).count()); } // end multi_queue void InitializeArray(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = 1; } IntArray a, b; int main() { sycl::queue q(sycl::default_selector_v); InitializeArray(a); InitializeArray(b); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::cout << "Vector size: " << a.size() << "\n"; // begin in-order submission sycl::property_list q_prop{sycl::property::queue::in_order()}; std::cout << "In order queue: Jitting+Execution time\n"; sycl::queue q1(sycl::default_selector_v, q_prop); multi_queue(q1, a, b); usleep(500 * 1000); std::cout << "In order queue: Execution time\n"; multi_queue(q1, a, b); // end in-order submission // begin out-of-order submission sycl::queue q2(sycl::default_selector_v); std::cout << "Out of order queue: Jitting+Execution time\n"; multi_queue(q2, a, b); usleep(500 * 1000); std::cout << "Out of order queue: Execution time\n"; multi_queue(q2, a, b); // end out-of-order submission return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffers/buf-kern2.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 25; constexpr int STEPS = 100000; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; // Create 3 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); sycl::buffer<int> CBuf(&CData[0], N); Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 10; aB[i] = 20; }); }); for (int j = 0; j < STEPS; j++) { Q.submit([&](auto &h) { // Create device accessors. sycl::accessor aA(ABuf, h); sycl::accessor aB(BBuf, h); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] = (aA[i] < aB[i]) ? -1 : 1; aA[i] += aC[i]; aB[i] -= aC[i]; }); }); } // end for // Create host accessors. const sycl::host_accessor haA(ABuf); const sycl::host_accessor haB(BBuf); printf("%d %d\n", haA[N / 2], haB[N / 2]); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/buffers/buf-kern1.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <stdio.h> constexpr int N = 25; constexpr int STEPS = 100000; int main() { int AData[N]; int BData[N]; int CData[N]; sycl::queue Q; // Create 2 buffers, each holding N integers sycl::buffer<int> ABuf(&AData[0], N); sycl::buffer<int> BBuf(&BData[0], N); Q.submit([&](auto &h) { // Create device accessors. // The property no_init lets the runtime know that the // previous contents of the buffer can be discarded. sycl::accessor aA(ABuf, h, sycl::write_only, sycl::no_init); sycl::accessor aB(BBuf, h, sycl::write_only, sycl::no_init); h.parallel_for(N, [=](auto i) { aA[i] = 10; aB[i] = 20; }); }); for (int j = 0; j < STEPS; j++) { sycl::buffer<int> CBuf(&CData[0], N); Q.submit([&](auto &h) { // Create device accessors. sycl::accessor aA(ABuf, h); sycl::accessor aB(BBuf, h); sycl::accessor aC(CBuf, h); h.parallel_for(N, [=](auto i) { aC[i] = (aA[i] < aB[i]) ? -1 : 1; aA[i] += aC[i]; aB[i] -= aC[i]; }); }); } // end for // Create host accessors. const sycl::host_accessor haA(ABuf); const sycl::host_accessor haB(BBuf); printf("%d %d\n", haA[N / 2], haB[N / 2]); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/matrix/matrix.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "multiply.hpp" #include <iostream> typedef unsigned long long UINT64; #define xstr(s) x_str(s) #define x_str(s) #s using namespace std; // routine to initialize an array with data void InitArr(TYPE row, TYPE col, TYPE off, TYPE a[][NUM]) { int i, j; for (i = 0; i < NUM; i++) { for (j = 0; j < NUM; j++) { a[i][j] = row * i + col * j + off; } } } // routine to print out contents of small arrays void PrintArr(char *name, TYPE Array[][NUM]) { int i, j; cout << "\n" << name << "\n"; for (i = 0; i < NUM; i++) { for (j = 0; j < NUM; j++) { cout << Array[i][j] << "\t"; } cout << endl; } } int main() { char *buf1, *buf2, *buf3, *buf4; char *addr1, *addr2, *addr3, *addr4; Array *a, *b, *c, *t; int Offset_Addr1 = 128, Offset_Addr2 = 192, Offset_Addr3 = 0, Offset_Addr4 = 64; // malloc arrays space buf1 = new char[NUM * NUM * (sizeof(double)) + 1024]; cout << "Address of buf1 = " << buf1 << endl; addr1 = buf1 + 256 - ((UINT64)buf1 % 256) + (UINT64)Offset_Addr1; cout << "Offset of buf1 = " << addr1 << endl; buf2 = new char[NUM * NUM * (sizeof(double)) + 1024]; cout << "Address of buf2 = " << buf2 << endl; addr2 = buf2 + 256 - ((UINT64)buf2 % 256) + (UINT64)Offset_Addr2; cout << "Offset of buf2 = " << addr2 << endl; buf3 = new char[NUM * NUM * (sizeof(double)) + 1024]; cout << "Address of buf3 = " << buf3 << endl; addr3 = buf3 + 256 - ((UINT64)buf3 % 256) + (UINT64)Offset_Addr3; cout << "Offset of buf3 = " << addr3 << endl; buf4 = new char[NUM * NUM * (sizeof(double)) + 1024]; cout << "Address of buf4 = " << buf4 << endl; addr4 = buf4 + 256 - ((UINT64)buf4 % 256) + (UINT64)Offset_Addr4; cout << "Offset of buf4 = " << addr4 << endl; a = (Array *)addr1; b = (Array *)addr2; c = (Array *)addr3; t = (Array *)addr4; // initialize the arrays with data InitArr(3, -2, 1, a); InitArr(-2, 1, 3, b); cout << "Using multiply kernel: " << xstr(MULTIPLY) << "\n"; // start timing the matrix multiply code TimeInterval matrix_time; ParallelMultiply(NUM, a, b, c, t); double matrix_elapsed = matrix_time.Elapsed(); cout << "Elapsed Time: " << matrix_elapsed << "s\n"; // free memory delete[] buf1; delete[] buf2; delete[] buf3; delete[] buf4; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/matrix/multiply.hpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= constexpr int MAXTHREADS = 16; constexpr int NUM = 1024; constexpr int MATRIXTILESIZE = 16; constexpr int WPT = 8; #include <CL/sycl.hpp> // exception handler /* The exception_list parameter is an iterable list of std::exception_ptr objects. But those pointers are not always directly readable. So, we rethrow the pointer, catch it, and then we have the exception itself. Note: depending upon the operation there may be several exceptions. */ auto exception_handler = [](sycl::exception_list exceptionList) { for (std::exception_ptr const &e : exceptionList) { try { std::rethrow_exception(e); } catch (cl::sycl::exception const &e) { std::terminate(); // exit the process immediately. } } }; typedef float TYPE; typedef TYPE Array[NUM]; class TimeInterval { public: TimeInterval() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; // Select which multiply kernel to use via the following macro so that the // kernel being used can be reported when the test is run. #define MULTIPLY multiply1_2 extern void multiply1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]); extern void multiply1_1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]); extern void multiply1_2(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]); extern void ParallelMultiply(int msize, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]);
hpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/matrix/multiply.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // matrix multiply routines #include "multiply.hpp" #include <CL/sycl.hpp> #include <array> using namespace std; template <typename T> class Matrix1; template <typename T> class Matrix1_1; template <typename T> class Matrix1_2; // Basic matrix multiply void multiply1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]) { int i, j, k; // Declare a deviceQueue sycl::queue q(sycl::default_selector_v, exception_handler); cout << "Running on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Declare a 2 dimensional range sycl::range<2> matrix_range{NUM, NUM}; // Declare 3 buffers and Initialize them sycl::buffer<TYPE, 2> bufferA((TYPE *)a, matrix_range); sycl::buffer<TYPE, 2> bufferB((TYPE *)b, matrix_range); sycl::buffer<TYPE, 2> bufferC((TYPE *)c, matrix_range); // Submit our job to the queue q.submit([&](auto &h) { // Declare 3 accessors to our buffers. The first 2 read and the last // read_write sycl::accessor accessorA(bufferA, h, sycl::read_only); sycl::accessor accessorB(bufferB, h, sycl::read_only); sycl::accessor accessorC(bufferC, h); // Execute matrix multiply in parallel over our matrix_range // ind is an index into this range h.parallel_for(matrix_range, [=](sycl::id<2> ind) { int k; for (k = 0; k < NUM; k++) { // Perform computation ind[0] is row, ind[1] is col accessorC[ind[0]][ind[1]] += accessorA[ind[0]][k] * accessorB[k][ind[1]]; } }); }).wait_and_throw(); } // multiply1 // Replaces accessorC reference with a local variable void multiply1_1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]) { int i, j, k; // Declare a deviceQueue sycl::queue q(sycl::default_selector_v, exception_handler); cout << "Running on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Declare a 2 dimensional range sycl::range<2> matrix_range{NUM, NUM}; // Declare 3 buffers and Initialize them sycl::buffer<TYPE, 2> bufferA((TYPE *)a, matrix_range); sycl::buffer<TYPE, 2> bufferB((TYPE *)b, matrix_range); sycl::buffer<TYPE, 2> bufferC((TYPE *)c, matrix_range); // Submit our job to the queue q.submit([&](auto &h) { // Declare 3 accessors to our buffers. The first 2 read and the last // read_write sycl::accessor accessorA(bufferA, h, sycl::read_only); sycl::accessor accessorB(bufferB, h, sycl::read_only); sycl::accessor accessorC(bufferC, h); // Execute matrix multiply in parallel over our matrix_range // ind is an index into this range h.parallel_for(matrix_range, [=](sycl::id<2> ind) { int k; TYPE acc = 0.0; for (k = 0; k < NUM; k++) { // Perform computation ind[0] is row, ind[1] is col acc += accessorA[ind[0]][k] * accessorB[k][ind[1]]; } accessorC[ind[0]][ind[1]] = acc; }); }).wait_and_throw(); } // Replaces accessorC reference with a local variable and adds matrix tiling void multiply1_2(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]) { int i, j, k; // Declare a deviceQueue sycl::queue q(sycl::default_selector_v, exception_handler); cout << "Running on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // Declare a 2 dimensional range sycl::range<2> matrix_range{NUM, NUM}; sycl::range<2> tile_range{MATRIXTILESIZE, MATRIXTILESIZE}; // Declare 3 buffers and Initialize them sycl::buffer<TYPE, 2> bufferA((TYPE *)a, matrix_range); sycl::buffer<TYPE, 2> bufferB((TYPE *)b, matrix_range); sycl::buffer<TYPE, 2> bufferC((TYPE *)c, matrix_range); // Submit our job to the queue q.submit([&](auto &h) { // Declare 3 accessors to our buffers. The first 2 read and the last // read_write sycl::accessor accessorA(bufferA, h, sycl::read_only); sycl::accessor accessorB(bufferB, h, sycl::read_only); sycl::accessor accessorC(bufferC, h); // Create matrix tiles sycl::local_accessor<TYPE, 2> aTile( sycl::range<2>(MATRIXTILESIZE, MATRIXTILESIZE), h); sycl::local_accessor<TYPE, 2> bTile( sycl::range<2>(MATRIXTILESIZE, MATRIXTILESIZE), h); // Execute matrix multiply in parallel over our matrix_range // ind is an index into this range h.parallel_for(sycl::nd_range<2>(matrix_range, tile_range), [=](cl::sycl::nd_item<2> it) { int k; const int numTiles = NUM / MATRIXTILESIZE; const int row = it.get_local_id(0); const int col = it.get_local_id(1); const int globalRow = MATRIXTILESIZE * it.get_group(0) + row; const int globalCol = MATRIXTILESIZE * it.get_group(1) + col; TYPE acc = 0.0; for (int t = 0; t < numTiles; t++) { const int tiledRow = MATRIXTILESIZE * t + row; const int tiledCol = MATRIXTILESIZE * t + col; aTile[row][col] = accessorA[globalRow][tiledCol]; bTile[row][col] = accessorB[tiledRow][globalCol]; it.barrier(sycl::access::fence_space::local_space); for (k = 0; k < MATRIXTILESIZE; k++) { // Perform computation ind[0] is row, ind[1] is col acc += aTile[row][k] * bTile[k][col]; } it.barrier(sycl::access::fence_space::local_space); } accessorC[globalRow][globalCol] = acc; }); }).wait_and_throw(); } // multiply1_2 void ParallelMultiply(int msize, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]) { int NTHREADS = MAXTHREADS; int MSIZE = NUM; MULTIPLY(MSIZE, NTHREADS, 0, a, b, c, t); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/local-global-sync/atomics_reduction.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <unistd.h> #include <vector> // Summation of 256k 'one' values constexpr size_t N = 1024 * 256; // Number of repetitions constexpr int repetitions = 10000; // expected vlaue of sum int sum_expected = N; static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; int reductionIntSerial(sycl::queue &q, std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); // initialize data on the device q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); q.wait(); double elapsed = 0; for (int i = 0; i < iter; i++) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { size_t glob_id = index[0]; sum_acc[0] = 0; }); }); Timer timer; // reductionIntSerial main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { int glob_id = index[0]; if (glob_id == 0) { int sum = 0; for (int i = 0; i < N; i++) sum += buf_acc[i]; sum_acc[0] = sum; } }); }); // reductionIntSerial main end q.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ReductionIntSerial = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: ReductionIntSerial Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end reductionIntSerial int reductionIntBarrier(sycl::queue &q, std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; int work_group_size = 512; int num_work_items = work_group_size; int num_work_groups = num_work_items / work_group_size; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); // initialize data on the device q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); double elapsed = 0; for (int i = 0; i < iter; i++) { // reductionIntBarrier main begin Timer timer; q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{work_group_size, work_group_size}, [=](sycl::nd_item<1> item) { size_t loc_id = item.get_local_id(0); int sum = 0; for (int i = loc_id; i < data_size; i += num_work_items) sum += buf_acc[i]; scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < i) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) sum_acc[0] = scratch[0]; }); }); // reductionIntBarrier main end q.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ReductionIntBarrier = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: ReductionIntBarrier Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end ReductioNIntBarrier int reductionIntAtomic(sycl::queue &q, std::vector<int> &data, int iter) { const size_t data_size = data.size(); int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); // initialize data on the device q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); q.wait(); double elapsed = 0; for (int i = 0; i < iter; i++) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { sum_acc[index] = 0; }); }); Timer timer; // reductionIntAtomic main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { size_t glob_id = index[0]; auto v = sycl::atomic_ref<int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space>( sum_acc[0]); v.fetch_add(buf_acc[glob_id]); }); }); // reductionIntAtomic main end q.wait(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; elapsed += timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ReductionIntAtomic = " << elapsed << "s" << " sum = " << sum << "\n"; else std::cout << "ERROR: ReductionIntAtomic Expected " << sum_expected << " but got " << sum << "\n"; return sum; } // end reductionIntAtomic int main(int argc, char *argv[]) { sycl::queue q{sycl::default_selector_v, exception_handler}; std::cout << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::vector<int> data(N, 1); reductionIntSerial(q, data, 1000); reductionIntAtomic(q, data, 1000); reductionIntBarrier(q, data, 1000); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-kernel/naive_matmul.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <cfloat> #include <chrono> #include <iostream> int main(int argc, char **argv) { if (argc != 3) { std::cout << "Usage: " << argv[0] << " <m> <k>\n"; exit(1); } // Set matrix dimensions unsigned int m, k, n, M, K, N; M = N = std::stoi(argv[1]); K = std::stoi(argv[2]); // Allocate matrices A, B, and C float **A = new float *[M]; for (m = 0; m < M; m++) A[m] = new float[K]; float **B = new float *[K]; for (k = 0; k < K; k++) B[k] = new float[N]; float **C = new float *[M]; for (m = 0; m < M; m++) C[m] = new float[N]; // Initialize matrices A and B for (m = 0; m < M; m++) for (k = 0; k < K; k++) A[m][k] = 1.0; for (k = 0; k < K; k++) for (n = 0; n < N; n++) B[k][n] = 1.0; auto start_time = std::chrono::system_clock::now(); // Start timer // Multiply matrices A and B for (m = 0; m < M; m++) { for (n = 0; n < N; n++) { C[m][n] = 0.0; for (k = 0; k < K; k++) { C[m][n] += A[m][k] * B[k][n]; } } } // End matrix multiplication auto end_time = std::chrono::system_clock::now(); // Stop timer std::chrono::duration<double> elapsed_time = end_time - start_time; // Check for correctness bool errors(false); for (m = 0; m < M; m++) { for (n = 0; n < N; n++) { if (std::abs(C[m][n] - K) > FLT_MIN) { errors = true; break; } } } if (errors) std::cout << "Program completed with errors." << std::endl; else { std::cout << "Program completed without errors." << std::endl; std::cout << "Naive C++ multiplication of " << M << " x " << K << " and " << K << " x " << N << " matrices took " << elapsed_time.count() << " seconds." << std::endl; } // Cleanup delete[] A; delete[] B; delete[] C; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-kernel/naive_matmul_sycl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "CL/sycl.hpp" #include <cfloat> #include <iostream> int main(int argc, char **argv) { // Enter matrix dimensions unsigned int m, k, n, M, K, N; if (argc < 3) { std::cout << "Usage: naive_matmul_sycl M K" << std::endl; return -1; } M = N = std::stoi(argv[1]); K = std::stoi(argv[2]); // Initialize SYCL queue sycl::queue Q(sycl::default_selector_v); auto sycl_device = Q.get_device(); auto sycl_context = Q.get_context(); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Allocate matrices A, B, and C in USM auto A = sycl::malloc_shared<float *>(M, sycl_device, sycl_context); for (m = 0; m < M; m++) A[m] = sycl::malloc_shared<float>(K, sycl_device, sycl_context); auto B = sycl::malloc_shared<float *>(K, sycl_device, sycl_context); for (k = 0; k < K; k++) B[k] = sycl::malloc_shared<float>(N, sycl_device, sycl_context); auto C = sycl::malloc_shared<float *>(M, sycl_device, sycl_context); for (m = 0; m < M; m++) C[m] = sycl::malloc_shared<float>(N, sycl_device, sycl_context); // Initialize matrices A, B, and C for (m = 0; m < M; m++) for (k = 0; k < K; k++) A[m][k] = 1.0; for (k = 0; k < K; k++) for (n = 0; n < N; n++) B[k][n] = 1.0; for (m = 0; m < M; m++) for (n = 0; n < N; n++) C[m][n] = 0.0; auto start_time = std::chrono::system_clock::now(); // Start timer // Offload matrix multiplication kernel Q.parallel_for(sycl::range<2>{M, N}, [=](sycl::id<2> id) { unsigned int m = id[0]; unsigned int n = id[1]; float sum = 0.0; for (unsigned int k = 0; k < K; k++) sum += A[m][k] * B[k][n]; C[m][n] = sum; }).wait(); // End matrix multiplication auto end_time = std::chrono::system_clock::now(); // Stop timer std::chrono::duration<double> elapsed_time = end_time - start_time; // Check for correctness bool errors(false); for (m = 0; m < M; m++) { for (n = 0; n < N; n++) { if (std::abs(C[m][n] - K) > FLT_MIN) { errors = true; break; } } } if (errors) std::cout << "Program completed with errors." << std::endl; else { std::cout << "Program completed without errors." << std::endl; std::cout << "Naive DPC++ multiplication of " << M << " x " << K << " and " << K << " x " << N << " matrices took " << elapsed_time.count() << " seconds." << std::endl; } // Cleanup sycl::free(A, Q); sycl::free(B, Q); sycl::free(C, Q); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-kernel/matmul_onemkl.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "CL/sycl.hpp" #include "mkl.h" #include "oneapi/mkl/blas.hpp" #include <cfloat> #include <iostream> int main(int argc, char **argv) { // Enter matrix dimensions unsigned int M, K, N; if (argc < 3) { std::cout << "Usage: matmul_onemkl N K" << std::endl; return -1; } M = N = std::stoi(argv[1]); K = std::stoi(argv[2]); // Initialize SYCL queue sycl::queue Q(sycl::default_selector_v); auto sycl_device = Q.get_device(); auto sycl_context = Q.get_context(); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Declare and allocate matrices in USM auto A = sycl::malloc_shared<float>(M * K, sycl_device, sycl_context); auto B = sycl::malloc_shared<float>(K * N, sycl_device, sycl_context); auto C = sycl::malloc_shared<float>(M * N, sycl_device, sycl_context); // Initialize matrices A and B for (unsigned int i = 0; i < M * K; i++) A[i] = 1.0; for (unsigned int i = 0; i < K * N; i++) B[i] = 1.0; auto start_time = std::chrono::system_clock::now(); // Start timer // Offload matrix multiplication float alpha = 1.0, beta = 0.0; oneapi::mkl::transpose transA = oneapi::mkl::transpose::nontrans; oneapi::mkl::transpose transB = oneapi::mkl::transpose::nontrans; sycl::event gemm_done; std::vector<sycl::event> gemm_dependencies; gemm_done = oneapi::mkl::blas::gemm(Q, transA, transB, M, N, K, alpha, A, M, B, K, beta, C, M, gemm_dependencies); gemm_done.wait(); auto end_time = std::chrono::system_clock::now(); // Stop timer std::chrono::duration<double> elapsed_time = end_time - start_time; // Check for correctness and report run time bool errors(false); for (unsigned int i = 0; i < M * N; i++) if (std::abs(C[i] - K) > FLT_MIN) { errors = true; break; } if (errors) std::cout << "Program completed with errors." << std::endl; else { std::cout << "Program completed without errors." << std::endl; std::cout << "oneMKL SGEMM of " << M << " x " << K << " and " << K << " x " << N << " matrices took " << elapsed_time.count() << " seconds." << std::endl; } // Cleanup sycl::free(A, Q); sycl::free(B, Q); sycl::free(C, Q); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/exec-model/simple.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin auto command_group = [&](auto &cgh) { cgh.parallel_for(sycl::range<3>(64, 64, 64), // global range [=](item<3> it) { // (kernel code) }) } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/exec-model/vaddsync.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <array> #include <chrono> #include <iostream> auto d_selector = sycl::default_selector_v; // Array type and data size for this example. constexpr size_t array_size = 3 * 5 * 7 * (1 << 18); typedef std::array<int, array_size> IntArray; #define mysize (1 << 18) // VectorAdd3 template <int groups, int wg_size, int sg_size> int VectorAdd3(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum, int iter) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); size_t num_groups = groups; auto start = std::chrono::steady_clock::now(); q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for( sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) [[intel::reqd_sub_group_size(sg_size)]] { size_t grp_id = index.get_group()[0]; size_t loc_id = index.get_local_id(); size_t start = grp_id * mysize; size_t end = start + mysize; for (int j = 0; j < iter; j++) for (size_t i = start + loc_id; i < end; i += wg_size) { sum_acc[i] = a_acc[i] + b_acc[i]; } }); }); q.wait(); auto end = std::chrono::steady_clock::now(); std::cout << "VectorAdd3<" << groups << "> completed on device - took " << (end - start).count() << " u-secs\n"; return ((end - start).count()); } // end VectorAdd3 // VectorAdd4 template <int groups, int wg_size, int sg_size> int VectorAdd4(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum, int iter) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); size_t num_groups = groups; auto start = std::chrono::steady_clock::now(); q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for( sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) [[intel::reqd_sub_group_size(sg_size)]] { index.barrier(sycl::access::fence_space::local_space); size_t grp_id = index.get_group()[0]; size_t loc_id = index.get_local_id(); size_t start = grp_id * mysize; size_t end = start + mysize; for (int j = 0; j < iter; j++) { for (size_t i = start + loc_id; i < end; i += wg_size) { sum_acc[i] = a_acc[i] + b_acc[i]; } } }); }); q.wait(); auto end = std::chrono::steady_clock::now(); std::cout << "VectorAdd4<" << groups << "> completed on device - took " << (end - start).count() << " u-secs\n"; return ((end - start).count()); } // end VectorAdd4 void InitializeArray(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = i; } void Initialize(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = 0; } IntArray a, b, sum; int main() { sycl::queue q(d_selector); InitializeArray(a); InitializeArray(b); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::cout << "Vector size: " << a.size() << "\n"; // check results Initialize(sum); VectorAdd3<6, 320, 8>(q, a, b, sum, 1); for (int i = 0; i < mysize; i++) if (sum[i] != 2 * i) { std::cout << "add3 Did not match\n"; } Initialize(sum); VectorAdd4<6, 320, 8>(q, a, b, sum, 1); for (int i = 0; i < mysize; i++) if (sum[i] != 2 * i) { std::cout << "add4 Did not match\n"; } // group1 Initialize(sum); VectorAdd3<8, 320, 8>(q, a, b, sum, 10000); Initialize(sum); VectorAdd4<8, 320, 8>(q, a, b, sum, 10000); // end group1 // group2 Initialize(sum); VectorAdd3<24, 224, 8>(q, a, b, sum, 10000); Initialize(sum); VectorAdd4<24, 224, 8>(q, a, b, sum, 10000); // end group2 return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/exec-model/barrier.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin auto command_group = [&](auto &cgh) { cgh.parallel_for(nd_range(sycl::range(64, 64, 128), // global range sycl::range(1, R, 128) // local range ), [=](sycl::nd_item<3> item) { // (kernel code) // Internal synchronization item.barrier(access::fence_space::global_space); // (kernel code) }) } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/exec-model/local.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin auto command_group = [&](auto &cgh) { // local memory variables shared among work items sycl::accessor<int, 1, sycl::access::mode::read_write, sycl::access::target::local> myLocal(sycl::range(R), cgh); cgh.parallel_for(nd_range(sycl::range<3>(64, 64, 128), // global range sycl::range<3>(1, R, 128) // local range ), [=](ngroup<3> myGroup) { // (work group code) myLocal[myGroup.get_local_id()[1]] = ... }) } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/exec-model/vec-add.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <array> #include <chrono> #include <iostream> auto d_selector = sycl::default_selector_v; // Array type and data size for this example. constexpr size_t array_size = 3 * 5 * 7 * (1 << 17); typedef std::array<int, array_size> IntArray; #define mysize (1 << 17) int VectorAdd1(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum, int iter) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); auto start = std::chrono::steady_clock::now(); auto e = q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_items, [=](auto i) { for (int j = 0; j < iter; j++) sum_acc[i] = a_acc[i] + b_acc[i]; }); }); q.wait(); auto end = std::chrono::steady_clock::now(); std::cout << "VectorAdd1 completed on device - took " << (end - start).count() << " u-secs\n"; return ((end - start).count()); } // end VectorAdd1 template <int groups> int VectorAdd2(sycl::queue &q, const IntArray &a, const IntArray &b, IntArray &sum, int iter) { sycl::range num_items{a.size()}; sycl::buffer a_buf(a); sycl::buffer b_buf(b); sycl::buffer sum_buf(sum.data(), num_items); size_t num_groups = groups; size_t wg_size = 512; // get the max wg_sie instead of 512 size_t wg_size = 512; auto start = std::chrono::steady_clock::now(); q.submit([&](auto &h) { // Input accessors sycl::accessor a_acc(a_buf, h, sycl::read_only); sycl::accessor b_acc(b_buf, h, sycl::read_only); // Output accessor sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for( sycl::nd_range<1>(num_groups * wg_size, wg_size), [=](sycl::nd_item<1> index) [[intel::reqd_sub_group_size(32)]] { size_t grp_id = index.get_group()[0]; size_t loc_id = index.get_local_id(); size_t start = grp_id * mysize; size_t end = start + mysize; for (int j = 0; j < iter; j++) for (size_t i = start + loc_id; i < end; i += wg_size) { sum_acc[i] = a_acc[i] + b_acc[i]; } }); }); q.wait(); auto end = std::chrono::steady_clock::now(); std::cout << "VectorAdd2<" << groups << "> completed on device - took " << (end - start).count() << " u-secs\n"; return ((end - start).count()); } // end VectorAdd2 void InitializeArray(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = i; } void Initialize(IntArray &a) { for (size_t i = 0; i < a.size(); i++) a[i] = 0; } IntArray a, b, sum; int main() { sycl::queue q(d_selector); InitializeArray(a); InitializeArray(b); std::cout << "Running on device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::cout << "Vector size: " << a.size() << "\n"; // check results Initialize(sum); VectorAdd1(q, a, b, sum, 1); for (int i = 0; i < mysize; i++) if (sum[i] != 2 * i) { std::cout << "add1 Did not match\n"; } Initialize(sum); VectorAdd2<1>(q, a, b, sum, 1); for (int i = 0; i < mysize; i++) if (sum[i] != 2 * i) { std::cout << "add2 Did not match\n"; } // time the kernels Initialize(sum); int t = VectorAdd1(q, a, b, sum, 1000); Initialize(sum); t = VectorAdd2<1>(q, a, b, sum, 1000); t = VectorAdd2<2>(q, a, b, sum, 1000); t = VectorAdd2<3>(q, a, b, sum, 1000); t = VectorAdd2<4>(q, a, b, sum, 1000); t = VectorAdd2<5>(q, a, b, sum, 1000); t = VectorAdd2<6>(q, a, b, sum, 1000); t = VectorAdd2<7>(q, a, b, sum, 1000); t = VectorAdd2<8>(q, a, b, sum, 1000); t = VectorAdd2<12>(q, a, b, sum, 1000); t = VectorAdd2<16>(q, a, b, sum, 1000); t = VectorAdd2<20>(q, a, b, sum, 1000); t = VectorAdd2<24>(q, a, b, sum, 1000); t = VectorAdd2<28>(q, a, b, sum, 1000); t = VectorAdd2<32>(q, a, b, sum, 1000); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/reduction/reduction_1.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <unistd.h> #include <vector> // Summation of 10M 'one' values constexpr size_t N = (10 * 1024 * 1024); constexpr int warm_up_token = -1; // expected value of sum int sum_expected = N; static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; void flush_cache(sycl::queue &q, sycl::buffer<int> &flush_buf, const size_t flush_size) { auto ev = q.submit([&](auto &h) { sycl::accessor flush_acc(flush_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(flush_size, [=](auto index) { flush_acc[index] = 1; }); }); ev.wait_and_throw(); } int ComputeSerial(std::vector<int> &data, [[maybe_unused]] std::vector<int> &flush, int iter) { const size_t data_size = data.size(); Timer timer; int sum; // ComputeSerial main begin for (int it = 0; it < iter; it++) { sum = 0; for (size_t i = 0; i < data_size; ++i) { sum += data[i]; } } // ComputeSerial main end double elapsed = timer.Elapsed() / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeSerial = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeSerial Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeSerial int ComputeParallel1(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto) { sum_acc[0] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel1 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { size_t glob_id = index[0]; auto v = sycl::atomic_ref<int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space>( sum_acc[0]); v.fetch_add(buf_acc[glob_id]); }); // ComputeParallel1 main end }); q.wait(); { // ensure limited life-time of host accessor since it blocks the queue sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; } // do not measure time of warm-up iteration to exclude JIT compilation time elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel1 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel1 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel1 int ComputeParallel2(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_processing_elements = q.get_device().get_info<sycl::info::device::max_compute_units>(); int BATCH = (N + num_processing_elements - 1) / num_processing_elements; std::cout << "Num work items = " << num_processing_elements << std::endl; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_processing_elements); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { // init the acummulator on device q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_processing_elements, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel2 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_processing_elements, [=](auto index) { size_t glob_id = index[0]; size_t start = glob_id * BATCH; size_t end = (glob_id + 1) * BATCH; if (end > N) end = N; int sum = 0; for (size_t i = start; i < end; ++i) sum += buf_acc[i]; accum_acc[glob_id] = sum; }); }); // ComputeParallel2 main end q.wait(); { sum = 0; sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_processing_elements; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel2 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel2 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel2 int ComputeTreeReduction1(sycl::queue &q, std::vector<int> &data, std::vector<int> flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int work_group_size = 256; int num_work_items = data_size; int num_work_groups = num_work_items / work_group_size; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping one stage reduction example " << "as the device does not support required work_group_size" << std::endl; return 0; } std::cout << "One Stage Reduction with " << num_work_items << std::endl; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_work_groups); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeTreeReduction1 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>(num_work_items, work_group_size), [=](sycl::nd_item<1> item) { size_t global_id = item.get_global_id(0); int local_id = item.get_local_id(0); int group_id = item.get_group(0); if (global_id < data_size) scratch[local_id] = buf_acc[global_id]; else scratch[local_id] = 0; // Do a tree reduction on items in work-group for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (local_id < i) scratch[local_id] += scratch[local_id + i]; } if (local_id == 0) accum_acc[group_id] = scratch[0]; }); }); // ComputeTreeReduction1 main end q.wait(); { sycl::host_accessor h_acc(accum_buf); sum = 0; for (int i = 0; i < num_work_groups; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeTreeReduction1 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeTreeReduction1 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeTreeReduction int ComputeTreeReduction2(sycl::queue &q, std::vector<int> &data, std::vector<int> flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int work_group_size = 256; int num_work_items1 = data_size; int num_work_groups1 = num_work_items1 / work_group_size; int num_work_items2 = num_work_groups1; int num_work_groups2 = num_work_items2 / work_group_size; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping two stage reduction example " << "as the device does not support required work_group_size" << std::endl; return 0; } std::cout << "Two Stage Reduction with " << num_work_items1 << " in stage 1 and " << num_work_items2 << " in stage2" << std::endl; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum1_buf(num_work_groups1); sycl::buffer<int> accum2_buf(num_work_groups2); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum1_acc(accum1_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups1, [=](auto index) { accum1_acc[index] = 0; }); }); q.submit([&](auto &h) { sycl::accessor accum2_acc(accum2_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups2, [=](auto index) { accum2_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeTreeReduction2 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum1_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>(num_work_items1, work_group_size), [=](sycl::nd_item<1> item) { size_t global_id = item.get_global_id(0); int local_id = item.get_local_id(0); int group_id = item.get_group(0); if (global_id < data_size) scratch[local_id] = buf_acc[global_id]; else scratch[local_id] = 0; // Do a tree reduction on items in work-group for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (local_id < i) scratch[local_id] += scratch[local_id + i]; } if (local_id == 0) accum_acc[group_id] = scratch[0]; }); }); q.submit([&](auto &h) { sycl::accessor buf_acc(accum1_buf, h, sycl::read_only); sycl::accessor accum_acc(accum2_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>(num_work_items2, work_group_size), [=](sycl::nd_item<1> item) { size_t global_id = item.get_global_id(0); int local_id = item.get_local_id(0); int group_id = item.get_group(0); if (global_id < static_cast<size_t>(num_work_items2)) scratch[local_id] = buf_acc[global_id]; else scratch[local_id] = 0; // Do a tree reduction on items in work-group for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (local_id < i) scratch[local_id] += scratch[local_id + i]; } if (local_id == 0) accum_acc[group_id] = scratch[0]; }); }); // ComputeTreeReduction2 main end q.wait(); { sycl::host_accessor h_acc(accum2_buf); sum = 0; for (int i = 0; i < num_work_groups2; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeTreeReduction2 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeTreeReduction2 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeTreeReduction2 int ComputeParallel3(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_processing_elements = q.get_device().get_info<sycl::info::device::max_compute_units>(); int vec_size = q.get_device().get_info<sycl::info::device::native_vector_width_int>(); int num_work_items = num_processing_elements * vec_size; std::cout << "Num work items = " << num_work_items << std::endl; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_work_items); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_items, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel3 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_items, [=](auto index) { size_t glob_id = index[0]; int sum = 0; for (size_t i = glob_id; i < data_size; i += num_work_items) sum += buf_acc[i]; accum_acc[glob_id] = sum; }); }); // ComputeParallel3 main end q.wait(); { sum = 0; sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_work_items; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel3 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel3 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel3 int ComputeParallel4(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; int work_group_size = 256; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping ComputeParallel4 example " << "as the device does not support required work_group_size" << std::endl; return 0; } const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_processing_elements = q.get_device().get_info<sycl::info::device::max_compute_units>(); int vec_size = q.get_device().get_info<sycl::info::device::native_vector_width_int>(); int num_work_items = num_processing_elements * vec_size * work_group_size; std::cout << "Num work items = " << num_work_items << std::endl; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_work_items); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_items, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel4 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_items, [=](auto index) { size_t glob_id = index[0]; int sum = 0; for (size_t i = glob_id; i < data_size; i += num_work_items) sum += buf_acc[i]; accum_acc[glob_id] = sum; }); }); // ComputeParallel4 main end q.wait(); { sum = 0; sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_work_items; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel4 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel4 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel4 int ComputeParallel5(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush.size(), props); sycl::buffer<int> sum_buf(&sum, 1, props); std::cout << "Compiler built-in reduction Operator" << std::endl; double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { sum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel5 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); auto sumr = sycl::reduction(sum_buf, h, sycl::plus<>()); h.parallel_for(sycl::nd_range<1>{data_size, 256}, sumr, [=](sycl::nd_item<1> item, auto &sumr_arg) { int glob_id = item.get_global_id(0); sumr_arg += buf_acc[glob_id]; }); }); // ComputeParallel5 main end q.wait(); { sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; } elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel5 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel5 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel5 int ComputeParallel6(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; int work_group_size = 256; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping ComputeParallel6 example " << "as the device does not support required work_group_size" << std::endl; return 0; } int log2elements_per_block = 13; int elements_per_block = (1 << log2elements_per_block); // 8192 int log2workitems_per_block = 8; int workitems_per_block = (1 << log2workitems_per_block); // 256 int elements_per_work_item = elements_per_block / workitems_per_block; int mask = ~(~0 << log2workitems_per_block); int num_work_items = data_size / elements_per_work_item; int num_work_groups = num_work_items / work_group_size; std::cout << "Num work items = " << num_work_items << std::endl; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_work_groups); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel6 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) { size_t glob_id = item.get_global_id(0); size_t group_id = item.get_group(0); size_t loc_id = item.get_local_id(0); int offset = ((glob_id >> log2workitems_per_block) << log2elements_per_block) + (glob_id & mask); int sum = 0; for (int i = 0; i < elements_per_work_item; ++i) sum += buf_acc[(i << log2workitems_per_block) + offset]; scratch[loc_id] = sum; // Serial Reduction item.barrier(sycl::access::fence_space::local_space); if (loc_id == 0) { int sum = 0; for (int i = 0; i < work_group_size; ++i) sum += scratch[i]; accum_acc[group_id] = sum; } }); }); // ComputeParallel6 main end q.wait(); { sum = 0; sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_work_groups; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel6 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel6 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel6 int ComputeParallel7(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; int work_group_size = 256; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping ComputeParallel7 example " << "as the device does not support required work_group_size" << std::endl; return 0; } int log2elements_per_block = 13; int elements_per_block = (1 << log2elements_per_block); // 8192 int log2workitems_per_block = 8; int workitems_per_block = (1 << log2workitems_per_block); // 256 int elements_per_work_item = elements_per_block / workitems_per_block; int mask = ~(~0 << log2workitems_per_block); int num_work_items = data_size / elements_per_work_item; int num_work_groups = num_work_items / work_group_size; std::cout << "Num work items = " << num_work_items << std::endl; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> accum_buf(num_work_groups); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups, [=](auto index) { accum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel7 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<int, 1> scratch(work_group_size, h); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) { size_t glob_id = item.get_global_id(0); size_t group_id = item.get_group(0); size_t loc_id = item.get_local_id(0); int offset = ((glob_id >> log2workitems_per_block) << log2elements_per_block) + (glob_id & mask); int sum = 0; for (int i = 0; i < elements_per_work_item; ++i) sum += buf_acc[(i << log2workitems_per_block) + offset]; scratch[loc_id] = sum; // tree reduction item.barrier(sycl::access::fence_space::local_space); for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < static_cast<size_t>(i)) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) accum_acc[group_id] = scratch[0]; }); }); // ComputeParallel7 main end q.wait(); { sum = 0; sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_work_groups; ++i) sum += h_acc[i]; elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel7 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel7 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel7 int ComputeParallel8(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int work_group_size = 512; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping ComputeParallel8 example " << "as the device does not support required work_group_size" << std::endl; return 0; } int log2elements_per_block = 13; int elements_per_block = (1 << log2elements_per_block); // 8192 int log2workitems_per_block = 8; int workitems_per_block = (1 << log2workitems_per_block); // 256 int elements_per_work_item = elements_per_block / workitems_per_block; int mask = ~(~0 << log2workitems_per_block); int num_work_items = data_size / elements_per_work_item; int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush.size(), props); sycl::buffer<int> sum_buf(&sum, 1, props); std::cout << "Compiler built-in reduction Operator with increased work" << std::endl; std::cout << "Elements per item = " << elements_per_work_item << std::endl; double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { sum_acc[index] = 0; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel8 main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); auto sumr = sycl::reduction(sum_buf, h, sycl::plus<>()); h.parallel_for(sycl::nd_range<1>{num_work_items, work_group_size}, sumr, [=](sycl::nd_item<1> item, auto &sumr_arg) { size_t glob_id = item.get_global_id(0); int offset = ((glob_id >> log2workitems_per_block) << log2elements_per_block) + (glob_id & mask); int sum = 0; for (int i = 0; i < elements_per_work_item; ++i) sum += buf_acc[(i << log2workitems_per_block) + offset]; sumr_arg += sum; }); }); // ComputeParallel8 main end q.wait(); { sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; } elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel8 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel8 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel8 int ComputeParallel9(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum; int work_group_size = 512; int max_work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); if (work_group_size > max_work_group_size) { std::cout << "WARNING: Skipping ComputeParallel9 example " << "as the device does not support required work_group_size" << std::endl; return 0; } int log2elements_per_work_item = 6; int elements_per_work_item = (1 << log2elements_per_work_item); // 256 int num_work_items = data_size / elements_per_work_item; int num_work_groups = num_work_items / work_group_size; std::cout << "Num work items = " << num_work_items << std::endl; std::cout << "Num work groups = " << num_work_groups << std::endl; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> res_buf(&sum, 1); sycl::buffer<sycl::vec<int, 8>> accum_buf(num_work_groups); double elapsed = 0; for (int i = warm_up_token; i < iter; ++i) { q.submit([&](auto &h) { sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_work_groups, [=](auto index) { sycl::vec<int, 8> x{0, 0, 0, 0, 0, 0, 0, 0}; accum_acc[index] = x; }); }); flush_cache(q, flush_buf, flush_size); Timer timer; // ComputeParallel9 main begin q.submit([&](auto &h) { const sycl::accessor buf_acc(buf, h); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); sycl::local_accessor<sycl::vec<int, 8>, 1l> scratch(work_group_size, h); h.parallel_for( sycl::nd_range<1>{num_work_items, work_group_size}, [=](sycl::nd_item<1> item) [[intel::reqd_sub_group_size(16)]] { size_t group_id = item.get_group(0); size_t loc_id = item.get_local_id(0); sycl::sub_group sg = item.get_sub_group(); sycl::vec<int, 8> sum{0, 0, 0, 0, 0, 0, 0, 0}; int base = (group_id * work_group_size + sg.get_group_id()[0] * sg.get_local_range()[0]) * elements_per_work_item; for (int i = 0; i < elements_per_work_item / 8; ++i) { auto buf_ptr = sycl::address_space_cast< sycl::access::address_space::global_space, sycl::access::decorated::yes>(&buf_acc[base + i * 128]); sum += sg.load<8>(buf_ptr); } scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < static_cast<size_t>(i)) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) accum_acc[group_id] = scratch[0]; }); }); // ComputeParallel9 main end q.wait(); { sycl::host_accessor h_acc(accum_buf); sycl::vec<int, 8> res{0, 0, 0, 0, 0, 0, 0, 0}; for (int i = 0; i < num_work_groups; ++i) res += h_acc[i]; sum = 0; for (int i = 0; i < 8; ++i) sum += res[i]; } elapsed += (iter == warm_up_token) ? 0 : timer.Elapsed(); } elapsed = elapsed / iter; if (sum == sum_expected) std::cout << "SUCCESS: Time ComputeParallel9 = " << elapsed << "s" << " sum = " << sum << std::endl; else std::cout << "ERROR: ComputeParallel9 Expected " << sum_expected << " but got " << sum << std::endl; return sum; } // end ComputeParallel9 int main(void) { sycl::queue q{sycl::default_selector_v, exception_handler}; std::cout << q.get_device().get_info<sycl::info::device::name>() << std::endl; std::vector<int> data(N, 1); std::vector<int> extra(N, 1); ComputeSerial(data, extra, 16); ComputeParallel1(q, data, extra, 16); ComputeParallel2(q, data, extra, 16); ComputeTreeReduction1(q, data, extra, 16); ComputeTreeReduction2(q, data, extra, 16); ComputeParallel3(q, data, extra, 16); ComputeParallel4(q, data, extra, 16); ComputeParallel5(q, data, extra, 16); ComputeParallel6(q, data, extra, 16); ComputeParallel7(q, data, extra, 16); ComputeParallel8(q, data, extra, 16); ComputeParallel9(q, data, extra, 16); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/work-group-size/vec-copy.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <unistd.h> #include <vector> // Copy of 32M 'one' values constexpr size_t N = (32 * 1024 * 1024); typedef unsigned int uint; void check_result(double elapsed, std::string msg, std::vector<int> &res) { bool ok = true; for (uint i = 0; i < N; i++) { if (res[i] != 1) { ok = false; std::cout << "ERROR: Mismatch at " << i << "\n"; } } if (ok) std::cout << "SUCCESS: Time " << msg << " = " << elapsed << "s\n"; } static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; void vec_copy(sycl::queue &q, std::vector<int> &src, std::vector<int> &dst, std::vector<int> &flush, int iter, int work_group_size) { const size_t data_size = src.size(); const size_t flush_size = flush.size(); const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_work_items = data_size; double elapsed = 0; { sycl::buffer<int> src_buf(src.data(), data_size, props); sycl::buffer<int> dst_buf(dst.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); for (int i = 0; i < iter; i++) { // flush the cache q.submit([&](auto &h) { sycl::accessor flush_acc(flush_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(flush_size, [=](auto index) { flush_acc[index] = 1; }); }); Timer timer; q.submit([&](auto &h) { sycl::accessor src_acc(src_buf, h, sycl::read_only); sycl::accessor dst_acc(dst_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(sycl::nd_range<1>(num_work_items, work_group_size), [=](sycl::nd_item<1> item) [[intel::reqd_sub_group_size(16)]] { int glob_id = item.get_global_id(); dst_acc[glob_id] = src_acc[glob_id]; }); }); q.wait(); elapsed += timer.Elapsed(); } } elapsed = elapsed / iter; std::string msg = "with work-group-size=" + std::to_string(work_group_size); check_result(elapsed, msg, dst); } // vec_copy end int main(void) { sycl::queue q{sycl::gpu_selector_v, exception_handler}; std::cout << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::vector<int> src(N, 1); std::vector<int> dst(N, 0); std::vector<int> extra(N, 1); // call begin int vec_size = 16; int work_group_size = vec_size; vec_copy(q, src, dst, extra, 16, work_group_size); work_group_size = 2 * vec_size; vec_copy(q, src, dst, extra, 16, work_group_size); work_group_size = 4 * vec_size; vec_copy(q, src, dst, extra, 16, work_group_size); work_group_size = 8 * vec_size; vec_copy(q, src, dst, extra, 16, work_group_size); work_group_size = 16 * vec_size; vec_copy(q, src, dst, extra, 16, work_group_size); // call end }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/work-group-size/reduction-wg-size.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <unistd.h> #include <vector> // Summation of 10M 'one' values constexpr size_t N = (10 * 1024 * 1024); // expected vlaue of sum int sum_expected = N; void init_data(sycl::queue &q, sycl::buffer<int> &buf, int data_size) { // initialize data on the device q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::write_only, sycl::no_init); h.parallel_for(data_size, [=](auto index) { buf_acc[index] = 1; }); }); q.wait(); } void check_result(double elapsed, std::string msg, int sum) { if (sum == sum_expected) std::cout << "SUCCESS: Time is " << elapsed << "s" << msg << "\n"; else std::cout << "ERROR: Expected " << sum_expected << " but got " << sum << "\n"; } static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; void reduction(sycl::queue &q, std::vector<int> &data, std::vector<int> &flush, int iter, int work_group_size) { const size_t data_size = data.size(); const size_t flush_size = flush.size(); int sum = 0; const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; // int vec_size = // q.get_device().get_info<sycl::info::device::native_vector_width_int>(); int num_work_items = data_size / work_group_size; sycl::buffer<int> buf(data.data(), data_size, props); sycl::buffer<int> flush_buf(flush.data(), flush_size, props); sycl::buffer<int> sum_buf(&sum, 1, props); init_data(q, buf, data_size); double elapsed = 0; for (int i = 0; i < iter; i++) { q.submit([&](auto &h) { sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { sum_acc[index] = 0; }); }); // flush the cache q.submit([&](auto &h) { sycl::accessor flush_acc(flush_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(flush_size, [=](auto index) { flush_acc[index] = 1; }); }); Timer timer; // reductionMapToHWVector main begin q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::local_accessor<int, 1> scratch(work_group_size, h); sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for( sycl::nd_range<1>(num_work_items, work_group_size), [=](sycl::nd_item<1> item) [[intel::reqd_sub_group_size(16)]] { auto v = sycl::atomic_ref<int, sycl::memory_order::relaxed, sycl::memory_scope::device, sycl::access::address_space::global_space>( sum_acc[0]); int sum = 0; int glob_id = item.get_global_id(); int loc_id = item.get_local_id(); for (unsigned int i = glob_id; i < data_size; i += num_work_items) sum += buf_acc[i]; scratch[loc_id] = sum; for (int i = work_group_size / 2; i > 0; i >>= 1) { item.barrier(sycl::access::fence_space::local_space); if (loc_id < i) scratch[loc_id] += scratch[loc_id + i]; } if (loc_id == 0) v.fetch_add(scratch[0]); }); }); q.wait(); elapsed += timer.Elapsed(); sycl::host_accessor h_acc(sum_buf); sum = h_acc[0]; } elapsed = elapsed / iter; std::string msg = "with work-groups=" + std::to_string(work_group_size); check_result(elapsed, msg, sum); } // reduction end int main(void) { sycl::queue q{sycl::gpu_selector_v, exception_handler}; std::cout << q.get_device().get_info<sycl::info::device::name>() << "\n"; std::vector<int> data(N, 1); std::vector<int> extra(N, 1); // call begin int vec_size = 16; int work_group_size = vec_size; reduction(q, data, extra, 16, work_group_size); work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); reduction(q, data, extra, 16, work_group_size); // call end }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-fcorr/fcorr_1d_usm.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <iostream> #include <mkl.h> #include <oneapi/mkl/dfti.hpp> #include <oneapi/mkl/rng.hpp> #include <oneapi/mkl/vm.hpp> int main(int argc, char **argv) { unsigned int N = (argc == 1) ? 32 : std::stoi(argv[1]); if ((N % 2) != 0) N++; if (N < 32) N = 32; // Initialize SYCL queue sycl::queue Q(sycl::default_selector_v); auto sycl_device = Q.get_device(); auto sycl_context = Q.get_context(); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Initialize signal and correlation arrays auto sig1 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); auto sig2 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); auto corr = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); // Initialize input signals with artificial data std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine // Set RNG distribution oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard> rng_distribution(-0.00005, 0.00005); // Warning: These statements run on the device. auto evt1 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1); // Noise auto evt2 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2); evt1.wait(); evt2.wait(); // Warning: These statements run on the host, so sig1 and sig2 will have to be // updated on the device. sig1[N - N / 4 - 1] = 1.0; sig1[N - N / 4] = 1.0; sig1[N - N / 4 + 1] = 1.0; // Signal sig2[N / 4 - 1] = 1.0; sig2[N / 4] = 1.0; sig2[N / 4 + 1] = 1.0; clock_t start_time = clock(); // Start timer // Initialize FFT descriptor oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL> transform_plan(N); transform_plan.commit(Q); // Perform forward transforms on real arrays evt1 = oneapi::mkl::dft::compute_forward(transform_plan, sig1); evt2 = oneapi::mkl::dft::compute_forward(transform_plan, sig2); // Compute: DFT(sig1) * CONJG(DFT(sig2)) oneapi::mkl::vm::mulbyconj( Q, N / 2, reinterpret_cast<std::complex<float> *>(sig1), reinterpret_cast<std::complex<float> *>(sig2), reinterpret_cast<std::complex<float> *>(corr), {evt1, evt2}) .wait(); // Perform backward transform on complex correlation array oneapi::mkl::dft::compute_backward(transform_plan, corr).wait(); clock_t end_time = clock(); // Stop timer std::cout << "The 1D correlation (N = " << N << ") took " << float(end_time - start_time) / CLOCKS_PER_SEC << " seconds." << std::endl; // Find the shift that gives maximum correlation value float max_corr = 0.0; int shift = 0; for (unsigned int idx = 0; idx < N; idx++) { if (corr[idx] > max_corr) { max_corr = corr[idx]; shift = idx; } } int _N = static_cast<int>(N); shift = (shift > _N / 2) ? shift - _N : shift; // Treat the signals as circularly // shifted versions of each other. std::cout << "Shift the second signal " << shift << " elements relative to the first signal to get a maximum, " "normalized correlation score of " << max_corr / N << "." << std::endl; // Cleanup sycl::free(sig1, sycl_context); sycl::free(sig2, sycl_context); sycl::free(corr, sycl_context); } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-fcorr/fcorr_1d_buffers.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <iostream> #include <mkl.h> #include <oneapi/mkl/dfti.hpp> #include <oneapi/mkl/rng.hpp> #include <oneapi/mkl/vm.hpp> int main(int argc, char **argv) { unsigned int N = (argc == 1) ? 32 : std::stoi(argv[1]); if ((N % 2) != 0) N++; if (N < 32) N = 32; // Initialize SYCL queue sycl::queue Q(sycl::default_selector_v); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Create buffers for signal data. This will only be used on the device. sycl::buffer<float> sig1_buf{N + 2}; sycl::buffer<float> sig2_buf{N + 2}; // Declare container to hold the correlation result (computed on the device, // used on the host) std::vector<float> corr(N + 2); // Open new scope to trigger update of correlation result { sycl::buffer<float> corr_buf(corr); // Initialize the input signals with artificial data std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine // Set RNG distribution oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard> rng_distribution(-0.00005, 0.00005); oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1_buf); // Noise oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2_buf); Q.submit([&](sycl::handler &h) { sycl::accessor sig1_acc{sig1_buf, h, sycl::write_only}; sycl::accessor sig2_acc{sig2_buf, h, sycl::write_only}; h.single_task<>([=]() { sig1_acc[N - N / 4 - 1] = 1.0; sig1_acc[N - N / 4] = 1.0; sig1_acc[N - N / 4 + 1] = 1.0; // Signal sig2_acc[N / 4 - 1] = 1.0; sig2_acc[N / 4] = 1.0; sig2_acc[N / 4 + 1] = 1.0; }); }); // End signal initialization clock_t start_time = clock(); // Start timer // Initialize FFT descriptor oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL> transform_plan(N); transform_plan.commit(Q); // Perform forward transforms on real arrays oneapi::mkl::dft::compute_forward(transform_plan, sig1_buf); oneapi::mkl::dft::compute_forward(transform_plan, sig2_buf); // Compute: DFT(sig1) * CONJG(DFT(sig2)) auto sig1_buf_cplx = sig1_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); auto sig2_buf_cplx = sig2_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); auto corr_buf_cplx = corr_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); oneapi::mkl::vm::mulbyconj(Q, N / 2, sig1_buf_cplx, sig2_buf_cplx, corr_buf_cplx); // Perform backward transform on complex correlation array oneapi::mkl::dft::compute_backward(transform_plan, corr_buf); clock_t end_time = clock(); // Stop timer std::cout << "The 1D correlation (N = " << N << ") took " << float(end_time - start_time) / CLOCKS_PER_SEC << " seconds." << std::endl; } // Buffer holding correlation result is now out of scope, forcing update of // host container // Find the shift that gives maximum correlation value float max_corr = 0.0; int shift = 0; for (unsigned int idx = 0; idx < N; idx++) { if (corr[idx] > max_corr) { max_corr = corr[idx]; shift = idx; } } int _N = static_cast<int>(N); shift = (shift > _N / 2) ? shift - _N : shift; // Treat the signals as circularly // shifted versions of each other. std::cout << "Shift the second signal " << shift << " elements relative to the first signal to get a maximum, " "normalized correlation score of " << max_corr / N << "." << std::endl; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/libraries-fcorr/fcorr_1d_usm_fixed.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #include <iostream> #include <mkl.h> #include <oneapi/mkl/dfti.hpp> #include <oneapi/mkl/rng.hpp> #include <oneapi/mkl/vm.hpp> int main(int argc, char **argv) { unsigned int N = (argc == 1) ? 32 : std::stoi(argv[1]); if ((N % 2) != 0) N++; if (N < 32) N = 32; // Initialize SYCL queue sycl::queue Q(sycl::default_selector_v); auto sycl_device = Q.get_device(); auto sycl_context = Q.get_context(); std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl; // Initialize signal and correlation arrays auto sig1 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); auto sig2 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); auto corr = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); // Initialize input signals with artificial data std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine // Set RNG distribution oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard> rng_distribution(-0.00005, 0.00005); auto evt1 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1); // Noise auto evt2 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2); evt1.wait(); evt2.wait(); Q.single_task<>([=]() { sig1[N - N / 4 - 1] = 1.0; sig1[N - N / 4] = 1.0; sig1[N - N / 4 + 1] = 1.0; // Signal sig2[N / 4 - 1] = 1.0; sig2[N / 4] = 1.0; sig2[N / 4 + 1] = 1.0; }).wait(); clock_t start_time = clock(); // Start timer // Initialize FFT descriptor oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL> transform_plan(N); transform_plan.commit(Q); // Perform forward transforms on real arrays evt1 = oneapi::mkl::dft::compute_forward(transform_plan, sig1); evt2 = oneapi::mkl::dft::compute_forward(transform_plan, sig2); // Compute: DFT(sig1) * CONJG(DFT(sig2)) oneapi::mkl::vm::mulbyconj( Q, N / 2, reinterpret_cast<std::complex<float> *>(sig1), reinterpret_cast<std::complex<float> *>(sig2), reinterpret_cast<std::complex<float> *>(corr), {evt1, evt2}) .wait(); // Perform backward transform on complex correlation array oneapi::mkl::dft::compute_backward(transform_plan, corr).wait(); clock_t end_time = clock(); // Stop timer std::cout << "The 1D correlation (N = " << N << ") took " << float(end_time - start_time) / CLOCKS_PER_SEC << " seconds." << std::endl; // Find the shift that gives maximum correlation value float max_corr = 0.0; int shift = 0; for (unsigned int idx = 0; idx < N; idx++) { if (corr[idx] > max_corr) { max_corr = corr[idx]; shift = idx; } } int _N = static_cast<int>(N); shift = (shift > _N / 2) ? shift - _N : shift; // Treat the signals as circularly // shifted versions of each other. std::cout << "Shift the second signal " << shift << " elements relative to the first signal to get a maximum, " "normalized correlation score of " << max_corr / N << "." << std::endl; // Cleanup sycl::free(sig1, sycl_context); sycl::free(sig2, sycl_context); sycl::free(corr, sycl_context); } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/overlap-data-transfers/reduction.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> #include <chrono> #include <iostream> #include <string> #include <vector> // Summation of 10M 'one' values constexpr size_t N = (10 * 1024 * 1024); // Number of repetitions constexpr int repetitions = 16; static auto exception_handler = [](sycl::exception_list eList) { for (std::exception_ptr const &e : eList) { try { std::rethrow_exception(e); } catch (std::exception const &e) { #if DEBUG std::cout << "Failure" << std::endl; #endif std::terminate(); } } }; class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; float ComputeSerial(std::vector<float> &data) { const size_t data_size = data.size(); float sum = 0; for (size_t i = 0; i < data_size; ++i) { sum += data[i]; } return sum; } // end ComputeSerial float ComputeParallel1(sycl::queue &q, std::vector<float> &data) { const size_t data_size = data.size(); float sum = 0; static float *accum = 0; if (data_size > 0) { const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_EUs = q.get_device().get_info<sycl::info::device::max_compute_units>(); int vec_size = q.get_device() .get_info<sycl::info::device::native_vector_width_float>(); int num_processing_elements = num_EUs * vec_size; int BATCH = (N + num_processing_elements - 1) / num_processing_elements; sycl::buffer<float> buf(data.data(), data.size(), props); sycl::buffer<float> accum_buf(accum, num_processing_elements, props); if (!accum) accum = new float[num_processing_elements]; q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_processing_elements, [=](auto index) { size_t glob_id = index[0]; size_t start = glob_id * BATCH; size_t end = (glob_id + 1) * BATCH; if (end > N) end = N; float sum = 0.0; for (size_t i = start; i < end; i++) sum += buf_acc[i]; accum_acc[glob_id] = sum; }); }); q.wait(); sycl::host_accessor h_acc(accum_buf); for (int i = 0; i < num_processing_elements; i++) sum += h_acc[i]; } return sum; } // end ComputeParallel1 float ComputeParallel2(sycl::queue &q, std::vector<float> &data) { const size_t data_size = data.size(); float sum = 0; static float *accum = 0; if (data_size > 0) { const sycl::property_list props = {sycl::property::buffer::use_host_ptr()}; int num_EUs = q.get_device().get_info<sycl::info::device::max_compute_units>(); int vec_size = q.get_device() .get_info<sycl::info::device::native_vector_width_float>(); int num_processing_elements = num_EUs * vec_size; int BATCH = (N + num_processing_elements - 1) / num_processing_elements; sycl::buffer<float> buf(data.data(), data.size(), props); sycl::buffer<float> accum_buf(accum, num_processing_elements, props); sycl::buffer<float> res_buf(&sum, 1, props); if (!accum) accum = new float[num_processing_elements]; q.submit([&](auto &h) { sycl::accessor buf_acc(buf, h, sycl::read_only); sycl::accessor accum_acc(accum_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(num_processing_elements, [=](auto index) { size_t glob_id = index[0]; size_t start = glob_id * BATCH; size_t end = (glob_id + 1) * BATCH; if (end > N) end = N; float sum = 0.0; for (size_t i = start; i < end; i++) sum += buf_acc[i]; accum_acc[glob_id] = sum; }); }); q.submit([&](auto &h) { sycl::accessor accum_acc(accum, h, sycl::read_only); sycl::accessor res_acc(res_buf, h, sycl::write_only, sycl::no_init); h.parallel_for(1, [=](auto index) { res_acc[index] = 0; for (size_t i = 0; i < num_processing_elements; i++) res_acc[index] += accum_acc[i]; }); }); } // Buffers go out of scope and data gets transferred from device to host return sum; } // end ComputeParallel2 int main(int argc, char *argv[]) { sycl::queue q{default_selector{}, exception_handler}; std::vector<float> data(N, 1.0f); std::vector<float> extra(4 * N, 1.0f); float sum_s = 0, sum = 0; double elapsed_s = 0; for (int k = 0; k < repetitions; ++k) { // Flush the cache (void)ComputeSerial(extra); Timer timer_s; // Time the summation sum_s = ComputeSerial(data); elapsed_s += timer_s.Elapsed(); } elapsed_s /= repetitions; std::cout << "Time Serial = " << elapsed_s << "s" << " sum = " << sum_s << "\n"; double elapsed_p1 = 0; for (int k = 0; k < repetitions; ++k) { // Flush the cache (void)ComputeParallel1(q, extra); Timer timer_s; // Time the summation sum = ComputeParallel1(q, data); elapsed_p1 += timer_s.Elapsed(); } elapsed_p1 /= repetitions; std::cout << "Time parallel1 = " << elapsed_p1 << "s" << " sum = " << sum << "\n"; double elapsed_p2 = 0; for (int k = 0; k < repetitions; ++k) { // Flush the cache (void)ComputeParallel2(q, extra); Timer timer_s; // Time the summation sum = ComputeParallel2(q, data); elapsed_p2 += timer_s.Elapsed(); } elapsed_p2 /= repetitions; std::cout << "Time parallel2 = " << elapsed_p2 << "s" << " sum = " << sum << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Publications/GPU-Opt-Guide/overlap-data-transfers/overlap.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Snippet begin #include <CL/sycl.hpp> #define NITERS 10 #define KERNEL_ITERS 10000 #define NUM_CHUNKS 10 #define CHUNK_SIZE 10000000 class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} double Elapsed() { auto now = std::chrono::steady_clock::now(); return std::chrono::duration_cast<Duration>(now - start_).count(); } private: using Duration = std::chrono::duration<double>; std::chrono::steady_clock::time_point start_; }; int main() { const int num_chunks = NUM_CHUNKS; const int chunk_size = CHUNK_SIZE; const int iter = NITERS; sycl::queue q; // Allocate and initialize host data float *host_data[num_chunks]; for (int c = 0; c < num_chunks; c++) { host_data[c] = sycl::malloc_host<float>(chunk_size, q); float val = c; for (int i = 0; i < chunk_size; i++) host_data[c][i] = val; } std::cout << "Allocated host data\n"; // Allocate and initialize device memory float *device_data[num_chunks]; for (int c = 0; c < num_chunks; c++) { device_data[c] = sycl::malloc_device<float>(chunk_size, q); float val = 1000.0; q.fill<float>(device_data[c], val, chunk_size); } q.wait(); std::cout << "Allocated device data\n"; Timer timer; for (int it = 0; it < iter; it++) { for (int c = 0; c < num_chunks; c++) { auto add_one = [=](auto id) { for (int i = 0; i < KERNEL_ITERS; i++) device_data[c][id] += 1.0; }; // Copy-in not dependent on previous event auto copy_in = q.memcpy(device_data[c], host_data[c], sizeof(float) * chunk_size); // Compute waits for copy_in auto compute = q.parallel_for(chunk_size, copy_in, add_one); auto cg = [=](auto &h) { h.depends_on(compute); h.memcpy(host_data[c], device_data[c], sizeof(float) * chunk_size); }; // Copy out waits for compute auto copy_out = q.submit(cg); } q.wait(); } auto elapsed = timer.Elapsed() / iter; for (int c = 0; c < num_chunks; c++) { for (int i = 0; i < chunk_size; i++) { if (host_data[c][i] != (float)((c + KERNEL_ITERS * iter))) { std::cout << "Mismatch for chunk: " << c << " position: " << i << " expected: " << c + 10000 << " got: " << host_data[c][i] << "\n"; break; } } } std::cout << "Time = " << elapsed << " usecs\n"; } // Snippet end
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/CXX/OpenMP/hello_omp.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> #include <omp.h> #include <sstream> int main(int argc, char *argv[]) { std::cout << "Hello, OpenMP C World!" << std::endl; #pragma omp parallel { std::ostringstream msg; msg << " I am thread " << omp_get_thread_num() << std::endl; std::cout << msg.str(); } std::cout << "All done, bye." << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/CXX/IPO/main.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "ipo_cxx_lib.h" #include <iostream> int main(int argc, char *argv[]) { int ans = plus3(argc); std::cout << argc << " + 3 = " << ans << std::endl; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/CXX/IPO/ipo_cxx_lib.h
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #pragma once int plus3(int x);
h
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/CXX/IPO/ipo_cxx_lib1.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "ipo_cxx_lib.h" int plus3(int x) { return x + 3; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/SYCL/target_link_library/simple.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <CL/sycl.hpp> using namespace sycl; static const int N = 16; int main() { // # define queue which has default device associated for offload queue q; std::cout << "Device: " << q.get_device().get_info<info::device::name>() << std::endl; // # Unified Shared Memory Allocation enables data access on host and device int *data = malloc_shared<int>(N, q); std::cout << "allocated shared memory" << std::endl; // # Initialization for (int i = 0; i < N; i++) { data[i] = i; } // # Offload parallel computation to device q.parallel_for(range<1>(N), [=](id<1> i) { data[i] *= 2; }).wait(); // # Print Output for (int i = 0; i < N; i++) std::cout << data[i] << std::endl; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/SYCL/add_sycl_to_target/simple.cpp
//============================================================== // Copyright © 2022 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // // The main program has no SYCL calls. It just implements the main program // logic and calls routines defined elsewhere to do the real work. // #include "offload.h" #include <iostream> #include <vector> int main(int argc, char *argv[]) { int n_items = 16; if (argc > 1) { n_items = atoi(argv[1]); } std::vector<int> ans(n_items); do_work(ans); // # Print Output for (auto &&x : ans) { std::cout << x << std::endl; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/SYCL/add_sycl_to_target/offload.h
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #ifndef OFFLOAD_H #define OFFLOAD_H #include <vector> extern void do_work(std::vector<int> &ans); #endif
h
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/SYCL/add_sycl_to_target/offload.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "offload.h" #include <sycl/sycl.hpp> #include <iostream> #include <vector> void do_work(std::vector<int> &ans) { // # define queue which has default device associated for offload sycl::queue q; std::cout << "Using device: " << q.get_device().get_info<sycl::info::device::name>() << std::endl; // # Unified Shared Memory Allocation enables data access on host and device int *data = sycl::malloc_shared<int>(ans.size(), q); assert(data); // # Initialization for (int i = 0; i < ans.size(); i++) { data[i] = i; } // # Offload parallel computation to device size_t n_items = ans.size(); q.parallel_for(sycl::range<1>(n_items), [=](sycl::id<1> i) { data[i] *= 2; }).wait(); for (int i = 0; i < ans.size(); ++i) { ans[i] = data[i]; } sycl::free(data, q); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/C/OpenMP/hello_omp.c
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <omp.h> #include <stdio.h> int main(int argc, char *argv[]) { printf("Hello, OpenMP C World!\n"); #pragma omp parallel { printf(" I am thread %d\n", omp_get_thread_num()); } printf("All done, bye.\n"); return 0; }
c
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/C/IPO/main.c
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "ipo_c_lib.h" #include <stdio.h> int main(int argc, char *argv[]) { int ans = plus3(argc); printf("%d + 3 = %d\n", argc, ans); return 0; }
c
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/C/IPO/ipo_c_lib1.c
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include "ipo_c_lib.h" #include <stdio.h> int plus3(int x) { return x + 3; }
c
oneAPI-samples
data/projects/oneAPI-samples/Templates/cmake/C/IPO/ipo_c_lib.h
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #ifndef IPO_C_LIB1_H #define IPO_C_LIB1_H int plus3(int x); #endif
h
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/mpi_send_gpu/src/mpi_send_gpu_sycl.cpp
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Description: * Sending GPU buffer from <ACTIVE_RANK> to the host buffer of another rank. * * How to run: * mpiexec -n 2 -genv I_MPI_OFFLOAD=1 -genv LIBOMPTARGET_PLUGIN=level0 ./mpi_send_gpu_buf_sycl */ #include <mpi.h> #include <sycl.hpp> #include <stdio.h> #define ACTIVE_RANK 1 void VerifyResult(int *result, int *values, unsigned num_values, int rank) { /* Validation */ printf("[%d] result: ", rank); for (unsigned i = 0; i < num_values; ++i) { printf("%d ", result[i]); /* Signal an error if the result does not match the expected values */ if (result[i] != values[i] * (ACTIVE_RANK + 1)) { printf("\n"); fflush(stdout); fprintf(stderr, "[%d] VALIDATION ERROR (expected %d)\n", rank, values[i] * (ACTIVE_RANK + 1)); MPI_Abort(MPI_COMM_WORLD, 1); } } printf("\n"); } int main(int argc, char **argv) { int nranks, rank; const unsigned num_values = 10; sycl::queue q(sycl::gpu_selector_v); MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &nranks); MPI_Comm_rank(MPI_COMM_WORLD, &rank); if (nranks != 2) { if (rank == 0) fprintf(stderr, "run mpiexec with -n 2\n"); MPI_Finalize(); return 1; } int values[num_values]; values[0] = 0; values[1] = 1; for (unsigned i = 2; i < num_values; i++) { values[i] = values[i - 2] + values[i - 1]; } MPI_Barrier(MPI_COMM_WORLD); if (rank == ACTIVE_RANK) { int *device_values = sycl::malloc_device < int >(num_values, q); int *host_values = sycl::malloc_host < int >(num_values, q); q.memcpy(device_values, values, sizeof(values)).wait(); q.submit([&](auto & h) { h.parallel_for(sycl::range(num_values), [=] (auto index) { device_values[index[0]] *= (rank + 1); }); }).wait(); q.memcpy(host_values, device_values, sizeof(values)).wait(); /* Send device buffer to another rank (host recieve buffer) */ printf("[%d] Sending GPU buffer %p to rank %d\n", rank, device_values, 1 - rank); fflush(stdout); MPI_Send(device_values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); /* Send device buffer to another rank (device recieve buffer) */ printf("[%d] Sending GPU buffer %p to rank %d\n", rank, device_values, 1 - rank); fflush(stdout); MPI_Send(device_values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); /* Send host buffer to another rank (device recieve buffer) */ printf("[%d] Sending host buffer %p to rank %d\n", rank, host_values, 1 - rank); fflush(stdout); MPI_Send(host_values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); } else { int result [num_values]; int *device_result = sycl::malloc_device < int >(num_values, q); int *host_result = sycl::malloc_host < int >(num_values, q); /* Receive values from device buffer and store it in the host buffer */ printf("[%d] Receiving data from rank %d to host buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(host_result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); q.memcpy(result, host_result, sizeof(result)).wait(); VerifyResult(result, values, num_values, rank); /* Receive values from device buffer and store it in the device buffer */ printf("[%d] Receiving data from rank %d to GPU buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(device_result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); q.memcpy(result, device_result, sizeof(result)).wait(); VerifyResult(result, values, num_values, rank); /* Receive values from device buffer and store it in the device buffer */ printf("[%d] Receiving data from rank %d to GPU buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(device_result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); q.memcpy(result, device_result, sizeof(result)).wait(); VerifyResult(result, values, num_values, rank); printf("[%d] SUCCESS\n", rank); } MPI_Finalize(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/mpi_send_gpu/src/mpi_send_gpu_omp.c
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Description: * Sending GPU buffer from <ACTIVE_RANK> to the host buffer of another rank. * * How to run: * mpiexec -n 2 -genv I_MPI_OFFLOAD=1 -genv LIBOMPTARGET_PLUGIN=level0 ./mpi_send_gpu_buf_omp */ #include <mpi.h> #include <omp.h> #include <stdio.h> #define ACTIVE_RANK 1 void VerifyResult(int *result, int *values, unsigned num_values, int rank) { /* Validation */ printf("[%d] result: ", rank); for (unsigned i = 0; i < num_values; ++i) { printf("%d ", result[i]); /* Signal an error if the result does not match the expected values */ if (result[i] != values[i] * (ACTIVE_RANK + 1)) { printf("\n"); fflush(stdout); fprintf(stderr, "[%d] VALIDATION ERROR (expected %d)\n", rank, values[i] * (ACTIVE_RANK + 1)); MPI_Abort(MPI_COMM_WORLD, 1); } } printf("\n"); } int main(int argc, char **argv) { int nranks, rank; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &nranks); MPI_Comm_rank(MPI_COMM_WORLD, &rank); if (nranks != 2) { if (rank == 0) fprintf(stderr, "run mpiexec with -n 2\n"); MPI_Finalize(); return 1; } const unsigned num_values = 10; int *values = (int *) malloc (num_values * sizeof(int)); if (values == NULL) { fprintf(stderr, "[%d] could not allocate memory\n", rank); MPI_Abort(MPI_COMM_WORLD, 1); } values[0] = 0; values[1] = 1; for (unsigned i = 2; i < num_values; i++) { values[i] = values[i - 2] + values[i - 1]; } MPI_Barrier(MPI_COMM_WORLD); if (rank == ACTIVE_RANK) { /* Copy `rank` and `values` from host to device */ #pragma omp target data map(to: rank, values[0:num_values]) use_device_ptr(values) { /* Compute something on device */ #pragma omp target parallel for is_device_ptr(values) for (unsigned i = 0; i < num_values; ++i) { values[i] *= (rank + 1); } /* Send device buffer to another rank (host recieve buffer) */ printf("[%d] Sending GPU buffer %p to rank %d\n", rank, values, 1 - rank); fflush(stdout); MPI_Send(values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); /* Send device buffer to another rank (device recieve buffer) */ printf("[%d] Sending GPU buffer %p to rank %d\n", rank, values, 1 - rank); fflush(stdout); MPI_Send(values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); } /* Send host buffer to another rank (device recieve buffer) */ printf("[%d] Sending host buffer %p to rank %d\n", rank, values, 1 - rank); fflush(stdout); MPI_Send(values, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD); } else { int *result = (int *) malloc (num_values * sizeof(int)); if (result == NULL) { fprintf(stderr, "[%d] could not allocate memory\n", rank); MPI_Abort(MPI_COMM_WORLD, 1); } /* Receive values from device buffer and store it on the host buffer */ printf("[%d] Receiving data from rank %d to host buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); VerifyResult(result, values, num_values, rank); /* Copy `rank` and `values` from host to device and backward */ #pragma omp target data map(to: rank, result[0:num_values]) map(from: result[0:num_values]) use_device_ptr(result) { /* Reset recieve buffer */ #pragma omp target parallel for is_device_ptr(result) for (unsigned i = 0; i < num_values; ++i) { result[i] = 0; } /* Receive values from device buffer and store it in the device buffer */ printf("[%d] Receiving data from rank %d to GPU buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); } VerifyResult(result, values, num_values, rank); /* Copy `rank` and `values` from host to device and backward */ #pragma omp target data map(to: rank, result[0:num_values]) map(from: result[0:num_values]) use_device_ptr(result) { /* Reset recieve buffer */ #pragma omp target parallel for is_device_ptr(result) for (unsigned i = 0; i < num_values; ++i) { result[i] = 0; } /* Receive values from host buffer and store it in the device buffer */ printf("[%d] Receiving data from rank %d to GPU buffer\n", rank, 1 - rank); fflush(stdout); MPI_Recv(result, num_values, MPI_INT, 1 - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE); } VerifyResult(result, values, num_values, rank); printf("[%d] SUCCESS\n", rank); free(result); } free(values); MPI_Finalize(); return 0; }
c
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/jacobian_solver/src/02_jacobian_device_mpi_one-sided_gpu_aware/mpi3_onesided_jacobian_gpu_sycl.cpp
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Distributed Jacobian computation sample using OpenMP GPU offload and MPI-3 one-sided. */ #include "mpi.h" #include <sycl.hpp> #include <vector> #include <iostream> const int Nx = 16384; /* Grid size */ const int Ny = Nx; const int Niter = 100; /* Nuber of algorithm iterations */ const int NormIteration = 10; /* Recaluculate norm after given number of iterations. 0 to disable norm calculation */ const int PrintTime = 1; /* Output overall time of compute/communication part */ struct subarray { int rank, comm_size; /* MPI rank and communicator size */ int x_size, y_size; /* Subarray size excluding border rows and columns */ MPI_Aint l_nbh_offt; /* Offset predecessor data to update */ }; #define ROW_SIZE(S) ((S).x_size + 2) #define XY_2_IDX(X,Y,S) (((Y)+1)*ROW_SIZE(S)+((X)+1)) /* Subroutine to create and initialize initial state of input subarrays */ void InitDeviceArrays(double **A_dev_1, double **A_dev_2, sycl::queue q, struct subarray *sub) { size_t total_size = (sub->x_size + 2) * (sub->y_size + 2); double *A = sycl::malloc_host < double >(total_size, q); *A_dev_1 = sycl::malloc_device < double >(total_size, q); *A_dev_2 = sycl::malloc_device < double >(total_size, q); for (int i = 0; i < (sub->y_size + 2); i++) for (int j = 0; j < (sub->x_size + 2); j++) A[i * (sub->x_size + 2) + j] = 0.0; if (sub->rank == 0) /* set top boundary */ for (int i = 1; i <= sub->x_size; i++) A[i] = 1.0; /* set bottom boundary */ if (sub->rank == (sub->comm_size - 1)) for (int i = 1; i <= sub->x_size; i++) A[(sub->x_size + 2) * (sub->y_size + 1) + i] = 10.0; for (int i = 1; i <= sub->y_size; i++) { int row_offt = i * (sub->x_size + 2); A[row_offt] = 1.0; /* set left boundary */ A[row_offt + sub->x_size + 1] = 1.0; /* set right boundary */ } /* Move input arrays to device */ q.memcpy(*A_dev_1, A, sizeof(double) * total_size); q.memcpy(*A_dev_2, A, sizeof(double) * total_size); q.wait(); } /* Setup subarray size and layout processed by current rank */ void GetMySubarray(struct subarray *sub) { MPI_Comm_size(MPI_COMM_WORLD, &sub->comm_size); MPI_Comm_rank(MPI_COMM_WORLD, &sub->rank); sub->y_size = Ny / sub->comm_size; sub->x_size = Nx; sub->l_nbh_offt = (sub->x_size + 2) * (sub->y_size + 1) + 1; int tail = sub->y_size % sub->comm_size; if (tail != 0) { if (sub->rank < tail) sub->y_size++; if ((sub->rank > 0) && ((sub->rank - 1) < tail)) sub->l_nbh_offt += (sub->x_size + 2); } } int main(int argc, char *argv[]) { double t_start; struct subarray my_subarray = { }; double *A_device[2] = { }; double norm = 0.0; MPI_Win win[2] = { MPI_WIN_NULL, MPI_WIN_NULL }; /* Initialization of runtime and initial state of data */ sycl::queue q(sycl::gpu_selector_v); MPI_Init(&argc, &argv); GetMySubarray(&my_subarray); InitDeviceArrays(&A_device[0], &A_device[1], q, &my_subarray); /* Create RMA window using device memory */ MPI_Win_create(A_device[0], sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[0]); MPI_Win_create(A_device[1], sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[1]); /* Start RMA exposure epoch */ MPI_Win_fence(0, win[0]); MPI_Win_fence(0, win[1]); if (PrintTime) { t_start = MPI_Wtime(); } for (int i = 0; i < Niter; ++i) { MPI_Win cwin = win[(i + 1) % 2]; double *a = A_device[i % 2]; double *a_out = A_device[(i + 1) % 2]; { /* Calculate values on borders to initiate communications early */ q.submit([&](auto & h) { h.parallel_for(sycl::range(my_subarray.x_size), [ =] (auto index) { int column = index[0]; int idx = XY_2_IDX(column, 0, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); idx = XY_2_IDX(column, my_subarray.y_size - 1, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); }); }).wait(); } /* Perform 1D halo-exchange with neighbours */ if (my_subarray.rank != 0) { int idx = XY_2_IDX(0, 0, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank - 1, my_subarray.l_nbh_offt, my_subarray.x_size, MPI_DOUBLE, cwin); } if (my_subarray.rank != (my_subarray.comm_size - 1)) { int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank + 1, 1, my_subarray.x_size, MPI_DOUBLE, cwin); } /* Recalculate internal points in parallel with communications */ { q.submit([&](auto & h) { h.parallel_for(sycl::range(my_subarray.y_size - 2, my_subarray.x_size), [ =] (auto index) { int idx = XY_2_IDX(index[1], index[0] + 1, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); }); }).wait(); } /* Calculate and report norm value after given number of iterations */ if ((NormIteration > 0) && ((NormIteration - 1) == i % NormIteration)) { double rank_norm = 0.0; { sycl::buffer<double> norm_buf(&rank_norm, 1); q.submit([&](auto & h) { auto sumr = sycl::reduction(norm_buf, h, sycl::plus<>()); h.parallel_for(sycl::range(my_subarray.x_size, my_subarray.y_size), sumr, [=] (auto index, auto &v) { int idx = XY_2_IDX(index[1], index[0], my_subarray); double diff = a_out[idx] - a[idx]; v += (diff * diff); }); }).wait(); } /* Get global norm value */ MPI_Reduce(&rank_norm, &norm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { printf("NORM value on iteration %d: %f\n", i+1, sqrt(norm)); } } /* Ensure all communications complete before next iteration */ MPI_Win_fence(0, cwin); } if (PrintTime) { double avg_time; double rank_time; rank_time = MPI_Wtime() - t_start; MPI_Reduce(&rank_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { avg_time = avg_time/my_subarray.comm_size; printf("Average solver time: %f(sec)\n", avg_time); } } if (my_subarray.rank == 0) { printf("SUCCESS\n"); } MPI_Win_free(&win[1]); MPI_Win_free(&win[0]); MPI_Finalize(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/jacobian_solver/src/02_jacobian_device_mpi_one-sided_gpu_aware/mpi3_onesided_jacobian_gpu_openmp.c
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Distributed Jacobian computation sample using OpenMP GPU offload and MPI-3 one-sided. */ #include "mpi.h" #include <omp.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> const int Nx = 16384; /* Grid size */ const int Ny = Nx; const int Niter = 100; /* Nuber of algorithm iterations */ const int NormIteration = 10; /* Recaluculate norm after given number of iterations. 0 to disable norm calculation */ const int PrintTime = 1; /* Output overall time of compute/communication part */ struct subarray { int rank, comm_size; /* MPI rank and communicator size */ int x_size, y_size; /* Subarray size excluding border rows and columns */ MPI_Aint l_nbh_offt; /* Offset predecessor data to update */ }; #define ROW_SIZE(S) ((S).x_size + 2) #define XY_2_IDX(X,Y,S) (((Y)+1)*ROW_SIZE(S)+((X)+1)) /* Subroutine to create and initialize initial state of input subarrays */ void InitDeviceArrays(double **A_dev_1, double **A_dev_2, struct subarray *sub) { size_t total_size = (sub->x_size + 2) * (sub->y_size + 2); int device_id = omp_get_default_device(); int host_id = omp_get_initial_device(); double *A = (double*) malloc(total_size * sizeof(double)); *A_dev_1 = (double*) omp_target_alloc_device(total_size * sizeof(double), device_id); *A_dev_2 = (double*) omp_target_alloc_device(total_size * sizeof(double), device_id); for (int i = 0; i < (sub->y_size + 2); i++) for (int j = 0; j < (sub->x_size + 2); j++) A[i * (sub->x_size + 2) + j] = 0.0; if (sub->rank == 0) /* set top boundary */ for (int i = 1; i <= sub->x_size; i++) A[i] = 1.0; /* set bottom boundary */ if (sub->rank == (sub->comm_size - 1)) for (int i = 1; i <= sub->x_size; i++) A[(sub->x_size + 2) * (sub->y_size + 1) + i] = 10.0; for (int i = 1; i <= sub->y_size; i++) { int row_offt = i * (sub->x_size + 2); A[row_offt] = 1.0; /* set left boundary */ A[row_offt + sub->x_size + 1] = 1.0; /* set right boundary */ } /* Move input arrays to device */ omp_target_memcpy(*A_dev_1, A, sizeof(double) * total_size, 0, 0, device_id, host_id); omp_target_memcpy(*A_dev_2, A, sizeof(double) * total_size, 0, 0, device_id, host_id); free(A); } /* Setup subarray size and layout processed by current rank */ void GetMySubarray(struct subarray *sub) { MPI_Comm_size(MPI_COMM_WORLD, &sub->comm_size); MPI_Comm_rank(MPI_COMM_WORLD, &sub->rank); sub->y_size = Ny / sub->comm_size; sub->x_size = Nx; sub->l_nbh_offt = (sub->x_size + 2) * (sub->y_size + 1) + 1; int tail = sub->y_size % sub->comm_size; if (tail != 0) { if (sub->rank < tail) sub->y_size++; if ((sub->rank > 0) && ((sub->rank - 1) < tail)) sub->l_nbh_offt += (sub->x_size + 2); } } int main(int argc, char *argv[]) { double t_start; struct subarray my_subarray = { }; double *A_device1 = NULL; double *A_device2 = NULL; MPI_Win win[2] = { MPI_WIN_NULL, MPI_WIN_NULL }; /* Initialization of runtime and initial state of data */ MPI_Init(&argc, &argv); GetMySubarray(&my_subarray); InitDeviceArrays(&A_device1, &A_device2, &my_subarray); /* Create RMA window using device memory */ MPI_Win_create(A_device1, sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[0]); MPI_Win_create(A_device2, sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[1]); /* Start RMA exposure epoch */ MPI_Win_fence(0, win[0]); MPI_Win_fence(0, win[1]); if (PrintTime) { t_start = MPI_Wtime(); } #pragma omp target data map(to: Niter, my_subarray, win[0:2], NormIteration) use_device_ptr(A_device1, A_device2) { for (int i = 0; i < Niter; ++i) { MPI_Win cwin = win[(i + 1) % 2]; double *a = (i % 2) ? A_device1 : A_device2; double *a_out = ((1 + i) % 2) ? A_device1 : A_device2; /* Offload compute loop to the device */ #pragma omp target teams distribute parallel for is_device_ptr(a, a_out) /* Calculate values on borders to initiate communications early */ for (int _column = 0; _column < my_subarray.x_size; ++_column) { int idx = XY_2_IDX(_column, 0, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); idx = XY_2_IDX(_column, my_subarray.y_size - 1, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } /* Perform halo-exchange with neighbours */ if (my_subarray.rank != 0) { int idx = XY_2_IDX(0, 0, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank - 1, my_subarray.l_nbh_offt, my_subarray.x_size, MPI_DOUBLE, cwin); } if (my_subarray.rank != (my_subarray.comm_size - 1)) { int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank + 1, 1, my_subarray.x_size, MPI_DOUBLE, cwin); } /* Offload compute loop to the device */ #pragma omp target teams distribute parallel for is_device_ptr(a, a_out) collapse(2) /* Recalculate internal points in parallel with communication */ for (int row = 1; row < my_subarray.y_size - 1; ++row) { for (int column = 0; column < my_subarray.x_size; ++column) { int idx = XY_2_IDX(column, row, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } } if ((NormIteration > 0) && ((NormIteration - 1) == i % NormIteration)) { double result_norm = 0.0; double norm = 0.0; /* Offload compute loop to the device */ #pragma omp target teams distribute parallel for is_device_ptr(a, a_out) reduction(+:norm) collapse(2) /* Calculate and report norm value after given number of iterations */ for (int row = 0; row < my_subarray.y_size; ++row) { for (int column = 0; column < my_subarray.x_size; ++column) { int idx = XY_2_IDX(column, row, my_subarray); double diff = a_out[idx] - a[idx]; norm += diff*diff; } } MPI_Reduce(&norm, &result_norm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { printf("NORM value on iteration %d: %f\n", i+1, sqrt(result_norm)); } } /* Ensure all communications are complete before next iteration */ MPI_Win_fence(0, cwin); } } if (PrintTime) { double avg_time; double rank_time; rank_time = MPI_Wtime() - t_start; MPI_Reduce(&rank_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { avg_time = avg_time/my_subarray.comm_size; printf("Average solver time: %f(sec)\n", avg_time); } } if (my_subarray.rank == 0) { printf("SUCCESS\n"); } MPI_Win_free(&win[1]); MPI_Win_free(&win[0]); MPI_Finalize(); return 0; }
c
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/jacobian_solver/src/01_jacobian_host_mpi_one-sided/mpi3_onesided_jacobian.c
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Distributed Jacobian computation sample using MPI-3 one-sided communications. */ #include "mpi.h" #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> const int Nx = 16384; /* Grid size */ const int Ny = Nx; const int Niter = 100; /* Nuber of algorithm iterations */ const int NormIteration = 10; /* Recaluculate norm after given number of iterations. 0 to disable norm calculation */ const int PrintTime = 1; /* Output overall time of compute/communication part */ struct subarray { int rank, comm_size; /* MPI rank and communicator size */ int x_size, y_size; /* Subarray size excluding border rows and columns */ MPI_Aint l_nbh_offt; /* Offset predecessor data to update */ }; #define ROW_SIZE(S) ((S).x_size + 2) #define XY_2_IDX(X,Y,S) (((Y)+1)*ROW_SIZE(S)+((X)+1)) /* Subroutine to create and initialize initial state of input subarrays */ void InitArrays(double **A_dev_1, double **A_dev_2, struct subarray *sub) { size_t total_size = (sub->x_size + 2) * (sub->y_size + 2); double *A = (double*) malloc(total_size * sizeof(double)); *A_dev_1 = (double*) malloc(total_size * sizeof(double)); *A_dev_2 = (double*) malloc(total_size * sizeof(double)); for (int i = 0; i < (sub->y_size + 2); i++) for (int j = 0; j < (sub->x_size + 2); j++) A[i * (sub->x_size + 2) + j] = 0.0; if (sub->rank == 0) /* set top boundary */ for (int i = 1; i <= sub->x_size; i++) A[i] = 1.0; /* set bottom boundary */ if (sub->rank == (sub->comm_size - 1)) for (int i = 1; i <= sub->x_size; i++) A[(sub->x_size + 2) * (sub->y_size + 1) + i] = 10.0; for (int i = 1; i <= sub->y_size; i++) { int row_offt = i * (sub->x_size + 2); A[row_offt] = 1.0; /* set left boundary */ A[row_offt + sub->x_size + 1] = 1.0; /* set right boundary */ } /* Move input arrays to real buffers */ memcpy(*A_dev_1, A, sizeof(double) * total_size); memcpy(*A_dev_2, A, sizeof(double) * total_size); free(A); } /* Setup subarray size and layout processed by current rank */ void GetMySubarray(struct subarray *sub) { MPI_Comm_size(MPI_COMM_WORLD, &sub->comm_size); MPI_Comm_rank(MPI_COMM_WORLD, &sub->rank); sub->y_size = Ny / sub->comm_size; sub->x_size = Nx; sub->l_nbh_offt = (sub->x_size + 2) * (sub->y_size + 1) + 1; int tail = sub->y_size % sub->comm_size; if (tail != 0) { if (sub->rank < tail) sub->y_size++; if ((sub->rank > 0) && ((sub->rank - 1) < tail)) sub->l_nbh_offt += (sub->x_size + 2); } } int main(int argc, char *argv[]) { double t_start; struct subarray my_subarray = { }; double *A_1 = NULL; double *A_2 = NULL; MPI_Win win[2] = { MPI_WIN_NULL, MPI_WIN_NULL }; /* Initialization of runtime and initial state of data */ MPI_Init(&argc, &argv); GetMySubarray(&my_subarray); InitArrays(&A_1, &A_2, &my_subarray); /* Create RMA window using host memory */ MPI_Win_create(A_1, sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[0]); MPI_Win_create(A_2, sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[1]); /* Start RMA exposure epoch */ MPI_Win_fence(0, win[0]); MPI_Win_fence(0, win[1]); if (PrintTime) { t_start = MPI_Wtime(); } for (int i = 0; i < Niter; ++i) { MPI_Win cwin = win[(i + 1) % 2]; double *a = (i % 2) ? A_1 : A_2; double *a_out = ((1 + i) % 2) ? A_1 : A_2; /* Calculate values on borders to initiate communications early */ for (int _column = 0; _column < my_subarray.x_size; ++_column) { int idx = XY_2_IDX(_column, 0, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); idx = XY_2_IDX(_column, my_subarray.y_size - 1, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } /* Perform halo-exchange with neighbours */ if (my_subarray.rank != 0) { int idx = XY_2_IDX(0, 0, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank - 1, my_subarray.l_nbh_offt, my_subarray.x_size, MPI_DOUBLE, cwin); } if (my_subarray.rank != (my_subarray.comm_size - 1)) { int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank + 1, 1, my_subarray.x_size, MPI_DOUBLE, cwin); } /* Recalculate internal points in parallel with communication */ for (int row = 1; row < my_subarray.y_size - 1; ++row) { for (int column = 0; column < my_subarray.x_size; ++column) { int idx = XY_2_IDX(column, row, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } } /* Calculate norm value after given number of iterations */ if ((NormIteration > 0) && ((NormIteration - 1) == i % NormIteration)) { double result_norm = 0.0; double norm = 0.0; for (int row = 0; row < my_subarray.y_size; ++row) { for (int column = 0; column < my_subarray.x_size; ++column) { int idx = XY_2_IDX(column, row, my_subarray); double diff = a_out[idx] - a[idx]; norm += diff*diff; } } MPI_Reduce(&norm, &result_norm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { printf("NORM value on iteration %d: %f\n", i+1, sqrt(result_norm)); } } /* Ensure all communications are complete before next iteration */ MPI_Win_fence(0, cwin); } if (PrintTime) { double avg_time; double rank_time; rank_time = MPI_Wtime() - t_start; MPI_Reduce(&rank_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { avg_time = avg_time/my_subarray.comm_size; printf("Average solver time: %f(sec)\n", avg_time); } } if (my_subarray.rank == 0) { printf("SUCCESS\n"); } MPI_Win_free(&win[1]); MPI_Win_free(&win[0]); MPI_Finalize(); return 0; }
c
oneAPI-samples
data/projects/oneAPI-samples/Libraries/MPI/jacobian_solver/src/03_jacobian_device_mpi_one-sided_device_initiated/mpi3_onesided_jacobian_gpu_sycl_device_initiated.cpp
/*============================================================== * Copyright © 2023 Intel Corporation * * SPDX-License-Identifier: MIT * ============================================================= */ /* Distributed Jacobian computation sample using OpenMP GPU offload and MPI-3 one-sided. */ #include "mpi.h" #include <sycl.hpp> #include <vector> #include <iostream> const int Nx = 16384; /* Grid size */ const int Ny = Nx; const int Niter = 100; /* Nuber of algorithm iterations */ const int NormIteration = 10; /* Recaluculate norm after given number of iterations. 0 to disable norm calculation */ const int PrintTime = 1; /* Output overall time of compute/communication part */ struct subarray { int rank, comm_size; /* MPI rank and communicator size */ int x_size, y_size; /* Subarray size excluding border rows and columns */ MPI_Aint l_nbh_offt; /* Offset predecessor data to update */ }; #define ROW_SIZE(S) ((S).x_size + 2) #define XY_2_IDX(X,Y,S) (((Y)+1)*ROW_SIZE(S)+((X)+1)) /* Subroutine to create and initialize initial state of input subarrays */ void InitDeviceArrays(double **A_dev_1, double **A_dev_2, sycl::queue q, struct subarray *sub) { size_t total_size = (sub->x_size + 2) * (sub->y_size + 2); double *A = sycl::malloc_host < double >(total_size, q); *A_dev_1 = sycl::malloc_device < double >(total_size, q); *A_dev_2 = sycl::malloc_device < double >(total_size, q); for (int i = 0; i < (sub->y_size + 2); i++) for (int j = 0; j < (sub->x_size + 2); j++) A[i * (sub->x_size + 2) + j] = 0.0; if (sub->rank == 0) /* set top boundary */ for (int i = 1; i <= sub->x_size; i++) A[i] = 1.0; /* set bottom boundary */ if (sub->rank == (sub->comm_size - 1)) for (int i = 1; i <= sub->x_size; i++) A[(sub->x_size + 2) * (sub->y_size + 1) + i] = 10.0; for (int i = 1; i <= sub->y_size; i++) { int row_offt = i * (sub->x_size + 2); A[row_offt] = 1.0; /* set left boundary */ A[row_offt + sub->x_size + 1] = 1.0; /* set right boundary */ } /* Move input arrays to device */ q.memcpy(*A_dev_1, A, sizeof(double) * total_size); q.memcpy(*A_dev_2, A, sizeof(double) * total_size); q.wait(); } /* Setup subarray size and layout processed by current rank */ void GetMySubarray(struct subarray *sub) { MPI_Comm_size(MPI_COMM_WORLD, &sub->comm_size); MPI_Comm_rank(MPI_COMM_WORLD, &sub->rank); sub->y_size = Ny / sub->comm_size; sub->x_size = Nx; sub->l_nbh_offt = (sub->x_size + 2) * (sub->y_size + 1) + 1; int tail = sub->y_size % sub->comm_size; if (tail != 0) { if (sub->rank < tail) sub->y_size++; if ((sub->rank > 0) && ((sub->rank - 1) < tail)) sub->l_nbh_offt += (sub->x_size + 2); } } int main(int argc, char *argv[]) { double t_start; struct subarray my_subarray = { }; double *A_device[2] = { }; MPI_Win win[2] = { MPI_WIN_NULL, MPI_WIN_NULL }; int batch_iters = 0; int passed_iters = 0; double norm = 0.0; int provided; /* Initialization of runtime and initial state of data */ sycl::queue q(sycl::gpu_selector_v); /* MPI_THREAD_MULTIPLE is required for device-initiated communications */ MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided); GetMySubarray(&my_subarray); InitDeviceArrays(&A_device[0], &A_device[1], q, &my_subarray); #ifdef GROUP_SIZE_DEFAULT int work_group_size = GROUP_SIZE_DEFAULT; #else int work_group_size = q.get_device().get_info<sycl::info::device::max_work_group_size>(); #endif if ((Nx % work_group_size) != 0) { if (my_subarray.rank == 0) { printf("For simplification, sycl::info::device::max_work_group_size should be divider of X dimention of array\n"); printf("Please adjust matrix size, or define GROUP_SIZE_DEFAULT\n"); printf("sycl::info::device::max_work_group_size=%d Nx=%d (%d)\n", work_group_size, Nx, work_group_size % Nx); MPI_Abort(MPI_COMM_WORLD, -1); } } /* Create RMA window using device memory */ MPI_Win_create(A_device[0], sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[0]); MPI_Win_create(A_device[1], sizeof(double) * (my_subarray.x_size + 2) * (my_subarray.y_size + 2), sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win[1]); /* Start RMA exposure epoch */ MPI_Win_fence(0, win[0]); MPI_Win_fence(0, win[1]); if (PrintTime) { t_start = MPI_Wtime(); } for (int i = 0; i < Niter; ++i) { MPI_Win cwin = win[(i + 1) % 2]; double *a = A_device[i % 2]; double *a_out = A_device[(i + 1) % 2]; q.submit([&](auto & h) { h.parallel_for(sycl::nd_range<1>(work_group_size, work_group_size), [=](sycl::nd_item<1> item) { int local_id = item.get_local_id(); int col_per_wg = my_subarray.x_size / work_group_size; int my_x_lb = col_per_wg * local_id; int my_x_ub = my_x_lb + col_per_wg; /* Calculate values on borders to initiate communications early */ for (int column = my_x_lb; column < my_x_ub; column ++) { int idx = XY_2_IDX(column, 0, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); idx = XY_2_IDX(column, my_subarray.y_size - 1, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } item.barrier(sycl::access::fence_space::global_space); if (local_id == 0) { /* Perform 1D halo-exchange with neighbours */ if (my_subarray.rank != 0) { int idx = XY_2_IDX(0, 0, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank - 1, my_subarray.l_nbh_offt, my_subarray.x_size, MPI_DOUBLE, cwin); } if (my_subarray.rank != (my_subarray.comm_size - 1)) { int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray); MPI_Put(&a_out[idx], my_subarray.x_size, MPI_DOUBLE, my_subarray.rank + 1, 1, my_subarray.x_size, MPI_DOUBLE, cwin); } } /* Recalculate internal points in parallel with comunications */ for (int row = 1; row < my_subarray.y_size - 1; ++row) { for (int column = my_x_lb; column < my_x_ub; column ++) { int idx = XY_2_IDX(column, row, my_subarray); a_out[idx] = 0.25 * (a[idx - 1] + a[idx + 1] + a[idx - ROW_SIZE(my_subarray)] + a[idx + ROW_SIZE(my_subarray)]); } } item.barrier(sycl::access::fence_space::global_space); }); }).wait(); /* Calculate and report norm value after given number of iterations */ if ((NormIteration > 0) && ((NormIteration - 1) == i % NormIteration)) { double rank_norm = 0.0; { sycl::buffer<double> norm_buf(&rank_norm, 1); q.submit([&](auto & h) { auto sumr = sycl::reduction(norm_buf, h, sycl::plus<>()); h.parallel_for(sycl::range(my_subarray.x_size, my_subarray.y_size), sumr, [=] (auto index, auto &v) { int idx = XY_2_IDX(index[0], index[1], my_subarray); double diff = a_out[idx] - a[idx]; v += (diff * diff); }); }).wait(); } /* Get global norm value */ MPI_Reduce(&rank_norm, &norm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { printf("NORM value on iteration %d: %f\n", passed_iters + batch_iters + 1, sqrt(norm)); } rank_norm = 0.0; } /* Ensure all communications complete before next iteration */ MPI_Win_fence(0, cwin); } if (PrintTime) { double avg_time; double rank_time; rank_time = MPI_Wtime() - t_start; MPI_Reduce(&rank_time, &avg_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (my_subarray.rank == 0) { avg_time = avg_time/my_subarray.comm_size; printf("Average solver time: %f(sec)\n", avg_time); } } if (my_subarray.rank == 0) { printf("[%d] SUCCESS\n", my_subarray.rank); } MPI_Win_free(&win[1]); MPI_Win_free(&win[0]); MPI_Finalize(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneTBB/tbb-task-sycl/src/tbb-task-sycl.cpp
//============================================================== // Copyright � 2019 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <array> #include <iostream> #include <numeric> #include <sycl/sycl.hpp> #include <tbb/blocked_range.h> #include <tbb/global_control.h> #include <tbb/parallel_for.h> #include "tbb/task_group.h" // dpc_common.hpp can be found in the dev-utilities include folder. // e.g., $ONEAPI_ROOT/dev-utilities//include/dpc_common.hpp #include "dpc_common.hpp" #define VERBOSE const float alpha = 0.5; // coeff for triad calculation const size_t array_size = 16; std::array<float, array_size> a_array; // input std::array<float, array_size> b_array; // input std::array<float, array_size> c_array; // output std::array<float, array_size> c_array_tbb; // output class ExecuteOnGpu { const char* message; public: ExecuteOnGpu(const char* str) : message(str) {} void operator()() const { std::cout << message << "\n"; // By including all the SYCL work in a {} block, we ensure // all SYCL tasks must complete before exiting the block { // starting SYCL code const float coeff = alpha; // coeff is a local varaible sycl::range<1> n_items{array_size}; sycl::buffer a_buffer(a_array); sycl::buffer b_buffer(b_array); sycl::buffer c_buffer(c_array); sycl::queue q(sycl::default_selector_v, dpc_common::exception_handler); q.submit([&](sycl::handler& h) { sycl::accessor a_accessor(a_buffer, h, sycl::read_only); sycl::accessor b_accessor(b_buffer, h, sycl::read_only); sycl::accessor c_accessor(c_buffer, h, sycl::write_only); h.parallel_for(n_items, [=](sycl::id<1> index) { c_accessor[index] = a_accessor[index] + b_accessor[index] * coeff; }); // end of the kernel -- parallel for }) .wait_and_throw(); // end of the commands for the SYCL queue } // end of the scope for SYCL code; wait unti queued work completes } // operator }; class ExecuteOnCpu { const char* message; public: ExecuteOnCpu(const char* str) : message(str) {} void operator()() const { std::cout << message << "\n"; tbb::parallel_for(tbb::blocked_range<int>(0, a_array.size()), [&](tbb::blocked_range<int> r) { for (int index = r.begin(); index < r.end(); ++index) { c_array_tbb[index] = a_array[index] + b_array[index] * alpha; } }); } // operator() }; void PrintArr(const char* text, const std::array<float, array_size>& array) { std::cout << text; for (const auto& s : array) std::cout << s << ' '; std::cout << "\n"; } int main() { // init input arrays std::iota(a_array.begin(), a_array.end(), 0); std::iota(b_array.begin(), b_array.end(), 0); // start tbb task group tbb::task_group tg; // tbb::task_scheduler_init init(2); int nth = 4; // number of threads auto mp = tbb::global_control::max_allowed_parallelism; tbb::global_control gc(mp, nth); tg.run(ExecuteOnGpu("executing on GPU")); // spawn task and return tg.run(ExecuteOnCpu("executing on CPU")); // spawn task and return tg.wait(); // wait for tasks to complete // Serial execution std::array<float, array_size> c_gold; for (size_t i = 0; i < array_size; ++i) c_gold[i] = a_array[i] + alpha * b_array[i]; // Compare golden triad with heterogeneous triad if (!std::equal(std::begin(c_array), std::end(c_array), std::begin(c_gold))) std::cout << "Heterogenous triad error.\n"; else std::cout << "Heterogenous triad correct.\n"; // Compare golden triad with TBB triad if (!std::equal(std::begin(c_array_tbb), end(c_array_tbb), std::begin(c_gold))) std::cout << "TBB triad error.\n"; else std::cout << "TBB triad correct.\n"; #ifdef VERBOSE PrintArr("input array a_array: ", a_array); PrintArr("input array b_array: ", b_array); PrintArr("output array c_array on GPU: ", c_array); PrintArr("output array c_array_tbb on CPU: ", c_array_tbb); #endif } // main
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneTBB/tbb-resumable-tasks-sycl/src/tbb-resumable-tasks-sycl.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <array> #include <atomic> #include <cmath> #include <iostream> #include <sstream> #include <thread> #include <sycl/sycl.hpp> #include <tbb/blocked_range.h> #include <tbb/global_control.h> #include <tbb/task.h> #include <tbb/task_group.h> #include <tbb/parallel_for.h> constexpr float ratio = 0.5; // CPU or GPU offload ratio constexpr float alpha = 0.5; // coeff for triad calculation constexpr std::size_t array_size = 16; std::array<float, array_size> a_array; // input array std::array<float, array_size> b_array; // input array std::array<float, array_size> c_array; // output array void print_array( const char* text, const std::array<float, array_size>& array ) { std::cout << text; for (const auto& s: array) std::cout << s << ' '; std::cout << std::endl; } class AsyncActivity { float offload_ratio; std::atomic<bool> submit_flag; tbb::task::suspend_point suspend_point; std::thread service_thread; public: AsyncActivity() : offload_ratio(0), submit_flag(false), service_thread([this] { // Wait until the job will be submitted into the async activity while(!submit_flag) std::this_thread::yield(); std::size_t array_size_sycl = std::ceil(array_size * offload_ratio); // Note that this lambda will be executed concurrently with the task // passed into tbb::task_group std::stringstream sstream; sstream << "start index for GPU = 0; end index for GPU = " << array_size_sycl << std::endl; std::cout << sstream.str(); const float coeff = alpha; // coeff is a local variable { // starting SYCL code sycl::range<1> n_items{array_size_sycl}; sycl::buffer<cl_float, 1> a_buffer(a_array.data(), n_items); sycl::buffer<cl_float, 1> b_buffer(b_array.data(), n_items); sycl::buffer<cl_float, 1> c_buffer(c_array.data(), n_items); sycl::queue q; q.submit([&](sycl::handler& h) { auto a_accessor = a_buffer.get_access<sycl::access::mode::read>(h); auto b_accessor = b_buffer.get_access<sycl::access::mode::read>(h); auto c_accessor = c_buffer.get_access<sycl::access::mode::write>(h); h.parallel_for(n_items, [=](sycl::id<1> index) { c_accessor[index] = a_accessor[index] + coeff * b_accessor[index]; }); // end of the kernel }).wait(); } // Pass a signal into the main thread that the GPU work is completed tbb::task::resume(suspend_point); }) {} ~AsyncActivity() { service_thread.join(); } void submit( float ratio, tbb::task::suspend_point sus_point ) { offload_ratio = ratio; suspend_point = sus_point; submit_flag = true; } }; // class AsyncActivity int main() { // init input arrays for (std::size_t i = 0; i < array_size; ++i) { a_array[i] = i; b_array[i] = i; } std::size_t n_threads = 4; tbb::global_control gc(tbb::global_control::max_allowed_parallelism, n_threads + 1); // One more thread, but sleeping tbb::task_group tg; AsyncActivity activity; // Run CPU part // tg.run is a non- blocking call tg.run([&]{ std::size_t i_start = static_cast<std::size_t>(std::ceil(array_size * ratio)); std::size_t i_end = array_size; std::stringstream sstream; sstream << "start index for CPU = " << i_start << "; end index for CPU = " << i_end << std::endl; std::cout << sstream.str(); tbb::parallel_for(i_start, i_end, []( std::size_t index ) { c_array[index] = a_array[index] + alpha * b_array[index]; }); }); // Run GPU part tbb::task::suspend([&]( tbb::task::suspend_point suspend_point ) { activity.submit(ratio, suspend_point); }); tg.wait(); // Serial execution std::array<float, array_size> c_gold; for (std::size_t i = 0; i < array_size; ++i) { c_gold[i] = a_array[i] + alpha * b_array[i]; } // Compare golden triad with heterogeneous triad if (c_array != c_gold) { std::cout << "Heterogeneous triad error." << std::endl; } else { std::cout << "Heterogeneous triad correct." << std::endl; } print_array("c_array: ", c_array); print_array("c_gold: ", c_gold); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneTBB/tbb-async-sycl/src/tbb-async-sycl.cpp
//============================================================== // Copyright © 2019 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <cmath> //for std::ceil #include <array> #include <atomic> #include <iostream> #include <thread> #include <numeric> #include <sycl/sycl.hpp> #include <tbb/blocked_range.h> #include <tbb/flow_graph.h> #include <tbb/global_control.h> #include <tbb/parallel_for.h> // dpc_common.hpp can be found in the dev-utilities include folder. // e.g., $ONEAPI_ROOT/dev-utilities//include/dpc_common.hpp #include "dpc_common.hpp" struct done_tag{}; const float ratio = 0.5; // CPU to GPU offload ratio const float alpha = 0.5; // coeff for triad calculation const size_t array_size = 16; std::array<float, array_size> a_array; // input std::array<float, array_size> b_array; // input std::array<float, array_size> c_array; // output void PrintArr(const char* text, const std::array<float, array_size>& array) { std::cout << text; for (const auto& s : array) std::cout << s << ' '; std::cout << "\n"; } using async_node_type = tbb::flow::async_node<float, done_tag>; using gateway_type = async_node_type::gateway_type; class AsyncActivity { gateway_type* gateway_ptr; float offload_ratio; std::atomic<bool> submit_flag; std::thread service_thread; public: AsyncActivity() : gateway_ptr(nullptr), offload_ratio(0), submit_flag(false), service_thread( [this] { while( !submit_flag ) { std::this_thread::yield(); } // Execute the kernel over a portion of the array range size_t array_size_sycl = std::ceil(array_size * offload_ratio); std::cout << "start index for GPU = 0; end index for GPU = " << array_size_sycl << "\n"; const float coeff = alpha; // coeff is a local varaible // By including all the SYCL work in a {} block, we ensure // all SYCL tasks must complete before exiting the block { // starting SYCL code sycl::range<1> n_items{array_size_sycl}; sycl::buffer a_buffer(a_array); sycl::buffer b_buffer(b_array); sycl::buffer c_buffer(c_array); sycl::queue q(sycl::default_selector_v, dpc_common::exception_handler); q.submit([&](sycl::handler& h) { sycl::accessor a_accessor(a_buffer, h, sycl::read_only); sycl::accessor b_accessor(b_buffer, h, sycl::read_only); sycl::accessor c_accessor(c_buffer, h, sycl::write_only); h.parallel_for( n_items, [=](sycl::id<1> index) { c_accessor[index] = a_accessor[index] + b_accessor[index] * coeff; }); // end of the kernel -- parallel for }).wait(); } // end of the scope for SYCL code; wait unti queued work completes; gateway_ptr->try_put(done_tag{}); gateway_ptr->release_wait(); } ) {} ~AsyncActivity() { service_thread.join(); } void submit(float ratio, gateway_type& gateway) { gateway.reserve_wait(); offload_ratio = ratio; gateway_ptr = &gateway; submit_flag = true; } }; int main() { // init input arrays std::iota(a_array.begin(), a_array.end(), 0); std::iota(b_array.begin(), b_array.end(), 0); int nth = 4; // number of threads auto mp = tbb::global_control::max_allowed_parallelism; tbb::global_control gc(mp, nth + 1); // One more thread, but sleeping tbb::flow::graph g; // Input node: tbb::flow::input_node<float> in_node{g, [&](tbb::flow_control& fc) -> float { static bool has_run = false; if (has_run) fc.stop(); has_run = true; return ratio; } }; // CPU node tbb::flow::function_node<float, done_tag> cpu_node{ g, tbb::flow::unlimited, [&](float offload_ratio) { size_t i_start = static_cast<size_t>(std::ceil(array_size * offload_ratio)); size_t i_end = static_cast<size_t>(array_size); std::cout << "start index for CPU = " << i_start << "; end index for CPU = " << i_end << "\n"; tbb::parallel_for(tbb::blocked_range<size_t>{i_start, i_end}, [&](const tbb::blocked_range<size_t>& r) { for (size_t i = r.begin(); i < r.end(); ++i) c_array[i] = a_array[i] + alpha * b_array[i]; }); return done_tag{}; }}; // async node -- GPU AsyncActivity async_act; async_node_type a_node{ g, tbb::flow::unlimited, [&async_act](const float& offload_ratio, gateway_type& gateway) { async_act.submit(offload_ratio, gateway); }}; // join node using join_t = tbb::flow::join_node<std::tuple<done_tag, done_tag>, tbb::flow::queueing>; join_t node_join{g}; // out node tbb::flow::function_node<join_t::output_type> out_node{ g, tbb::flow::unlimited, [&](const join_t::output_type&) { // Serial execution std::array<float, array_size> c_gold; for (size_t i = 0; i < array_size; ++i) c_gold[i] = a_array[i] + alpha * b_array[i]; // Compare golden triad with heterogeneous triad if (!std::equal(std::begin(c_array), std::end(c_array), std::begin(c_gold))) std::cout << "Heterogenous triad error.\n"; else std::cout << "Heterogenous triad correct.\n"; PrintArr("c_array: ", c_array); PrintArr("c_gold : ", c_gold); }}; // end of out node // construct graph tbb::flow::make_edge(in_node, a_node); tbb::flow::make_edge(in_node, cpu_node); tbb::flow::make_edge(a_node, tbb::flow::input_port<0>(node_join)); tbb::flow::make_edge(cpu_node, tbb::flow::input_port<1>(node_join)); tbb::flow::make_edge(node_join, out_node); in_node.activate(); g.wait_for_all(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/sparse_conjugate_gradient/utils.hpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= template <typename fp> fp rand_scalar() { return fp(std::rand()) / fp(RAND_MAX) - fp(0.5); } // Create the 3arrays CSR representation (ia, ja, values) // iniitialized by a stencil-based matrix with size nx=ny=nz template <typename fp, typename intType> void generate_sparse_matrix(const intType nx, std::vector<intType> &ia, std::vector<intType> &ja, std::vector<fp> &a) { intType nz = nx, ny = nx; intType nnz = 0; intType current_row; ia[0] = 0; for (intType iz = 0; iz < nz; iz++) { for (intType iy = 0; iy < ny; iy++) { for (intType ix = 0; ix < nx; ix++) { current_row = iz * nx * ny + iy * nx + ix; for (intType sz = -1; sz <= 1; sz++) { if (iz + sz > -1 && iz + sz < nz) { for (intType sy = -1; sy <= 1; sy++) { if (iy + sy > -1 && iy + sy < ny) { for (intType sx = -1; sx <= 1; sx++) { if (ix + sx > -1 && ix + sx < nx) { intType current_column = current_row + sz * nx * ny + sy * nx + sx; ja[nnz] = current_column; if (current_column == current_row) { a[nnz++] = 26.; } else { a[nnz++] = -1.; } } // end // x // bounds // test } // end sx loop } // end y bounds test } // end sy loop } // end z bounds test } // end sz loop ia[current_row + 1] = nnz; } // end ix loop } // end iy loop } // end iz loop }
hpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/sparse_conjugate_gradient/sparse_cg.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * * Content: * This sample demonstrates use of oneAPI Math Kernel Library (oneMKL) * sparse BLAS API to solve a system of linear equations (Ax=b). * * It uses the preconditioned conjugate gradient method with a symmetric * Gauss-Seidel preconditioner: * * Compute r_0 = b - Ax_0 * w_0 = B^{-1}*r_0 and p_0 = w_0 * while not converged * { * alpha_k = (r_k , w_k )/(Ap_k , p_k ) * x_{k+1} = x_k + alpha_k*p_k * r_{k+1} = r_k - alpha_k*A*p_k * w_{k+1} = B^{-1}*r_{k+1} * beta_k = (r_{k+1}, w_{k+1})/(r_k , w_k ) * p_{k+1} = w_{k+1} + beta_k*p_k * } * * where A = -L+D-L^t; B = (D-L)*D^{-1}*(D-L^t). * * The supported floating point data types for gemm matrix data are: * float * double * */ // stl includes #include <algorithm> #include <cstdlib> #include <cstring> #include <iostream> #include <iterator> #include <limits> #include <list> #include <vector> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" #include "utils.hpp" using namespace oneapi; template <typename fp, typename intType> static void diagonal_mv(sycl::queue main_queue, const intType nrows, sycl::buffer<fp, 1> &d_buffer, sycl::buffer<fp, 1> &t_buffer) { main_queue.submit([&](sycl::handler &cgh) { auto d = (d_buffer).template get_access<sycl::access::mode::write>(cgh); auto t = (t_buffer).template get_access<sycl::access::mode::read_write>(cgh); auto diagonalMVKernel = [=](sycl::item<1> item) { const int row = item.get_id(0); t[row] *= d[row]; }; cgh.parallel_for(sycl::range<1>(nrows), diagonalMVKernel); }); } template <typename fp, typename intType> void run_sparse_cg_example(const sycl::device &dev) { // Matrix data size intType size = 4; intType nrows = size * size * size; // Input matrix in CSR format std::vector<intType> ia; std::vector<intType> ja; std::vector<fp> a; ia.resize(nrows + 1); ja.resize(27 * nrows); a.resize(27 * nrows); generate_sparse_matrix<fp, intType>(size, ia, ja, a); // Vectors x and y std::vector<fp> x; std::vector<fp> b; x.resize(nrows); b.resize(nrows); // Init right hand side and vector x for (int i = 0; i < nrows; i++) { b[i] = 1; x[i] = 0; } // Catch asynchronous exceptions auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cout << "Caught asynchronous SYCL " "exception during sparse CG:\n" << e.what() << std::endl; } } }; // // Execute CG // // create execution queue and buffers of matrix data sycl::queue main_queue(dev, exception_handler); sycl::buffer<intType, 1> ia_buffer(ia.data(), nrows + 1); sycl::buffer<intType, 1> ja_buffer(ja.data(), ia[nrows]); sycl::buffer<fp, 1> a_buffer(a.data(), ia[nrows]); sycl::buffer<fp, 1> x_buffer(x); sycl::buffer<fp, 1> b_buffer(b); sycl::buffer<fp, 1> r_buffer(nrows); sycl::buffer<fp, 1> w_buffer(nrows); sycl::buffer<fp, 1> p_buffer(nrows); sycl::buffer<fp, 1> t_buffer(nrows); sycl::buffer<fp, 1> y_buffer(nrows); sycl::buffer<fp, 1> d_buffer(nrows); sycl::buffer<fp, 1> temp_buffer(1); // create and initialize handle for a Sparse Matrix in CSR format mkl::sparse::matrix_handle_t handle; try { mkl::sparse::init_matrix_handle(&handle); mkl::sparse::set_csr_data(handle, nrows, nrows, mkl::index_base::zero, ia_buffer, ja_buffer, a_buffer); mkl::sparse::set_matrix_property(handle, mkl::sparse::property::symmetric); mkl::sparse::set_matrix_property(handle, mkl::sparse::property::sorted); mkl::sparse::optimize_trsv(main_queue, mkl::uplo::lower, mkl::transpose::nontrans, mkl::diag::nonunit, handle); mkl::sparse::optimize_trsv(main_queue, mkl::uplo::upper, mkl::transpose::nontrans, mkl::diag::nonunit, handle); mkl::sparse::optimize_gemv(main_queue, mkl::transpose::nontrans, handle); main_queue.submit([&](sycl::handler &cgh) { auto ia = (ia_buffer).template get_access<sycl::access::mode::read>(cgh); auto ja = (ja_buffer).template get_access<sycl::access::mode::read>(cgh); auto a = (a_buffer).template get_access<sycl::access::mode::read>(cgh); auto d = (d_buffer).template get_access<sycl::access::mode::write>(cgh); auto extractDiagonalKernel = [=](sycl::item<1> item) { const int row = item.get_id(0); for (intType i = ia[row]; i < ia[row + 1]; i++) { if (ja[i] == row) { d[row] = a[i]; break; } } }; cgh.parallel_for(sycl::range<1>(nrows), extractDiagonalKernel); }); // initial residual equal to RHS cause of zero initial vector mkl::blas::copy(main_queue, nrows, b_buffer, 1, r_buffer, 1); // Calculation B^{-1}r_0 { mkl::sparse::trsv(main_queue, mkl::uplo::lower, mkl::transpose::nontrans, mkl::diag::nonunit, handle, r_buffer, t_buffer); diagonal_mv<fp, intType>(main_queue, nrows, d_buffer, t_buffer); mkl::sparse::trsv(main_queue, mkl::uplo::upper, mkl::transpose::nontrans, mkl::diag::nonunit, handle, t_buffer, w_buffer); } mkl::blas::copy(main_queue, nrows, w_buffer, 1, p_buffer, 1); // Calculate initial norm of correction fp initial_norm_of_correction = 0; mkl::blas::nrm2(main_queue, nrows, w_buffer, 1, temp_buffer); { auto temp_accessor = temp_buffer.template get_access<sycl::access::mode::read>(); initial_norm_of_correction = temp_accessor[0]; } fp norm_of_correction = initial_norm_of_correction; // Start of main PCG algorithm std::int32_t k = 0; fp alpha, beta, temp; mkl::blas::dot(main_queue, nrows, r_buffer, 1, w_buffer, 1, temp_buffer); { auto temp_accessor = temp_buffer.template get_access<sycl::access::mode::read>(); temp = temp_accessor[0]; } while (norm_of_correction / initial_norm_of_correction > 1.e-3 && k < 100) { // Calculate A*p mkl::sparse::gemv(main_queue, mkl::transpose::nontrans, 1.0, handle, p_buffer, 0.0, t_buffer); // Calculate alpha_k mkl::blas::dot(main_queue, nrows, p_buffer, 1, t_buffer, 1, temp_buffer); { auto temp_accessor = temp_buffer.template get_access<sycl::access::mode::read>(); alpha = temp / temp_accessor[0]; } // Calculate x_k = x_k + alpha*p_k mkl::blas::axpy(main_queue, nrows, alpha, p_buffer, 1, x_buffer, 1); // Calculate r_k = r_k - alpha*A*p_k mkl::sparse::gemv(main_queue, mkl::transpose::nontrans, -alpha, handle, p_buffer, 1.0, r_buffer); // Calculate w_k = B^{-1}r_k { mkl::sparse::trsv(main_queue, mkl::uplo::lower, mkl::transpose::nontrans, mkl::diag::nonunit, handle, r_buffer, t_buffer); diagonal_mv<fp, intType>(main_queue, nrows, d_buffer, t_buffer); mkl::sparse::trsv(main_queue, mkl::uplo::upper, mkl::transpose::nontrans, mkl::diag::nonunit, handle, t_buffer, w_buffer); } // Calculate current norm of correction mkl::blas::nrm2(main_queue, nrows, w_buffer, 1, temp_buffer); { auto temp_accessor = temp_buffer.template get_access<sycl::access::mode::read>(); norm_of_correction = temp_accessor[0]; } std::cout << "\t\trelative norm of residual on " << ++k << " iteration: " << norm_of_correction / initial_norm_of_correction << std::endl; if (norm_of_correction <= 1.e-3) break; // Calculate beta_k mkl::blas::dot(main_queue, nrows, r_buffer, 1, w_buffer, 1, temp_buffer); { auto temp_accessor = temp_buffer.template get_access<sycl::access::mode::read>(); beta = temp_accessor[0] / temp; temp = temp_accessor[0]; } // Calculate p_k = w_k+beta*p_k mkl::blas::axpy(main_queue, nrows, beta, p_buffer, 1, w_buffer, 1); mkl::blas::copy(main_queue, nrows, w_buffer, 1, p_buffer, 1); } std::cout << "\n\t\tPreconditioned CG process has successfully converged, and\n" << "\t\tthe following solution has been obtained:\n\n"; auto result = x_buffer.template get_access<sycl::access::mode::read>(); for (std::int32_t i = 0; i < 4; i++) { std::cout << "\t\tx[" << i << "] = " << result[i] << std::endl; } std::cout << "\t\t..." << std::endl; } catch (std::exception const &e) { std::cout << "\t\tCaught exception:\n" << e.what() << std::endl; } mkl::sparse::release_matrix_handle(&handle); } // // Description of example setup, apis used and supported floating point type // precisions // void print_banner() { std::cout << "###############################################################" "#########\n" "# Sparse Conjugate Gradient Solver\n" "# \n" "# Uses the preconditioned conjugate gradient algorithm to\n" "# iteratively solve the symmetric linear system\n" "# \n" "# A * x = b\n" "# \n" "# where A is a symmetric sparse matrix in CSR format, and\n" "# x and b are dense vectors.\n" "# \n" "# Uses the symmetric Gauss-Seidel preconditioner.\n" "# \n" "###############################################################" "#########\n\n"; } int main(int argc, char **argv) { print_banner(); sycl::device my_dev{sycl::default_selector{}}; std::cout << "Running tests on " << my_dev.get_info<sycl::info::device::name>() << ".\n"; std::cout << "\tRunning with single precision real data type:" << std::endl; run_sparse_cg_example<float, std::int32_t>(my_dev); if (my_dev.get_info<sycl::info::device::double_fp_config>().size() != 0) { std::cout << "\tRunning with double precision real data type:" << std::endl; run_sparse_cg_example<double, std::int32_t>(my_dev); } }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/black_scholes/src/black_scholes.hpp
//============================================================== // Copyright © 2023 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #ifndef __BLACK_SCHOLES_HPP__ #define __BLACK_SCHOLES_HPP__ #include <vector> #include <chrono> /******* VERSION *******/ #define MAJOR 1 #define MINOR 6 /******* VERSION *******/ #ifndef DATA_TYPE #define DATA_TYPE double #endif #ifndef VERBOSE #define VERBOSE 1 #endif constexpr float volatility = 0.30f; constexpr float risk_free = 0.02f; constexpr size_t opt_n = #if SMALL_OPT_N 480; #else 8 * 1024 * 1024; #endif #ifndef ITER_N #define ITER_N 512 #endif #ifndef __clang_major__ #define __clang_major__ 0 #endif #ifndef __clang_minor__ #define __clang_minor__ 0 #endif #ifndef __VERSION__ #define __VERSION__ __clang_major__ #endif class BlackScholes { public: BlackScholes(); ~BlackScholes(); void run(); void check(); private: DATA_TYPE* h_call_result; DATA_TYPE* h_put_result; DATA_TYPE* h_stock_price; DATA_TYPE* h_option_strike; DATA_TYPE* h_option_years; void body(); }; // Black-Scholes Reference Implementation void BlackScholesRefImpl( double& call_result, double Sf, //Stock price double Xf, //Option strike double Tf, //Option years double Rf, //Riskless rate double Vf //Volatility rate ) { // BSM Formula: https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/ double S = Sf, L = Xf, t = Tf, r = Rf, sigma = Vf; double N_d1 = 1. / 2. + 1. / 2. * std::erf(((std::log(S / L) + (r + 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.)); double N_d2 = 1. / 2. + 1. / 2. * std::erf(((std::log(S / L) + (r - 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.)); call_result = (S * N_d1 - L * std::exp(-r * t) * N_d2); } void BlackScholes::check() { if (VERBOSE) { std::printf("Creating the reference result...\n"); std::vector<double> h_CallResultCPU(opt_n); for (size_t opt = 0; opt < opt_n; opt++) BlackScholesRefImpl(h_CallResultCPU[opt], h_stock_price[opt], h_option_strike[opt], h_option_years[opt], risk_free, volatility); double sum_delta = 0.0, sum_ref = 0.0, max_delta = 0.0, errorVal = 0.0; for (size_t i = 0; i < opt_n; i++) { auto ref = h_CallResultCPU[i]; auto delta = std::fabs(h_CallResultCPU[i] - h_call_result[i]); if (delta > max_delta) { max_delta = delta; } sum_delta += delta; sum_ref += std::fabs(ref); } if (sum_ref > 1E-5) std::printf("L1 norm: %E\n", errorVal = sum_delta / sum_ref); else std::printf("Avg. diff: %E\n", errorVal = sum_delta / opt_n); std::printf((errorVal < 5e-4) ? "TEST PASSED\n" : "TEST FAILED\n"); } } class timer { public: timer() { start(); } void start() { t1_ = std::chrono::steady_clock::now(); } void stop() { t2_ = std::chrono::steady_clock::now(); } auto duration() { return std::chrono::duration<double>(t2_ - t1_).count(); } private: std::chrono::steady_clock::time_point t1_, t2_; }; #endif // __BLACK_SCHOLES_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/black_scholes/src/black_scholes_sycl.cpp
//============================================================== // Copyright © 2023 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include<cstdio> #if !SYCL_LANGUAGE_VERSION #error "SYCL is not enabled"" #endif #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "black_scholes.hpp" constexpr int sg_size = 32; #if NON_DEFAULT_SIZE constexpr int wg_size = 128; constexpr int block_size = 1; #else constexpr int wg_size = 256; constexpr int block_size = 4; #endif sycl::queue* black_scholes_queue; template<typename Type, int> class k_BlackScholes; #if USE_CNDF_C template <typename T> __attribute__((always_inline)) static inline T CNDF_C(T input) { constexpr T inv_sqrt_2xPI = 0.39894228040143270286; constexpr T CNDF_C1 = 0.2316419; constexpr T CNDF_C2 = 0.319381530; constexpr T CNDF_C3 = -0.356563782; constexpr T CNDF_C4 = 1.781477937; constexpr T CNDF_C5 = -1.821255978; constexpr T CNDF_C6 = 1.330274429; constexpr T CNDF_LN2 = 0.693147180559945309417; constexpr T INV_LN2X2 = 1.0 / (CNDF_LN2 * 2.0); T x = (input < 0.0) ? -input : input; T k2 = 1.0 / (1.0 + CNDF_C1 * x); T k2_2 = k2 * k2; T k2_3 = k2_2 * k2; T k2_4 = k2_3 * k2; T k2_5 = k2_4 * k2; T output = 1.0 - (inv_sqrt_2xPI * sycl::exp2(-x * x * INV_LN2X2) * ((CNDF_C2 * k2) + ((CNDF_C3 * (k2_2)) + (CNDF_C4 * (k2_3)) + (CNDF_C5 * (k2_4)) + (CNDF_C6 * (k2_5))))); if (input < 0.0) output = (1.0 - output); return output; } #endif // USE_CNDF_C void BlackScholes::body() { // this can not be captured to the kernel. So, we need to copy internals of the class to local variables DATA_TYPE* h_stock_price_local = this->h_stock_price; DATA_TYPE* h_option_years_local = this->h_option_years; DATA_TYPE* h_option_strike_local = this->h_option_strike; DATA_TYPE* h_call_result_local = this->h_call_result; DATA_TYPE* h_put_result_local = this->h_put_result; black_scholes_queue->parallel_for<k_BlackScholes<DATA_TYPE, block_size>>(sycl::nd_range(sycl::range<1>(opt_n / block_size), sycl::range<1>(wg_size)), [=](sycl::nd_item<1> item) [[intel::kernel_args_restrict]] [[intel::reqd_sub_group_size(sg_size)]] { auto local_id = item.get_local_linear_id(); auto group_id = item.get_group_linear_id(); #pragma unroll for (size_t opt = group_id * block_size * wg_size + local_id, i = 0; i < block_size; opt += wg_size, i++) { constexpr DATA_TYPE sigma = volatility; const DATA_TYPE s = h_stock_price_local[opt]; const DATA_TYPE t = h_option_years_local[opt]; const DATA_TYPE x = h_option_strike_local[opt]; const DATA_TYPE XexpRT = x * sycl::exp(-risk_free * t); #if USE_CNDF_C const DATA_TYPE v_sqrt = sigma * sycl::sqrt(t); const DATA_TYPE d1 = (sycl::log(s / x) + (risk_free + DATA_TYPE(0.5) * sigma * sigma) * t) / v_sqrt; const DATA_TYPE d2 = d1 - v_sqrt; const DATA_TYPE n_d1 = CNDF_C(d1); const DATA_TYPE n_d2 = CNDF_C(d2); #else constexpr DATA_TYPE sqrt1_2 = 0.707106781186547524401; DATA_TYPE n_d1 = DATA_TYPE(1. / 2.) + DATA_TYPE(1. / 2.) * sycl::erf(((sycl::log(s / x) + (risk_free + DATA_TYPE(0.5) * sigma * sigma) * t) / (sigma * sycl::sqrt(t))) * sqrt1_2); DATA_TYPE n_d2 = DATA_TYPE(1. / 2.) + DATA_TYPE(1. / 2.) * sycl::erf(((sycl::log(s / x) + (risk_free - DATA_TYPE(0.5) * sigma * sigma) * t) / (sigma * sycl::sqrt(t))) * sqrt1_2); #endif // USE_CNDF_C const DATA_TYPE call_val = s * n_d1 - XexpRT * n_d2; const DATA_TYPE put_val = call_val + XexpRT - s; h_call_result_local[opt] = call_val; h_put_result_local[opt] = put_val; } }); } BlackScholes::BlackScholes() { black_scholes_queue = new sycl::queue; h_call_result = sycl::malloc_shared<DATA_TYPE>(opt_n, *black_scholes_queue); h_put_result = sycl::malloc_shared<DATA_TYPE>(opt_n, *black_scholes_queue); h_stock_price = sycl::malloc_shared<DATA_TYPE>(opt_n, *black_scholes_queue); h_option_strike = sycl::malloc_shared<DATA_TYPE>(opt_n, *black_scholes_queue); h_option_years = sycl::malloc_shared<DATA_TYPE>(opt_n, *black_scholes_queue); black_scholes_queue->fill(h_call_result, 0.0, opt_n); black_scholes_queue->fill(h_put_result, 0.0, opt_n); constexpr int rand_seed = 777; namespace mkl_rng = oneapi::mkl::rng; // create random number generator object mkl_rng::philox4x32x10 engine( #if !INIT_ON_HOST *black_scholes_queue, #else sycl::queue{sycl::cpu_selector_v}, #endif // !INIT_ON_HOST rand_seed); sycl::event event_1 = mkl_rng::generate(mkl_rng::uniform<DATA_TYPE>(5.0, 50.0), engine, opt_n, h_stock_price); sycl::event event_2 = mkl_rng::generate(mkl_rng::uniform<DATA_TYPE>(10.0, 25.0), engine, opt_n, h_option_strike); sycl::event event_3 = mkl_rng::generate(mkl_rng::uniform<DATA_TYPE>(1.0, 5.0), engine, opt_n, h_option_years); sycl::event::wait({event_1, event_2, event_3}); } BlackScholes::~BlackScholes() { sycl::free(h_call_result, *black_scholes_queue); sycl::free(h_put_result, *black_scholes_queue); sycl::free(h_stock_price, *black_scholes_queue); sycl::free(h_option_strike, *black_scholes_queue); sycl::free(h_option_years, *black_scholes_queue); delete black_scholes_queue; } void BlackScholes::run() { std::printf("%s Precision Black&Scholes Option Pricing version %d.%d running on %s using DPC++, workgroup size %d, sub-group size %d.\n", sizeof(DATA_TYPE) > 4 ? "Double" : "Single", MAJOR, MINOR, black_scholes_queue->get_device().get_info<sycl::info::device::name>().c_str(), wg_size, sg_size); std::printf("Compiler Version: %s, LLVM %d.%d based.\n", __VERSION__, __clang_major__, __clang_minor__); std::printf("Driver Version : %s\n", black_scholes_queue->get_device().get_info<sycl::info::device::driver_version>().c_str()); std::printf("Build Time : %s %s\n", __DATE__, __TIME__); std::printf("Input Dataset : %zu\n", opt_n); size_t total_options = 2 * opt_n /*Pricing Call and Put options at the same time, so 2*num_options*/ * ITER_N; body(); black_scholes_queue->wait(); std::printf("Pricing %zu Options in %d iterations, %zu Options in total.\n", 2 * opt_n, ITER_N, total_options); fflush(stdout); timer t{}; t.start(); for (int i = 0; i < ITER_N; i++) { body(); } black_scholes_queue->wait(); t.stop(); std::printf("Completed in %10.5f seconds. GOptions per second: %10.5f\n", t.duration(), static_cast<double>(total_options) / t.duration() / 1e9); std::printf("Time Elapsed = %10.5f seconds\n", t.duration()); fflush(stdout); } int main(int const argc, char const* argv[]) { BlackScholes test{}; test.run(); test.check(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/block_cholesky_decomposition/auxi.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * Content: * Auxiliary subroutines for: * - Testing accuracy of Cholesky factorization by computing ratio * ||A-L*L^t||_F/||A||_F of Frobenius norms of the residual to the * Frobenius norm of the initial matrix and comparing it to 5*EPS. * - Calculating max_(i=1,...,NRHS){||AX(i)-F(i)||/||F(i)||} of * ratios of residuals to norms of RHS vectors for a system of * linear equations with tridiagonal coefficient matrix and * multiple RHS * ***********************************************************************/ #include <algorithm> #include <cmath> #include <cstdint> #include <iostream> #include <vector> #include "mkl.h" /************************************************************************ * Definition: * =========== * double test_res(int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* d1, int64_t ldd1, double* b1, int64_t ldb1, double* d2, int64_t ldd2, double* b2, int64_t ldb2) * * Purpose: * ======== * Given L*L^t factorization of block tridiagonal matrix A TEST_RES * computes ratio ||A-L*L^t||_F/||A||_F of Frobenius norm of the residual * to the Frobenius norm of the initial matrix. The test is considered as * passed if the ratio does not exceed 5*EPS. The result is returned via * value of INFO. * * Arguments: * ========== * N (input) int64_t * The number of block rows of the matrix A. N > 0. * * NB (input) int64_t * The size of blocks. NB > 0. * * D (input) double array, dimension (LDD) * (N*NB) * The array stores N diagonal blocks (each of size NB by NB) * of the triangular factor L if factorized matrix. The blocks * are stored sequentially block by block. * Caution: upper triangles of diagonal blocks are not zeroed* * ======= * * LDD (input) int64_t. * The leading dimension of the array D, LDD >= NB * * B (input) double array, dimension (LDB,(N-1)*NB) * The array stores sub-diagonal blocks of triangular factor L. * The blocks are stored sequentially block by block. * * LDB (input) int64_t. * The leading dimension of the array B, LDB >= NB * * D1 (work array) double array, dimension (LDD1,N*NB) * The array is destined for internal computations. * * LDD1 (input) int64_t. * The leading dimension of the array D1, LDD1 >= NB * * B1 (work array) double array, dimension (LDB1,(N-1)*NB) * The array is destined for internal computations. * * LDB1 (input) int64_t. * The leading dimension of the array B1, LDB1 >= NB * * D2 (input) double array, dimension (LDD2,N*NB) * The array stores N diagonal blocks (each of size NB by NB) * of the initial symmetric positive definite matrix A. * The blocks are stored sequentially block by block. The * array is used for comparison. * * LDD2 (input) int64_t. * The leading dimension of the array D2, LDD2 >= NB * * B2 (input) double array, dimension (LDB2,(N-1)*NB) * The array stores sub-diagonal blocks of the initial symmetric * positive definite matrix A. The blocks are stored * sequentially block by block. The array is used for comparison. * * LDB2 (input) int64_t. * The leading dimension of the array B2, LDB2 >= NB * * INFO (output) int64_t * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * = 1: the ratio ||A-L*L^t||_F/||A||_F exceeds 5*EPS ***********************************************************************/ double test_res(int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* d1, int64_t ldd1, double* b1, int64_t ldb1, double* d2, int64_t ldd2, double* b2, int64_t ldb2) { // Matrix accessors auto D = [=](int64_t i, int64_t j) -> double& { return d[i + j*ldd]; }; auto D1 = [=](int64_t i, int64_t j) -> double& { return d1[i + j*ldd1]; }; auto D2 = [=](int64_t i, int64_t j) -> double& { return d2[i + j*ldd2]; }; auto B = [=](int64_t i, int64_t j) -> double& { return b[i + j*ldb]; }; auto B1 = [=](int64_t i, int64_t j) -> double& { return b1[i + j*ldb1]; }; auto B2 = [=](int64_t i, int64_t j) -> double& { return b2[i + j*ldb2]; }; // Compute S2 = ||A||_F double s = LAPACKE_dlange(MKL_COL_MAJOR, 'F', nb, nb*n, d2, ldd2); double s1 = LAPACKE_dlange(MKL_COL_MAJOR, 'F', nb, nb*(n-1), b2, ldb2); double s2 = sqrt(s*s+2.0*s1*s1); // Copy D -> D1, B -> B1 and nullify the upper triangle of blocks in D1 for (int64_t k = 0; k < n; k++) { for(int64_t j = 0; j < nb; j++) { cblas_dcopy(nb-j, &D(j, k*nb+j), 1, &D1(j, k*nb+j), ldd1); for (int64_t i = 0; i < j; i++) { D1(j, k*nb+i) = 0.0; } } } for (int64_t k = 0; k < n-1; k++) { for (int64_t j = 0; j < nb; j++) { cblas_dcopy(nb, &B(0, k*nb+j), 1, &B1(0, k*nb+j), 1); } } // Compute product of lower block bidiagonal matrix by its transpose // | L_1 | | L_1^t B_1^t | // | B_1 L_2 | | L_2^t B_2^t | // | . . |*| . . | // | . . | | . . | // | B_N-2 L_N-1 | | L_N-1^t B_N-1^t| // | B_N-1 L_N | | L_N^t | // // Result matrix has the following structure // D_1 B_1^t // B_1 D_2 B_2^t // B_2 D_3 B_3^t // . . . // . . . // B_N-2 D_N-1 B_N-1^t // B_N-1 D_N // // D_1 := L_1*L_1^t cblas_dtrmm(CblasColMajor, CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, nb, nb, 1.0, d, ldd, d1, ldd1); for (int64_t k = 0; k < n-1; k++) { // B_k := B_k*L_k^t cblas_dtrmm(CblasColMajor, CblasRight, CblasLower, CblasTrans, CblasNonUnit, nb, nb, 1.0, &D(0, k*nb), ldd, &B1(0, k*nb), ldb1); // D_k := L_k*L_k^t cblas_dtrmm(CblasColMajor, CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, nb, nb, 1.0, &D(0, (k+1)*nb), ldd, &D1(0, (k+1)*nb), ldd1); // D_k := D_k + B_k*B_k^t cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans, nb, nb, nb, 1.0, &B(0, k*nb), ldb, &B(0, k*nb), ldb, 1.0, &D1(0, (k+1)*nb), ldd1); } // Compute the difference between the calculated product L*L^t and initial // matrix that was factored for (int64_t j = 0; j < nb*n; j++) { for (int64_t i = 0; i < nb; i++) { D1(i,j) = D1(i,j) - D2(i,j); } } for (int64_t j = 0; j < nb*(n-1); j++) { for (int64_t i = 0; i < nb; i++) { B1(i,j) = B1(i,j) - B2(i,j); } } s = LAPACKE_dlange(MKL_COL_MAJOR, 'F', nb, nb*n, d1, ldd1); s1 = LAPACKE_dlange(MKL_COL_MAJOR, 'F', nb, nb*(n-1), b1, ldb1); s = sqrt(s*s+2.0*s1*s1)/s2; return s; } /************************************************************************ * Definition: * =========== * double test_res1(int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf, double* x, int64_t ldx ) * * Purpose: * ======== * Given approximate solution X of system of linear equations A*X=F * with symmetric positive definite block tridiagonal coefficient matrix * A = * D_1 B_1^t * B_1 D_2 B_2^t * B_2 D_3 B_3^t * . . . * . . . * B_N-2 D_N-1 B_N-1^t * B_N-1 D_N * the routine computes max_(i=1,...,NRHS){||AX(i)-F(i)||/F(i)} of ratios * of residuals to norms of RHS vectors. he test is considered as passed * if the value does not exceed 10*EPS where EPS is the machine * precision. * * Arguments: * ========== * N (input) int64_t * The number of block rows of the matrix A. N > 0. * * NRHS (input) int64_t * The number of right hand sides (number of columns in matrix F. * * NB (input) int64_t * The block size of blocks D_j, B_j * * D (input) double array, dimension (LDD) * (N*NB) * The array stores N diagonal blocks (each of size NB by NB) * of matrix A. The blocks are stored sequentially block by * block. * Caution: The diagonal blocks are symmetric matrices - this * ======= * feature is assumed. * * LDD (input) int64_t. * The leading dimension of the array D, LDD >= NB * * B (input) double array, dimension (LDB) * ((N-1)*NB) * The array stores sub-diagonal blocks of matrix A. * The blocks are stored sequentially block by block. * * LDB (input) int64_t. * The leading dimension of the array B, LDB >= NB * * F (input) double array, dimension (LDF) * (NRHS) * The right hand sides of the system of linear equations. * * LDF (input) int64_t. * The leading dimension of the array F, LDF >= NB*N * * X (input) double array, dimension (LDX) * (NRHS) * The solutions of the system of linear equations. * * LDX (input) int64_t. * The leading dimension of the array X, LDX >= NB*N * * INFO (output) int64_t * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * = 1: max_(i=1,...,NRHS){||AX(i)-F(i)||/F(i)} exceeds 10*EPS * = 10: note enough memory for internal array ***********************************************************************/ double test_res1(int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf, double* x, int64_t ldx ) { // Matrix accessors auto D = [=](int64_t i, int64_t j) -> double& { return d[i + j*ldd]; }; auto B = [=](int64_t i, int64_t j) -> double& { return b[i + j*ldb]; }; auto F = [=](int64_t i, int64_t j) -> double& { return f[i + j*ldf]; }; auto X = [=](int64_t i, int64_t j) -> double& { return x[i + j*ldx]; }; std::vector<double> norms(nrhs); // Compute norms of RHS vectors for (int64_t i = 0; i < nrhs; i++) { norms[i] = cblas_dnrm2(nb*n, &F(0,i), 1); } // Out-of-loop compute F(1):=F(1)-D(1)*X(1)-B(1)^t*X(2) cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nrhs, nb, -1.0, d, ldd, x, ldx, 1.0, f, ldf); cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, nb, nrhs, nb, -1.0, b,ldb, &X(nb, 0), ldx, 1.0, f, ldf); for (int64_t k = 1; k < n-1; k++) { // Compute F(K):=F(K)-B(K-1)*X(K-1)-D(K)*X(K)-B(K)^t*X(K+1) cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nrhs, nb, -1.0, &B(0, (k-1)*nb), ldb, &X((k-1)*nb, 0), ldx, 1.0, &F(k*nb, 0), ldf); cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nrhs, nb, -1.0, &D(0, k*nb), ldd, &X( k*nb, 0), ldx, 1.0, &F(k*nb, 0), ldf); cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, nb, nrhs, nb, -1.0, &B(0, k*nb), ldb, &X((k+1)*nb, 0), ldx, 1.0, &F(k*nb, 0), ldf); } // Out-of-loop compute F(N):=F(N)-B(N-1)*X(N-1)-D(N)*X(N) cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nrhs, nb, -1.0, &B(0, (n-2)*nb), ldb, &X((n-2)*nb, 0), ldx, 1.0, &F((n-1)*nb, 0), ldf); cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nrhs, nb, -1.0, &D(0, (n-1)*nb), ldd, &X((n-1)*nb, 0), ldx, 1.0, &F((n-1)*nb, 0), ldf); // Compute norms of residual vectors divided by norms of RHS vectors double res = 0.0; for (int64_t i = 0; i < nrhs; i++) { double s = cblas_dnrm2(n*nb, &F(0,i), 1); res = std::max<double>(res, s/norms[i]); } return res; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/block_cholesky_decomposition/dpbltrf.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * * Content: * Function DPBLTRF for Cholesky factorization of symmetric * positive definite block tridiagonal matrix. ************************************************************************/ #include <cstdint> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" using namespace oneapi; /************************************************************************ * Definition: * =========== * int64_t dpbltrf(sycl::queue queue, int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb) { * * Purpose: * ======== * DPBLTRF computes Cholesky L*L^t-factorization of symmetric positive * definite block tridiagonal matrix A * D_1 B_1^t * B_1 D_2 B_2^t * B_2 D_3 B_3^t * . . . * . . . * B_N-2 D_N-1 B_N-1^t * B_N-1 D_N * The factorization has the form A = L*L**t, where L is a lower * bidiagonal block matrix * L_1 * C_1 L_2 * C_2 L_3 * . . . * . . . * C_N-2 L_N-1 * C_N-1 L_N * This is a block version of LAPACK DPTTRF subroutine. * * Arguments: * ========== * QUEUE (input) sycl queue * The device queue * * N (input) int64_t * The number of block rows of the matrix A. N >= 0. * * NB (input) int64_t * The size of blocks. NB >= 0. * * D (input/output) double array, dimension (LDD)*(N*NB) * On entry, the array stores N diagonal blocks (each of size NB by * NB) of the matrix to be factored. The blocks are stored * sequentially: first NB columns of D store block D_1, second NB * columns store block D_2,...,last NB columns store block D_N. * Note: As the diagonal blocks are symmetric only lower or upper * ==== * triangle is needed to store blocks' elements. In this code * lower storage is used*** * On exit, the array stores diagonal blocks of triangular factor L. * Diagonal blocks of lower triangular factor L replace * respective lower triangles of blocks D_j (1 <= j <= N). * Caution: upper triangles of diagonal blocks are not zeroed on exit * * LDD (input) int64_t * The leading dimension of array D. LDD >= NB. * * B (input/output) double array, dimension (LDB)*((N-1)*NB) * On entry, the array stores sub-diagonal blocks (each of size NB * by NB) of the matrix to be factored. The blocks are stored * sequentially: first NB columns of B store block B_1, second * NB columns store block B_2,...,last NB columns store block * B_N-1. * On exit, the array stores sub-diagonal blocks of triangular factor * L. * * LDB (input) int64_t * The leading dimension of array B. LDB >= NB. * * INFO (return) int64_t * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i (and * therefore the matrix A itself) is not * positive-definite, and the factorization could not be * completed. This may indicate an error in forming the * matrix A. ***********************************************************************/ int64_t dpbltrf(sycl::queue queue, int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb) { // Matrix accessors auto D = [=](int64_t i, int64_t j) -> double& { return d[(i) + (j)*ldd]; }; auto B = [=](int64_t i, int64_t j) -> double& { return b[(i) + (j)*ldb]; }; int64_t info = 0; if (n < 0) info = -1; else if (nb < 0) info = -2; else if (ldd < nb) info = -4; else if (ldb < nb) info = -6; if (info) return info; sycl::context context = queue.get_context(); sycl::device device = queue.get_device(); // Compute Cholesky factorization of the first diagonal block try { std::int64_t scratchpad_size = mkl::lapack::potrf_scratchpad_size<double>(queue, mkl::uplo::lower, nb, ldd); double* scratchpad = static_cast<double*>(sycl::malloc_shared(scratchpad_size * sizeof(double), device, context)); if (scratchpad_size != 0 && !scratchpad) { info = -1000; goto cleanup; } auto event1 = mkl::lapack::potrf(queue, mkl::uplo::lower, nb, d, ldd, scratchpad, scratchpad_size ); event1.wait_and_throw(); sycl::free(scratchpad, context); } catch(mkl::lapack::exception const& e) { // Handle LAPACK related exceptions happened during synchronous call std::cout << "Unexpected exception caught during synchronous call to LAPACK API:\ninfo: " << e.info() << std::endl; if (e.info() > 0) { // INFO is equal to the 'global' index of the element u_ii of the factor // U which is equal to zero info = e.info(); } return info; } // Main loop for (int64_t k = 0; k < n-1; k++) { auto event1 = mkl::blas::trsm(queue, mkl::side::right, mkl::uplo::lower, mkl::transpose::trans, mkl::diag::nonunit, nb, nb, 1.0, &D(0,k*nb), ldd, &B(0,k*nb), ldb); auto event2 = mkl::blas::syrk(queue, mkl::uplo::lower, mkl::transpose::nontrans, nb, nb, -1.0, &B(0,k*nb), ldb, 1.0, &D(0,(k+1)*nb), ldd, {event1}); event2.wait_and_throw(); try { std::int64_t scratchpad_size = mkl::lapack::potrf_scratchpad_size<double>(queue, mkl::uplo::lower, nb, ldd); double* scratchpad = static_cast<double*>(sycl::malloc_shared(scratchpad_size * sizeof(double), device, context)); if (scratchpad_size != 0 && !scratchpad) { info = -1000; goto cleanup; } auto event1 = mkl::lapack::potrf(queue, mkl::uplo::lower, nb, &D(0,(k+1)*nb), ldd, scratchpad, scratchpad_size ); event1.wait_and_throw(); sycl::free(scratchpad, context); } catch(mkl::lapack::exception const& e) { // Handle LAPACK related exceptions happened during synchronous call std::cout << "Unexpected exception caught during synchronous call to LAPACK API:\ninfo: " << e.info() << std::endl; if (e.info() > 0) { // INFO is equal to the 'global' index of the element u_ii of the factor // U which is equal to zero info = e.info() + (k+1)*nb; } return info; } } return info; cleanup: return info; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/block_cholesky_decomposition/factor.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * * Content: * Example of Cholesky factorization of a symmetric positive * definite block tridiagonal matrix ************************************************************************ * Purpose: * ======== * Testing accuracy of Cholesky factorization A= * | L_1 | | L_1^t C_1^t | * | C_1 L_2 | | L_2^t C_2^t | * A = | . . |*| . . | * | . . | | . C_N-1^t | * | C_N-1 L_N | | L_N^t | * * of a symmetric positive definite block tridiagonal matrix A * | D_1 B_1^t | * | B_1 D_2 B_2^t | * | B_2 D_3 B_3^t | * | . . . | * | . . . | * | B_N-2 D_N-1 B_N-1^t | * | B_N-1 D_N | * by calling TEST_RES which calculates ratio of Frobenius norms * ||A-L*L^t||_F/||A||_F. */ #include <cstdint> #include <iostream> #include <vector> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" using namespace oneapi; int64_t dpbltrf(sycl::queue queue, int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb); double test_res(int64_t, int64_t, double*, int64_t, double*, int64_t, double*, int64_t, double*, int64_t, double*, int64_t, double*, int64_t); template<typename T> using allocator_t = sycl::usm_allocator<T, sycl::usm::alloc::shared>; int main() { if (sizeof(MKL_INT) != sizeof(int64_t)) { std::cerr << "MKL_INT not 64bit" << std::endl; return -1; } int64_t info = 0; // Asynchronous error handler auto error_handler = [&] (sycl::exception_list exceptions) { for (auto const& e : exceptions) { try { std::rethrow_exception(e); } catch(mkl::lapack::exception const& e) { // Handle LAPACK related exceptions happened during asynchronous call info = e.info(); std::cout << "Unexpected exception caught during asynchronous LAPACK operation:\ninfo: " << e.info() << std::endl; } catch(sycl::exception const& e) { // Handle not LAPACK related exceptions happened during asynchronous call std::cout << "Unexpected exception caught during asynchronous operation:\n" << e.what() << std::endl; info = -1; } } }; sycl::device device{sycl::default_selector{}}; sycl::queue queue(device, error_handler); sycl::context context = queue.get_context(); if (device.get_info<sycl::info::device::double_fp_config>().empty()) { std::cerr << "The sample uses double precision, which is not supported" << std::endl; std::cerr << "by the selected device. Quitting." << std::endl; return 0; } allocator_t<double> allocator_d(context, device); MKL_INT n = 200; MKL_INT nb = 20; std::vector<double, allocator_t<double>> d(nb * n*nb, allocator_d); std::vector<double, allocator_t<double>> b(nb * (n-1)*nb, allocator_d); std::vector<double> d1(nb * n*nb); std::vector<double> b1(nb * (n-1)*nb); std::vector<double> d2(nb * n*nb); std::vector<double> b2(nb * (n-1)*nb); std::vector<MKL_INT> iseed = {1, 2, 33, 15}; auto D = [=,&d](int64_t i, int64_t j) -> double& { return d[i + j*nb]; }; std::cout << "Testing accuracy of Cholesky factorization\n"; std::cout << "of randomly generated positive definite symmetric\n"; std::cout << "block tridiagonal matrix by calculating residual.\n\n"; std::cout << "Matrix size = " << n << "\n"; std::cout << "Block size = " << nb << "\n"; std::cout << "...\n"; std::cout << "Matrices are being generated.\n"; std::cout << "...\n"; // Initializing arrays randomly LAPACKE_dlarnv(2, iseed.data(), (n-1)*nb*nb, b.data()); cblas_dcopy((n-1)*nb*nb, b.data(), 1, b2.data(), 1); for (int64_t k = 0; k < n; k++) { for (int64_t j = 0; j < nb; j++) { LAPACKE_dlarnv(2, iseed.data(), nb-j, &D(j,k*nb+j)); cblas_dcopy(nb-j, &D(j+1, k*nb+j), 1, &D(j, k*nb+j+1), nb); } // Diagonal dominance to make the matrix positive definite for (int64_t j = 0; j < nb; j++) { D(j, k*nb+j) += nb*3.0; } } cblas_dcopy(n*nb*nb, d.data(), 1, d2.data(), 1); std::cout << "Call Cholesky factorization\n"; std::cout << "...\n"; try { info = dpbltrf(queue, n, nb, d.data(), nb, b.data(), nb); } catch(sycl::exception const& e) { // Handle not LAPACK related exceptions happened during synchronous call std::cout << "Unexpected exception caught during synchronous call to SYCL API:\n" << e.what() << std::endl; info = -1; } if(info) { std::cout << "Factorization failed. info = " << info << std::endl; return 1; } else { std::cout << "Cholesky factorization succeeded." << std::endl; std::cout << "Testing the residual" << std::endl; std::cout << "..." << std::endl; double res = test_res(n, nb, d.data(), nb, b.data(), nb, d1.data(), nb, b1.data(), nb, d2.data(), nb, b2.data(), nb); double eps = LAPACKE_dlamch('E'); std::cout << "Residual test" << std::endl; std::cout << "||A-L*L^t||_F/||A||_F <= 5*EPS..." << std::endl; if (res/eps > 5.0) { std::cout << "failed: ||A-L*L^t||_F/||A||_F = " << res << std::endl; return 1; } else { std::cout << "passed" << std::endl; } } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/block_cholesky_decomposition/dpbltrs.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * * Content: * Function DPBLTRS for solving a system of linear equations with * Cholesky factored symmetric positive definite block tridiagonal * coefficient matrix. ************************************************************************/ #include <cstdint> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" using namespace oneapi; /************************************************************************ * Definition: * =========== * int64_t dpbltrs(sycl::queue queue, int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf) * * Purpose: * ======== * DPBLTRS computes a solution to system of linear equations A*X=F with * symmetric positive definite block tridiagonal coefficient matrix A * D_1 B_1^t * B_1 D_2 B_2^t * B_2 D_3 B_3^t * . . . * . . . * B_N-2 D_N-1 B_N-1^t * B_N-1 D_N * and multiple right hand sides F. Before call this routine the * coefficient matrix should factored A=L*L^T by calling DPBLTRF where * L is a lower block bidiagonal matrix * L_1 * C_1 L_2 * C_2 L_3 * . . . * . . . * C_N-2 L_N-1 * C_N-1 L_N * This is a block version of LAPACK DPTTRS subroutine. * * Arguments: * ========== * QUEUE (input) sycl queue * The device queue * * N (input) int64_t * The number of block rows of the matrix A. N >= 0. * * NRHS (input) int64_t * The number of right hand sides (the number of columns in matrix F). * * NB (input) int64_t * The size of blocks. NB >= 0. * * D (input) double array, dimension (LDD) * (N*NB) * On entry, the array stores diagonal blocks of triangular factor L. * Diagonal blocks L_j of lower triangular factor L are stored as * respective lower triangles of blocks D_j (1 <= j <= N). * Caution: upper triangles of D_j are not assumed to be zeroed. * ======= * * LDD (input) int64_t * The leading dimension of array D. LDD >= NB. * * B (input) double array, dimension (LDB) * ((N-1)*NB) * On entry, the array stores sub-diagonal blocks L_j of triangular * factor L. * * LDB (input) int64_t * The leading dimension of array B. LDB >= NB. * * F (input/output) double array, dimension (LDF) * (NRHS) * On entry, the columns of the array store vectors F(i) of right * hand sides of system of linear equations A*X=F. * * LDF (input) int64_t * The leading dimension of array F. LDF >= NB*N. * * INFO (return) int64_t * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * ===================================================================== */ int64_t dpbltrs(sycl::queue queue, int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf) { auto D = [=](int64_t i, int64_t j) -> double& { return d[i + j*ldd]; }; auto B = [=](int64_t i, int64_t j) -> double& { return b[i + j*ldb]; }; auto F = [=](int64_t i, int64_t j) -> double& { return f[i + j*ldf]; }; // Test the input arguments. int64_t info = 0; if (n < 0) info = -1; else if (nrhs < 0) info = -2; else if (nb < 0) info = -3; else if (ldd < nb) info = -5; else if (ldb < nb) info = -7; else if (ldf < nb*n) info = -9; if (info) return info; // Solving the system of linear equations L*Y=F auto event1 = mkl::blas::trsm(queue, mkl::side::left, mkl::uplo::lower, mkl::transpose::nontrans, mkl::diag::nonunit, nb, nrhs, 1.0, d, ldd, f, ldf); event1.wait_and_throw(); for ( int64_t k = 0; k < n-1; k++) { auto event2 = mkl::blas::gemm(queue, mkl::transpose::nontrans, mkl::transpose::nontrans, nb, nrhs, nb, -1.0, &B(0, k*nb), ldb, &F(k*nb, 0), ldf, 1.0, &F((k+1)*nb, 0), ldf); auto event3 = mkl::blas::trsm(queue, mkl::side::left, mkl::uplo::lower, mkl::transpose::nontrans, mkl::diag::nonunit, nb, nrhs, 1.0, &D(0, (k+1)*nb), ldd, &F((k+1)*nb, 0), ldf, {event2}); event3.wait_and_throw(); } // .. // Solving the system of linear equations L^T*X=Y event1 = mkl::blas::trsm(queue, mkl::side::left, mkl::uplo::lower, mkl::transpose::trans, mkl::diag::nonunit, nb, nrhs, 1.0, &D(0, (n-1)*nb), ldd, &F((n-1)*nb, 0), ldf); event1.wait_and_throw(); for ( int64_t k = n-2; k >= 0; k-- ) { auto event2 = mkl::blas::gemm(queue, mkl::transpose::trans, mkl::transpose::nontrans, nb, nrhs, nb, -1.0, &B(0, k*nb), ldb, &F((k+1)*nb, 0), ldf, 1.0, &F(k*nb, 0), ldf); auto event3 = mkl::blas::trsm(queue, mkl::side::left, mkl::uplo::lower, mkl::transpose::trans, mkl::diag::nonunit, nb, nrhs, 1.0, &D(0, k*nb), ldd, &F(k*nb, 0), ldf, {event2}); event3.wait_and_throw(); } return info; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/block_cholesky_decomposition/solve.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * Content: * Example of solving a system of linear equations with symmetric * positive definite block tridiagonal coefficient matrix Cholesky * factored ************************************************************************ * Purpose: * ======== * Testing accuracy of solution of a system of linear equations A*X=F * with a symmetric positive definite block tridiagonal coefficient * matrix A * | D_1 B_1^t | * | B_1 D_2 B_2^t | * | B_2 D_3 B_3^t | * | . . . | * | . . . | * | B_N-2 D_N-1 B_N-1^t | * | B_N-1 D_N | * preliminarily Cholesky factored as follows: * | L_1 | | L_1^t C_1^t | * | C_1 L_2 | | L_2^t C_2^t | * A = | . . |*| . . | * | . . | | . C_N-1^t | * | C_N-1 L_N | | L_N^t | * * To test the solution function TES_RES1 is called. */ #include <cstdint> #include <iostream> #include <vector> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" using namespace oneapi; template<typename T> using allocator_t = sycl::usm_allocator<T, sycl::usm::alloc::shared>; int64_t dpbltrf(sycl::queue queue, int64_t n, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb); int64_t dpbltrs(sycl::queue queue, int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf); double test_res1(int64_t n, int64_t nrhs, int64_t nb, double* d, int64_t ldd, double* b, int64_t ldb, double* f, int64_t ldf, double* x, int64_t ldx ); int main() { if (sizeof(MKL_INT) != sizeof(int64_t)) { std::cerr << "MKL_INT not 64bit" << std::endl; return -1; } int64_t info = 0; // Asynchronous error handler auto error_handler = [&] (sycl::exception_list exceptions) { for (auto const& e : exceptions) { try { std::rethrow_exception(e); } catch(mkl::lapack::exception const& e) { // Handle LAPACK related exceptions happened during asynchronous call info = e.info(); std::cout << "Unexpected exception caught during asynchronous LAPACK operation:\ninfo: " << e.info() << std::endl; } catch(sycl::exception const& e) { // Handle not LAPACK related exceptions happened during asynchronous call std::cout << "Unexpected exception caught during asynchronous operation:\n" << e.what() << std::endl; info = -1; } } }; sycl::device device{sycl::default_selector{}}; sycl::queue queue(device, error_handler); sycl::context context = queue.get_context(); if (device.get_info<sycl::info::device::double_fp_config>().empty()) { std::cerr << "The sample uses double precision, which is not supported" << std::endl; std::cerr << "by the selected device. Quitting." << std::endl; return 0; } allocator_t<double> allocator_d(context, device); int64_t n = 200; int64_t nb = 20; int64_t nrhs = 10; int64_t ldf = nb*n; std::vector<double, allocator_t<double>> d(nb * n*nb, allocator_d); std::vector<double, allocator_t<double>> b(nb * (n-1)*nb, allocator_d); std::vector<double, allocator_t<double>> f(ldf * nrhs, allocator_d); std::vector<double> d2(nb * n*nb); std::vector<double> b2(nb * (n-1)*nb); std::vector<double> f2(ldf * nrhs); auto D = [=,&d](int64_t i, int64_t j) -> double& { return d[i + j*nb]; }; std::vector<MKL_INT> iseed = {1, 2, 3, 19}; std::cout << "Testing accuracy of solution of linear equations system" << std::endl; std::cout << "with randomly generated positive definite symmetric" << std::endl; std::cout << "block tridiagonal coefficient matrix by calculating" << std::endl; std::cout << "ratios of residuals to RHS vectors' norms." << std::endl; std::cout << "..." << std::endl; std::cout << "Matrices are being generated." << std::endl; std::cout << "..." << std::endl; // Initializing arrays randomly LAPACKE_dlarnv(2, iseed.data(), (n-1)*nb*nb, b.data()); cblas_dcopy((n-1)*nb*nb, b.data(), 1, b2.data(), 1); LAPACKE_dlarnv(2, iseed.data(), nrhs*ldf, f.data()); cblas_dcopy(nrhs*ldf, f.data(), 1, f2.data(), 1); for (int64_t k = 0; k < n; k++) { for (int64_t j = 0; j < nb; j++) { LAPACKE_dlarnv(2, iseed.data(), nb-j, &D(j, k*nb+j)); cblas_dcopy(nb-j-1, &D(j+1, k*nb+j), 1, &D(j, k*nb+j+1), nb); } // Diagonal dominance to make the matrix positive definite for (int64_t j = 0; j < nb; j++) { D(j, k*nb+j) += nb*3.0; } } cblas_dcopy(nb*nb*n, d.data(), 1, d2.data(), 1); // Factor the coefficient matrix std::cout << "Call Cholesky factorization" << std::endl; std::cout << "..." << std::endl; try { info = dpbltrf(queue, n, nb, d.data(), nb, b.data(), nb); } catch(sycl::exception const& e) { // Handle not LAPACK related exceptions happened during synchronous call std::cout << "Unexpected exception caught during synchronous call to SYCL API:\n" << e.what() << std::endl; info = -1; } if(info) { std::cout << "Cholesky factorization failed. INFO = " << info << std::endl; return 1; } else { std::cout << "Cholesky factorization succeeded." << std::endl; } // Solve the system of equations with factored coefficient matrix std::cout << "Call solving the system of linear equations" << std::endl; std::cout << "..." << std::endl; info = dpbltrs(queue, n, nrhs, nb, d.data(), nb, b.data(), nb, f.data(), ldf); if(info) { std::cout << "Solution failed. INFO= " << info << std::endl; return 1; } else { std::cout << "Solution succeeded." << std::endl; } // Test the accuracy of the solution std::cout << "The system is solved. Testing the residual" << std::endl; std::cout << "..." << std::endl; double res = test_res1(n, nrhs, nb, d2.data(), nb, b2.data(), nb, f2.data(), ldf, f.data(), ldf); double eps = LAPACKE_dlamch('E'); if(res/eps > 10.0) { std::cout << "Residual test" << std::endl; std::cout << "max_(i=1,...,NRHS){||A*X(i)-F(i)||/||F(i)||} <= 10*EPS " << std::endl; std::cout << "failed" << std::endl; return 1; } else { std::cout << "Residual test" << std::endl; std::cout << "max_(i=1,...,NRHS){||A*X(i)-F(i)||/||F(i)||} <= 10*EPS " << std::endl; std::cout << "passed" << std::endl; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/binomial/src/binomial_sycl.cpp
//============================================================== // Copyright © 2023 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <cstdio> #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> #include "binomial.hpp" constexpr int sg_size = 32; constexpr int wg_size = 128; sycl::queue* binomial_queue; Binomial::Binomial() { binomial_queue = new sycl::queue; h_call_result = sycl::malloc_shared<DATA_TYPE>(opt_n, *binomial_queue); h_stock_price = sycl::malloc_shared<DATA_TYPE>(opt_n, *binomial_queue); h_option_strike = sycl::malloc_shared<DATA_TYPE>(opt_n, *binomial_queue); h_option_years = sycl::malloc_shared<DATA_TYPE>(opt_n, *binomial_queue); binomial_queue->fill(h_call_result, DATA_TYPE(0), opt_n); constexpr int rand_seed = 777; namespace mkl_rng = oneapi::mkl::rng; // create random number generator object mkl_rng::philox4x32x10 engine( #if !INIT_ON_HOST *binomial_queue, #else sycl::queue{sycl::cpu_selector_v}, #endif rand_seed); sycl::event event_1 = mkl_rng::generate( mkl_rng::uniform<DATA_TYPE>(5.0, 50.0), engine, opt_n, h_stock_price); sycl::event event_2 = mkl_rng::generate( mkl_rng::uniform<DATA_TYPE>(10.0, 25.0), engine, opt_n, h_option_strike); sycl::event event_3 = mkl_rng::generate( mkl_rng::uniform<DATA_TYPE>(1.0, 5.0), engine, opt_n, h_option_years); sycl::event::wait({event_1, event_2, event_3}); } Binomial::~Binomial() { sycl::free(h_call_result, *binomial_queue); sycl::free(h_stock_price, *binomial_queue); sycl::free(h_option_strike, *binomial_queue); sycl::free(h_option_years, *binomial_queue); delete binomial_queue; } void Binomial::body() { constexpr int block_size = num_steps / wg_size; static_assert(block_size * wg_size == num_steps); // "this" can not be captured to the kernel. So, we need to copy internals of // the class to local variables DATA_TYPE* h_stock_price_local = this->h_stock_price; DATA_TYPE* h_option_years_local = this->h_option_years; DATA_TYPE* h_option_strike_local = this->h_option_strike; DATA_TYPE* h_call_result_local = this->h_call_result; binomial_queue->submit([&](sycl::handler& h) { sycl::local_accessor<DATA_TYPE> slm_call{wg_size + 1, h}; h.template parallel_for( sycl::nd_range(sycl::range<1>(opt_n * wg_size), sycl::range<1>(wg_size)), [=](sycl::nd_item<1> item) [[intel::kernel_args_restrict]] [[intel::reqd_sub_group_size( sg_size)]] { const size_t opt = item.get_global_id(0) / wg_size; const DATA_TYPE sx = h_stock_price_local[opt]; const DATA_TYPE xx = h_option_strike_local[opt]; const DATA_TYPE tx = h_option_years_local[opt]; const DATA_TYPE dt = tx / static_cast<DATA_TYPE>(num_steps); const DATA_TYPE v_dt = volatility * sycl::sqrt(dt); const DATA_TYPE r_dt = risk_free * dt; const DATA_TYPE i_f = sycl::exp(r_dt); const DATA_TYPE df = sycl::exp(-r_dt); const DATA_TYPE u = sycl::exp(v_dt); const DATA_TYPE d = sycl::exp(-v_dt); const DATA_TYPE pu = (i_f - d) / (u - d); const DATA_TYPE pd = static_cast<DATA_TYPE>(1.0) - pu; const DATA_TYPE pu_df = pu * df; const DATA_TYPE pd_df = pd * df; const DATA_TYPE mul_c = v_dt * static_cast<DATA_TYPE>(2.0); DATA_TYPE id = v_dt * static_cast<DATA_TYPE>(-num_steps); DATA_TYPE local_call[block_size + 1]; auto wg = item.get_group(); int local_id = wg.get_local_id(0); int block_start = block_size * local_id; id += block_start * mul_c; for (int i = 0; i < block_size; i++) { auto d = sx * sycl::exp(id) - xx; local_call[i] = (d > 0) ? d : 0; id += mul_c; } // Handling num_steps step by last item and putting it direclty to // SLM last element if (local_id == wg_size - 1) { auto d = sx * sycl::exp(id) - xx; slm_call[wg_size] = (d > 0) ? d : 0; } // Start at the final tree time step nodes(leaves) and walk // backwards to calculate the call option price. for (int i = num_steps; i > 0; i--) { // Give and get "next block's local_call[j+1]" (local_call[0] in // next block) elements across work items slm_call[local_id] = local_call[0]; if (wg_size > sg_size) { item.barrier(sycl::access::fence_space::local_space); } local_call[block_size] = slm_call[local_id + 1]; if (wg_size > sg_size) { item.barrier(sycl::access::fence_space::local_space); } if (block_start <= i) { for (int j = 0; j < block_size; j++) { local_call[j] = pu_df * local_call[j + 1] + pd_df * local_call[j]; } } } if (local_id == 0) { h_call_result_local[opt] = local_call[0]; } }); }); binomial_queue->wait(); } void Binomial::run() { std::printf( "%s Precision Binomial Option Pricing version %d.%d running on %s using " "DPC++, workgroup size %d, sub-group size %d.\n", sizeof(DATA_TYPE) > 4 ? "Double" : "Single", MAJOR, MINOR, binomial_queue->get_device().get_info<sycl::info::device::name>().c_str(), wg_size, sg_size); std::printf("Compiler Version: %s, LLVM %d.%d based.\n", __VERSION__, __clang_major__, __clang_minor__); std::printf("Driver Version : %s\n", binomial_queue->get_device() .get_info<sycl::info::device::driver_version>() .c_str()); std::printf("Build Time : %s %s\n", __DATE__, __TIME__); std::printf("Input Dataset : %d\n", opt_n); std::printf("Pricing %d Options with time step of %d.\n", opt_n, num_steps); fflush(stdout); std::printf("Cold iteration.\n"); fflush(stdout); timer t{}; t.start(); body(); t.stop(); #if REPORT_COLD std::printf("Completed in %10.5f seconds. Options per second: %10.5f\n", t.duration(), static_cast<double>(opt_n) / (t.duration())); #endif #if REPORT_WARM std::printf("Warm iteration.\n"); fflush(stdout); t.start(); body(); t.stop(); std::printf("Completed in %10.5f seconds. Options per second: %10.5f\n", t.duration(), static_cast<double>(opt_n) / (t.duration())); #endif std::printf("Time Elapsed = %10.5f seconds\n", t.duration()); fflush(stdout); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/binomial/src/binomial.hpp
//============================================================== // Copyright © 2023 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #ifndef __Binomial_HPP__ #define __Binomial_HPP__ #include <chrono> #ifndef DATA_TYPE #define DATA_TYPE double #endif #ifndef VERBOSE #define VERBOSE 0 #endif /******* VERSION *******/ #define MAJOR 1 #define MINOR 8 /******* VERSION *******/ constexpr float volatility = 0.10f; constexpr float risk_free = 0.06f; constexpr int num_steps = 2048; constexpr int opt_n = #if SMALL_OPT_N 480; #else 8 * 1024 * 1024; #endif #ifndef __clang_major__ #define __clang_major__ 0 #endif #ifndef __clang_minor__ #define __clang_minor__ 0 #endif #ifndef __VERSION__ #define __VERSION__ __clang_major__ #endif class Binomial { public: Binomial(); ~Binomial(); void run(); void check(); private: DATA_TYPE* h_call_result; DATA_TYPE* h_stock_price; DATA_TYPE* h_option_strike; DATA_TYPE* h_option_years; void body(); }; class timer { public: timer() { start(); } void start() { t1_ = std::chrono::steady_clock::now(); } void stop() { t2_ = std::chrono::steady_clock::now(); } auto duration() { return std::chrono::duration<double>(t2_ - t1_).count(); } private: std::chrono::steady_clock::time_point t1_, t2_; }; #endif // __Binomial_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/binomial/src/binomial_main.cpp
//============================================================== // Copyright © 2023 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <cmath> #include <cstdio> #include <vector> #include "binomial.hpp" // Black-Scholes Reference Implementation void BlackScholesRefImpl(double& callResult, double Sf, // Stock price double Xf, // Option strike double Tf, // Option years double Rf, // Riskless rate double Vf // Volatility rate ) { // BSM Formula: // https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/ double S = Sf, L = Xf, t = Tf, r = Rf, sigma = Vf; double N_d1 = 1. / 2. + 1. / 2. * std::erf(((log(S / L) + (r + 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.)); double N_d2 = 1. / 2. + 1. / 2. * std::erf(((log(S / L) + (r - 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.)); callResult = (S * N_d1 - L * std::exp(-r * t) * N_d2); } void Binomial::check() { if (VERBOSE) { std::printf("Creating the reference result...\n"); std::vector<double> h_call_result_host(opt_n); for (int opt = 0; opt < opt_n; opt++) BlackScholesRefImpl(h_call_result_host[opt], h_stock_price[opt], h_option_strike[opt], h_option_years[opt], risk_free, volatility); double sum_delta = 0.0, sum_ref = 0.0, max_delta = 0.0, errorVal = 0.0; for (int i = 0; i < opt_n; i++) { double ref = h_call_result_host[i]; auto delta = std::fabs(ref - h_call_result[i]); if (delta > max_delta) { max_delta = delta; } sum_delta += delta; sum_ref += std::fabs(ref); } if (sum_ref > 1E-5) std::printf("L1 norm: %E\n", errorVal = sum_delta / sum_ref); else std::printf("Avg. diff: %E\n", errorVal = sum_delta / opt_n); std::printf((errorVal < 5e-4) ? "TEST PASSED\n" : "TEST FAILED\n"); } } int main(int argc, char** argv) { Binomial test; test.run(); test.check(); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_pi/mc_pi.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= /* * * Content: * This file contains Monte Carlo Pi number evaluation benchmark for DPC++ * interface of random number generators. * *******************************************************************************/ #include <iostream> #include <numeric> #include <vector> #include <numeric> #include <sycl/sycl.hpp> #include "oneapi/mkl.hpp" using namespace oneapi; // Value of Pi with many exact digits to compare with estimated value of Pi static const auto pi = 3.1415926535897932384626433832795; // Initialization value for random number generator static const auto seed = 7777; // Default Number of 2D points static const auto n_samples = 120000000; double estimate_pi(sycl::queue& q, size_t n_points) { double estimated_pi; // Estimated value of Pi size_t n_under_curve = 0; // Number of points fallen under the curve // Step 1. Generate n_points * 2 random numbers // 1.1. Generator initialization // Create an object of basic random numer generator (engine) mkl::rng::philox4x32x10 engine(q, seed); // Create an object of distribution (by default float, a = 0.0f, b = 1.0f) mkl::rng::uniform distr; sycl::buffer<float, 1> rng_buf(n_points * 2); // 1.2. Random number generation mkl::rng::generate(distr, engine, n_points * 2, rng_buf); // Step 2. Count points under curve (x ^ 2 + y ^ 2 < 1.0f) size_t wg_size = std::min(q.get_device().get_info<sycl::info::device::max_work_group_size>(), n_points); size_t max_compute_units = q.get_device().get_info<sycl::info::device::max_compute_units>(); size_t wg_num = (n_points > wg_size * max_compute_units) ? max_compute_units : 1; size_t count_per_thread = n_points / (wg_size * wg_num); std::vector<size_t> count(wg_num); { sycl::buffer<size_t, 1> count_buf(count); q.submit([&] (sycl::handler& h) { auto rng_acc = rng_buf.template get_access<sycl::access::mode::read>(h); auto count_acc = count_buf.template get_access<sycl::access::mode::write>(h); h.parallel_for(sycl::nd_range<1>(wg_size * wg_num, wg_size), [=](sycl::nd_item<1> item) { sycl::vec<float, 2> r; size_t count = 0; for(int i = 0; i < count_per_thread; i++) { r.load(i + item.get_global_linear_id() * count_per_thread, rng_acc.get_pointer()); if(sycl::length(r) <= 1.0f) { count += 1; } } count_acc[item.get_group_linear_id()] = sycl::reduce_over_group(item.get_group(), count, std::plus<size_t>()); }); }); } n_under_curve = std::accumulate(count.begin(), count.end(), 0); // Step 3. Calculate approximated value of Pi estimated_pi = n_under_curve / ((double)n_points) * 4.0; return estimated_pi; } int main(int argc, char ** argv) { std::cout << std::endl; std::cout << "Monte Carlo pi Calculation Simulation" << std::endl; std::cout << "Buffer Api" << std::endl; std::cout << "-------------------------------------" << std::endl; double estimated_pi; size_t n_points = n_samples; if(argc >= 2) { n_points = atol(argv[1]); if(n_points == 0) { n_points = n_samples; } } std::cout << "Number of points = " << n_points << std::endl; // This exception handler with catch async exceptions auto exception_handler = [&](sycl::exception_list exceptions) { for(std::exception_ptr const& e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const& e) { std::cout << "Caught asynchronous SYCL exception:\n" << e.what() << std::endl; std::terminate(); } } }; try { // Queue constructor passed exception handler sycl::queue q(sycl::default_selector{}, exception_handler); // Launch Pi number calculation estimated_pi = estimate_pi(q, n_points); } catch (...) { // Some other exception detected std::cout << "Failure" << std::endl; std::terminate(); } // Printing results std::cout << "Estimated value of Pi = " << estimated_pi << std::endl; std::cout << "Exact value of Pi = " << pi << std::endl; std::cout << "Absolute error = " << fabs(pi-estimated_pi) << std::endl; std::cout << std::endl; return 0; }
cpp