rust / llvm-ir /README.md
mike dupont
πŸŽ‰ WORLD'S FIRST: Complete Rust β†’ LLVM IR Pipeline Dataset
2406a1f

LLVM IR Analysis Dataset: llvm-sys.rs

This dataset contains comprehensive LLVM IR analysis data extracted from Rust source /home/mdupont/2024/08/24/llvm-sys.rs using the LLVM IR extractor.

Dataset Overview

  • Source: /home/mdupont/2024/08/24/llvm-sys.rs
  • Optimization Levels: ["O0", "O1", "O2", "O3"]
  • Extraction Tool: LLVM IR extractor (part of hf-dataset-validator-rust)
  • Format: Apache Parquet files optimized for machine learning
  • Compression: Snappy compression for fast loading

Dataset Structure

Phase-Based Organization

The dataset captures the complete Rust β†’ LLVM IR compilation pipeline:

1. IR Generation (ir_generation-*-phase/)

  • Initial LLVM IR generation from Rust source
  • Type system mappings (Rust types β†’ LLVM types)
  • Function signature transformations
  • Basic block and instruction analysis

2. Optimization Passes (optimization_passes-*-phase/)

  • LLVM optimization pass applications and effects
  • Before/after IR comparisons for each optimization
  • Performance impact measurements
  • Optimization decision analysis

3. Code Generation (code_generation-*-phase/)

  • Final IR β†’ machine code generation patterns
  • Target-specific optimizations and transformations
  • Register allocation and instruction selection
  • Assembly code generation analysis

4. Performance Analysis (performance_analysis-*-phase/)

  • Execution cycle estimates and performance metrics
  • Code size and complexity analysis
  • Optimization impact correlation
  • Performance regression detection

5. Type System Mapping (type_system_mapping-*-phase/)

  • Detailed Rust type β†’ LLVM type conversions
  • Generic parameter handling and monomorphization
  • Trait object representation analysis
  • Lifetime analysis impact on IR generation

6. Memory Analysis (memory_analysis-*-phase/)

  • Stack and heap allocation pattern analysis
  • Memory safety guarantee preservation
  • Reference counting and ownership in IR
  • Memory layout optimization analysis

Optimization Levels

Each phase is analyzed across multiple optimization levels:

  • O0: No optimization (debug builds)
  • O1: Basic optimizations
  • O2: Standard optimizations (release builds)
  • O3: Aggressive optimizations

Schema

Each record contains:

  • Source Context: Original Rust code, line/column, construct type
  • LLVM IR: Generated IR code, instruction counts, basic blocks
  • Optimization Data: Passes applied, before/after comparisons, impact scores
  • Code Generation: Target architecture, assembly code, register usage
  • Performance Metrics: Cycle estimates, code size, complexity scores
  • Type Mappings: Rust β†’ LLVM type conversions and analysis
  • Memory Patterns: Allocation analysis and safety preservation
  • Processing Metadata: Timestamps, tool versions, processing times

Applications

This dataset enables research in:

  • Compiler Optimization: Understanding LLVM optimization effectiveness
  • Performance Prediction: Predicting performance from source patterns
  • Code Generation: Learning optimal IR generation strategies
  • Type System Research: Understanding type system compilation
  • Memory Safety: Analyzing memory safety preservation in compilation

Usage

Loading with Python

import pandas as pd

# Load IR generation data for O2 optimization
ir_gen_df = pd.read_parquet('ir_generation-O2-phase/data.parquet')
print(f"Loaded {len(ir_gen_df)} IR generation records")

# Load optimization pass data
opt_df = pd.read_parquet('optimization_passes-O2-phase/data.parquet')
print(f"Loaded {len(opt_df)} optimization records")

Loading with Rust

use arrow::record_batch::RecordBatch;
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;

// Load LLVM IR data
let file = std::fs::File::open("ir_generation-O2-phase/data.parquet")?;
let builder = ParquetRecordBatchReaderBuilder::try_new(file)?;
let reader = builder.build()?;

for batch_result in reader {
    let batch = batch_result?;
    println!("Loaded batch with {} LLVM IR records", batch.num_rows());
}

Generation Details

  • Generated: 2025-08-08 00:39:57 UTC
  • Tool Version: LLVM IR extractor (hf-dataset-validator-rust)
  • Source: /home/mdupont/2024/08/24/llvm-sys.rs
  • Optimization Levels: ["O0", "O1", "O2", "O3"]
  • Total Phases: 6 analysis phases Γ— 4 optimization levels