LLVM IR Analysis Dataset: llvm-sys.rs
This dataset contains comprehensive LLVM IR analysis data extracted from Rust source /home/mdupont/2024/08/24/llvm-sys.rs
using the LLVM IR extractor.
Dataset Overview
- Source: /home/mdupont/2024/08/24/llvm-sys.rs
- Optimization Levels: ["O0", "O1", "O2", "O3"]
- Extraction Tool: LLVM IR extractor (part of hf-dataset-validator-rust)
- Format: Apache Parquet files optimized for machine learning
- Compression: Snappy compression for fast loading
Dataset Structure
Phase-Based Organization
The dataset captures the complete Rust β LLVM IR compilation pipeline:
1. IR Generation (ir_generation-*-phase/
)
- Initial LLVM IR generation from Rust source
- Type system mappings (Rust types β LLVM types)
- Function signature transformations
- Basic block and instruction analysis
2. Optimization Passes (optimization_passes-*-phase/
)
- LLVM optimization pass applications and effects
- Before/after IR comparisons for each optimization
- Performance impact measurements
- Optimization decision analysis
3. Code Generation (code_generation-*-phase/
)
- Final IR β machine code generation patterns
- Target-specific optimizations and transformations
- Register allocation and instruction selection
- Assembly code generation analysis
4. Performance Analysis (performance_analysis-*-phase/
)
- Execution cycle estimates and performance metrics
- Code size and complexity analysis
- Optimization impact correlation
- Performance regression detection
5. Type System Mapping (type_system_mapping-*-phase/
)
- Detailed Rust type β LLVM type conversions
- Generic parameter handling and monomorphization
- Trait object representation analysis
- Lifetime analysis impact on IR generation
6. Memory Analysis (memory_analysis-*-phase/
)
- Stack and heap allocation pattern analysis
- Memory safety guarantee preservation
- Reference counting and ownership in IR
- Memory layout optimization analysis
Optimization Levels
Each phase is analyzed across multiple optimization levels:
- O0: No optimization (debug builds)
- O1: Basic optimizations
- O2: Standard optimizations (release builds)
- O3: Aggressive optimizations
Schema
Each record contains:
- Source Context: Original Rust code, line/column, construct type
- LLVM IR: Generated IR code, instruction counts, basic blocks
- Optimization Data: Passes applied, before/after comparisons, impact scores
- Code Generation: Target architecture, assembly code, register usage
- Performance Metrics: Cycle estimates, code size, complexity scores
- Type Mappings: Rust β LLVM type conversions and analysis
- Memory Patterns: Allocation analysis and safety preservation
- Processing Metadata: Timestamps, tool versions, processing times
Applications
This dataset enables research in:
- Compiler Optimization: Understanding LLVM optimization effectiveness
- Performance Prediction: Predicting performance from source patterns
- Code Generation: Learning optimal IR generation strategies
- Type System Research: Understanding type system compilation
- Memory Safety: Analyzing memory safety preservation in compilation
Usage
Loading with Python
import pandas as pd
# Load IR generation data for O2 optimization
ir_gen_df = pd.read_parquet('ir_generation-O2-phase/data.parquet')
print(f"Loaded {len(ir_gen_df)} IR generation records")
# Load optimization pass data
opt_df = pd.read_parquet('optimization_passes-O2-phase/data.parquet')
print(f"Loaded {len(opt_df)} optimization records")
Loading with Rust
use arrow::record_batch::RecordBatch;
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
// Load LLVM IR data
let file = std::fs::File::open("ir_generation-O2-phase/data.parquet")?;
let builder = ParquetRecordBatchReaderBuilder::try_new(file)?;
let reader = builder.build()?;
for batch_result in reader {
let batch = batch_result?;
println!("Loaded batch with {} LLVM IR records", batch.num_rows());
}
Generation Details
- Generated: 2025-08-08 00:39:57 UTC
- Tool Version: LLVM IR extractor (hf-dataset-validator-rust)
- Source: /home/mdupont/2024/08/24/llvm-sys.rs
- Optimization Levels: ["O0", "O1", "O2", "O3"]
- Total Phases: 6 analysis phases Γ 4 optimization levels